机载激光水深探测技术基础及数据处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载激光水深探测技术是当今海洋测绘领域研究的热点与难点之一。虽然该技术的广阔应用前景早已引起人们的极大关注,且硬件设备在国外已相当成熟,有关探测系统集成方面的许多关键问题也已得到解决,诸多机构利用这种系统获得了大量的海上实测数据,并在很多领域得到具体的应用,但机载激光水深测量数据后处理技术在国际上仍处于研究发展阶段,还有许多难点问题有待研究解决。为此,本文围绕机载激光水深探测数据处理中的几项关键技术进行研究,取得的主要成果和创新点如下:
     (1)系统总结了机载激光水深测量技术的研究背景和发展概况,以及机载激光测深数据处理技术的发展现状,分四个阶段详细介绍了国内外机载激光测深技术的发展历程,指出了机载激光测深技术,特别是其中的数据处理技术面临的主要问题和挑战,进一步明确了本文的研究方向和目标。
     (2)在简要介绍机载激光测深系统组成和工作原理基础上,给出了机载激光水深测量计算模型和测深能力估算模型;全面细致地分析了机载激光测深信号传输的特点,提出了使用不变矩确定机载激光水深测量激光回波信号峰值位置的计算方法,同时采用平移矩的方法校正海底回波信号的偏移;通过采用高斯函数模拟海底的反射信号,研究探讨了海底反射信号振幅随光谱宽度控制参数变化的规律,建立了激光测深低通滤波器最佳截止频率与光谱控制参数的函数关系式,设计出了最优的激光回波信号滤波器,并利用海上试验数据具体实现了激光脉冲回波信号的有效识别和提取。
     (3)详细推导了动态差分GPS定位的计算模型,提出了将精密单点定位技术应用于机载激光测深定位定向的新思路,具体推导了精密单点定位的数学模型,给出了基于传统计算模型的PPP解算方法,提出了解决实际应用该方法几个关键问题的技术途径;提出了INS/GPS组合导航系统改进方案和惯性测量单元标定与传递对准方法。利用航空重力测量导航定位数据和国内外计算软件,对以上三种定位定向技术的适用性和计算模型进行了比较充分的数值计算验证,得出了一些有益的结论,为下一步的工程化应用奠定了必要的技术基础。
     (4)根据脉冲式激光发射器的工作原理,给出了码盘周期和激光脉冲记录数据的处理方法;定义了各类传感器观测坐标系统,并确定了不同坐标系之间的转换关系,在此基础上,提出了激光测深、GPS定位、电子罗盘等多源观测数据的集成和同步处理方法;提出了通过求解反射镜法线及反射光线在各个平面的投影,确定海面及海底激光入射点坐标的计算方法,详细推导了海面激光入射点坐标的严密计算模型。通过仿真和实际观测数据计算分析,有效验证了上述各种处理方法的可行性和正确性。
     (5)详细分析了机载激光测深各类观测数据的误差源,从定性和定量两个方面探讨了各类误差源对激光测深成果的影响规律。具体分析了机载激光测深深度归算改正的三种计算模型,得出了惯导辅助修正模型是三种深度归算改正模型的首先方案。针对机载激光测深出现异常数据比较多的特点,提出了基于抗差M估计选权迭代法的异常数据检测方法,给出了异常数据检测的判别模型和计算流程。根据机载激光测深条带连接必须有部分重叠的要求,给出了机载激光测深数据系统偏差的趋势面模型,提出采用两步法解决机载激光测深数据中的系统偏差补偿问题,极大地简化了机载激光测深条带数据融合计算过程。
     (6)提出了采用单波束测深成果检核机载激光数据质量的技术方法和计算流程,并以我国自行研制的机载激光测深系统为例,给出了该系统在某海区试验数据的外部检核结果。针对两种测深手段之间明显存在系统性偏差的基本事实,提出了以单波束测深成果为控制,对机载激光测深数据系统偏差进行校正和补偿的精细化处理新方案。
Airborne laser bathymetric technique is a hot and difficult problem in the field of present marine surveying and mapping. The promising prospect of the application of the technique has greatly attracted people’s attention. With the maturing of bathymetric hardware in foreign countries, and the solution of many key problems on hardware and system integration, many organizations and consortiums have obtained enormous ocean observations using bathymetric system and applied the system into a lot of fields. However, the post processing methods of bathymetric observations are still in the phase of research and development, and there are still many problems that have not been well solved. Under such background, the dissertation performed research on some key problems of airborne laser bathymetric system (ALBS). The main work completed is as follows.
     (1) The history and development of Airborne Laser Bathymetry (ALB) technology as well as the current status of ALB data processing techniques were summarized in general. The development of ALB technology in the world within four periods was introduced in detail, and the major problems and challenges faced by ALB especially the data processing techniques were illustrated. Then the work scheme and target of the dissertation were briefed.
     (2) Mathematical models for ALB computations and bathymetric capability assessment were presented on the basis of the system structure and work mechanism of ALB. Through a detailed analysis of the characteristics of ALB signal transmission, a computation method for the determination of the summit position of ALB laser echo signal using invariant moment was proposed, and the method for shift correction of seabed echo signal using translating moment translation was also proposed. By simulating the reflection signal from seabed using Gauss Function, the variation of the amplitude of seabed reflection signal with the control parameter of spectral width was researched, and the function model of the optimal truncation frequency of laser bathymetric FIR and the spectral control parameter was set up, and thus the optimal filter of laser echo signal was designed. As a result, the effective recognition and extraction of laser pulse echo signal were implemented with shipboard test data.
     (3) The computation model for dynamic differential GPS was derived, based on which the new idea that applied the Precise Point Positioning (PPP) technique to the positioning and orientation of ALB was put forward, and the mathematical model for PPP was derived, and the PPP solution method using conventional solution was presented, and furthermore the technical approaches to some key problems of the application of the method were provided. The scheme for the improvement of INS/GPS integrated navigation system as well as the calibration and transferring-and-alignment method for the inertial measuring unit were also presented. Using navigation positioning observations from airborne gravimetry and state-of-the-art software, numerical tests were made on the applicability and computation model of the above three positioning and orientation methods, from which some beneficial conclusions were drawn, which lays the foundation for future engineering applications.
     (4) The processing method for encoder cycle and laser pulse record was presented on the basis of the principle on which the pulse-type laser emitter works. The coordinate systems for different sensor observations were defined and the transformations between the systems were determined, and then the integration and synchronous processing method for multi-source observations from ALB, GPS and electronic compass was proposed. A method was given for the determination of the incidence points at sea surface and seabed by computing the projections of the reflector normal and reflected laser beams onto device planes, and the strict model for the computation of the incidence point coordinates on sea surface was derived in detail. Simulation and actual observations processing effectively demonstrated the applicability and correctness of the proposed methods.
     (5) Error sources that have effect on the observations of ALB were given through a thorough analysis, and the effects of different error sources on ALB were discussed from a quantitative and a qualitative view respectively. The three computation models for the reduction and correction of depths from ALB were given material analyses, from which the conclusion that the inertial navigation aided correction model is the most preferred scheme of the three models. Then, aiming at the characteristics that more outliers than common appears in ALB, the outlier detection method based on weight-selection iteration of robust M-estimation, along with the judgment model and computation flow for outlier detection was brought forward. According to the requirement that for the stripe conjunction of ALB there must be some overlapped area, the trend surface model that suits ALB data system bias was provided, and the two-step method was recommended to solve the system bias compensation within the ALB observations, which greatly simplifies the fusion process of ALB stripe data.
     (6) The technique and processing steps for the back-check of ALB data quality using single beam bathymetric data were proposed, which were implemented on the ALB system developed by China. The results for the exterior check of the system were given from experiments at sea. To overcome the prominent systematic bias between the two bathymetric techniques, a new processing scheme was proposed for making corrections and compensations to the systematic bias of ALB data with single beam bathymetric data as control.
引文
[1] Aloysius W, L Uwe.Airborne Laser Scanning-an Introduce and Overview[J].ISPRS. Photog. Rem. Sens, 1999, 54: 68~82.
    [2] Aloysius W, L Uwe.Theme Issue on Airborne Laser Scanning[J].ISPRS. Photog. Rem. Sens, 1999, 54: 61~63.
    [3] Antoniou A. Digital Filters: Analysis, Design, and Applications, 2nd ed. NewYork: McGraw-Hill, 1993.
    [4] Baltsavias E.P. Airborne Laser Scanning: Existing Systems and Firms and other Resources[J].ISPRS. Photog. Rem. Sens, 1999, 54: 164~198.
    [5] Baltsavias E.P..Airborne Laser Scanning: Basic Relations and Formulas[J].ISPRS. Photog. Rem. Sens, 1999, 54: 199~214.
    [6] Banic J., S. Sizgoric, R. O’Neil, Scanning Lidar Bathymeter for Water Depth Measurement, In Proc. Sproc. SPIE, Laser Radar Technol. Appl., 1986, 663: 187~195.
    [7] Bernhard H, P Norbert. Correction of Laser Scanning Intensity Data: Data and Model-Driven Approaches[J]. ISPRS. Photog. Rem. Sens, 2007,62: 150~169.
    [8] Bettina P, R Peter, S Wolfgang . Laser Scanning-Surveying and Mapping Agencies are a NewTechnique for the Derivation of Digital Terrain Models[J].ISPRS. Photog. Rem. Sens, 1999, 54: 95~104.
    [9] Bharat L, C David. Mason. Application of Airborne Scanning Laser Altimetry to the Study of Tidel Channel Geomorphology[J]. ISPRS. Photog. Rem. Sens, 2001, 56: 100~120.
    [10] Bilard B. Remote Sensing of Scattering Coefficient for Airborne Laser Hydrography[J], Appl.Opt., 1986, 25: 2099~2018.
    [11] Billard B. and P. J. Wilsen. Sea Surface and Depth Estimation in the WRELADS Airborne Depth Sounder, Appl. Opt., 1986, 25: 2059~2066.
    [12] Bressel C, I.Itazkan, J.E.Nunes, F.Hoge. Airborne Oceanographic Lidar System[J]. Remtoe Sens.Environ, 1997, 2: 1259~1269.
    [13] Bryan B J., L R David, A H Michelle.The Laser Vegetation Imaging Sensor: A Medium-altitude, Digitisation-only, Airborne Laser for Mapping Vegetation and Topography[J].ISPRS. Photog. Rem. Sens, 1999, 54: 115~122.
    [14] CALDER M., WRELADS-the Australian Laser Depth Sounding System. Int. Hydrograph. Rev., 1980, 57: 31~54.
    [15] Cascy M.J, J. Vosburgh, Chartmaking with LARSEN, Canadian Surveyor, 1986, 40: 251~260.
    [16] David B, M Jon, S V G Sarah. Validation of a Ground-Based MobileLaser Scanning System[J]. ISPRS. Photog. Rem. Sens, 2007,59: 150~164.
    [17] David C. M, R. S Tania, H J Wang. Extraction of Tidal Channel Networks from Airborne Scanning Laser Altimetry[J]. ISPRS. Photog. Rem. Sens, 2006, 61: 67~83.
    [18] Dirks R. W .J, D. Spitzer. Laser Remote Sensing of Aquatic Environment: First and Second-order Scattering model[J]. Appl. Opt., 1991, 30: 443~452.
    [19] Dow A. AD-A107080. 1980, 34~35.
    [20] Emmanuel P., Baltsavias.A Comparison between Photogrammetry and Laser Scanning[J].ISPRS. Photog. Rem. Sens, 1999, 54: 83~94.
    [21] Favey E. Investigation and Improvement of Airborne Laser Scanning Technique for Monitoring Surface Elevation Change of Glacies[D]. ETH. Zürich:Technische wissensch aften, 2001.
    [22] Franz R, T John, C Simon, K Kurt. Building Detection by Fusion of Airborne Laser ScannerData and Multi-Spectral Images: Performance Evaluation and Sensitivity Analysis[J]. ISPRS. Photog. Rem. Sens, 2007,62: 135~149.
    [23] Fried D. L. Statistics of a Geometric Representation of Wavefront Distortion[J]. Opt. Soc. Am., 1965, 55: 1427~1435.
    [24] Friedrich A.Airborne Laser Scanning-Present Status and Future Expectations[J].ISPRS. Photog. Rem. Sens, 1999, 54: 64~67.
    [25] Gary C. G, W. B Mark, E Paul. Larocque.New Capabilities of the“SHOAL”Airborne Lidar Bathymetry[J].ISPRS. Photog. Rem. Sens, 2000, 73: 247~255.
    [26] Geiger H., K.Scheel., Handbuch der physic[M]. vol.ⅢBerlin:Springer,1928.
    [27] George S, G B Vosselman. Detection in Airborne Laser Scanner Data[J]. ISPRS. Photog. Rem. Sens, 2006, 61: 33~46.
    [28] George S, V George. Expermental Comparison of Filter Algorithms for Bare-Earth Extraction from Airborne Laser Scanning Point Clouds[J]. ISPRS. Photog. Rem.Sens, 2004, 59: 85~101.
    [29] Gomes P L. M, R.J. Wicherson.Suitability of Laser Data for Deriving Geographical Information A Case Study in the Context of Management of Fluvial Zones[J].ISPRS. Photog. Rem. Sens, 1999, 54: 105~114.
    [30] Guenther G. C, H. C. Mesick. Automated Lidar Waveform Processing, in proc. Ocean Opt,1988, 6: 52~59.
    [31] Guenther G.C, R.W.L.Thomas, Effects of Propagation-induced Pulse Stretching in Airborne Laser Hydrography[J], In Proc. Ocean Opt. 1984,7: 287~292.
    [32] Gunho S, D Ian. Data Fusion of High-Resolution Satellite Imagery and LiDAR Datafor Automatic Building Extraction[J]. ISPRS. Photog. Rem. Sens, 2007, 62: 43~63.
    [33] Haimbach S. P., H.C. Mesick, H.J.Bynes, G.D. Hickman. Optical Bathymetry for the U.S. Navy: A Field Measurement Program[J]. Ocean Opt, 1988, 6,: 46~51.
    [34] Hande D. A Dynamic Multi-dimensional Conceptual Data Model for Transportation Applications[J].ISPRS. Photog. Rem. Sens, 2004, 58: 301~314.
    [35] Hans-Gerd M, V George.Two Algorithms for Extracting Building Models from Raw Laser Altimetry Data[J].ISPRS. Photog. Rem. Sens, 1999, 54: 153~163.
    [36] Hickman G D, Hogg J E. Remote Sensing of the Environment. 1(1996), 67~80.
    [37] Hickman G.D., J.E.Hogg. Application of an Airborne Pulsed Laser for near Shore Bathymetry Measurements[J]. Remote. Sens. Envior, 1969, 1: 47~58,.
    [38] Hiroshi M, N Katsuto, H Hiroyuki, S Taku, I Eiji.Change Detection of Buildings Using an Airborne Laser Scanner[J].ISPRS. Photog. Rem. Sens, 1999,54: 148~152.
    [39] Hoge F. E. et. Airborne Lidar Detection of Subsurface Oceanic Scattering Layers[C], Appl. Opt, 1988, 27: 3969~3977.
    [40] Hoge F. E., R.N. Swift, E. B. Frederick, Water Depth Measurement Using an Airborne Pulse Dneon Laser System[J]. Appol. Opt., Mar, 1980, 19: 871~883.
    [41] Hollaus M., Wanger W., Ebeh?fer C., Karel W. Accuracy of Large-Scale Canopy Heights Derived from LiDAR Data under Operational Constraints in a Complex Alpine Environment[J]. ISPRS. Photog. Rem. Sens, 2006, 60: 323~338.
    [42] http://www.elsevier.co.jp/locate/isprsjprs.
    [43] http://www.elsevier.com/locate/isprsjprs.
    [44] http://www.elsevier.nl/locate/isprsjprs.
    [45] http://www.optech.ca.
    [46] Irish J. L, T. E White.Coastal Engineering Applications of High-Resolution Lidar Bathymetry[J]. Coastal Engineering, 1998, 35: 47~71.
    [47] Jan S, D Lichti. Rigorous Approach to Bore-Sight Self-Calibration in Airborne Laser Scanning[J]. ISPRS. Photog. Rem. Sens, 2006, 61: 47~59.
    [48] Jan S, L Derek. Erratum to“Rigorous Approach to Bore-Sight Self-Calibration in Airborne Laser Scanning”[J]. ISPRS. Photog. Rem. Sens, 2006, 61: 47~59.
    [49] Jan S, L Derek. Gaussian Rigorous Approach to Bore-sight Self-calibration in Airborne Laser Scanning [J]. ISPRS. Photog. Rem. Sens, 2006, 61: 47~59.
    [50] Jennifer L. I, W. J Lillycrop.Scanning Laser Mapping of the Coastal Zone: The SHOALS System[J]. ISPRS. Photog. Rem. Sens, 1999, 54: 123~129.
    [51] John J. D. Photon-Counting Multikilohertz Microlaser Altimeters for Airborne and Spaceborne Topographic Measurements [J]. Journal of Geodynamics, 2002, 34: 503~549.
    [52] Kaiser J. F., Nonrecursive Digital Filter Design Using the I0-sinh Window Function, in Proc. IEEE Int. Symp. Circuits Syst., SanFrancisco, CA, Apr. 1974: 20~23.
    [53] Kerry M, K Amnon. Integration of Laser-Derived DSMs and Matched Image Edgesfor Generating an Accurate Surface Model[J]. ISPRS. Photog. Rem. Sens, 2002, 56: 167~176.
    [54] Kim H H. Airborne Bathymetric Charting Pulsed Blue-green Lasers[C]. Applied Optics, 1997, 16(46): 46~66.
    [55] Korn G.A, T.M.Korn. Mathematical Handbook for Scientists and Engineers. NewYork; McGraw-Hill, 1961.
    [56] Lee H.S, N.T.O’Neill, LIDAR Return Pulse Profile and Its Relationship to Water Optical Parameters [J], In Proc. 7th SPIE Conf. Ocean Opt., 1984: 297~305.
    [57] Moffier T., K. Mengersen, C. Witte, R. R King. Denham. Airborne Laser Scanning: Exploratory Data Analysis Indicates Potential Variables for Classification of Individual Tress[J]. ISPRS. Photog. Rem. Sens, 2005, 59: 289~309.
    [58] Noll R. Zernike Polynomials and Atmospheric Turbulence[J]. Opt. Soc. Am,1976, 66: 207~211.
    [59] Norbert H, B Claus.Extraction of buildings and Tress in Urban Enviroments[J].ISPRS. Photog. Rem. Sens, 1999, 54: 130~137.
    [60] Penny M. F., R. H. Abbot, D. M. Philips, B. Billard, D.Rees, and D.W.Faulkner, Airborne Laser Hydrography in Australia[J], Appl. Opt., 1986, 25: 2046~2058.
    [61] Penny M.F, B. Billard, R.H.Abbot. LADS—the Australian Laser Airborne Depth Sounder[J]. ISPRS. Photog. Rem. Sens, 1989, 10: 1463~1479.
    [62] Peter A.Processing of Laser Scanner Data-Algorithms and Applications[J].ISPRS. Photog. Rem. Sens, 1999, 54: 138~147.
    [63] Pillai.S.R, H.S.Oh, A.Antoniou. A new Estimation Technique for High-resolution Bathymetry[J]. Signal Processing. 2000, 80: 809~818.
    [64] Rattmana W, T.Smith, Lasers for Depth Sounding and Underwater Viewing[J]. Hydrospace, 1972: 57~ 59.
    [65] Sagi F, N Pfeifer. Segmentation of Airborne Laser Scanning Data Using a Slope Adaptive Neighborhood [J]. ISPRS. Photog. Rem. Sens, 2006, 60: 71~80.
    [66] Schüssler H.W., P.Steffen. Some Advanced Topics in Filter Design, in Advanced Topics in Signal Processing, J.S.Lim and A.V.Oppenheim, Eds. Englewood Ciffs, NJ: Prentice-Hall,1988.
    [67] Sterinbvall O. K Koppari, U Karisson. Experimental Evaluation of an Airborne Depth-sounding lidar[C]. Opt. Engng., 1993, 32(26):1307~1321.
    [68] Sterinbvall O. Laser Depth Sounding in the Baltic Sea[J]. Appl. Opt. 1981, 20(19): 3284~3285.
    [69] Svensson S, K Koppari, U Karisson. Experimental Evaluation of an Airborne Depth-sounding lidar[J]. Opt. Engng., 1993, 32(6), 1307~1321.
    [70] Synge E H. A Method of Investigating the Higher Atmosphere[J]. Philosophy Magazine. 1930, 9: 1014~1021.
    [71] Thiel K H, A Wehr. Calibration Procedures of the Imaging Laser Altimeter and Data Processing[C]. Joint Worshop of ISPRS WGs I/1, I/3, and IV/4; Sensors and Mapping from Space, Univ. Hannover,1999.
    [72] Tunc M A, E A Johnson, O R Wolf. A New Experimental Method for Study of the Upper Atmosphere[J]. Magazine of Atmosphere Electron. 40 (1930), 452.
    [73] Wolfgang W, U Andreas, U Vesna, M Thomas, S Nich. Gaussian Decomposition and Calibration of a Novel Small-footprint Full-waveform Digitizing Airborne Laser Scanner[J]. ISPRS. Photog. Rem. Sens, 2006, 61: 67~83.
    [74] Wong H., A. Antoniou, Characterization and Decomposition of Waveforms for LARSEN 500 Airborne System[C]. Remote Sens., 1991, 29: 912~921.
    [75] Zunberge J F, M B Heflin, D C Jefferson. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research, 1997, 102(B3): 5005~5017.
    [76] B.M.瓦切西威克兹(美),M.J.鲁德(美),徐枋同等译.激光多普勒测量[M].水利出版社,1980.
    [77]В.А.柯乌基娅(苏),王诚华译.激光测量仪器在建设中的应用[M].北京,测绘出版社,1981.
    [78]М.Т.帕里列宾(苏),А.Н.高鲁别夫(苏),浙江大学光仪系激光仪器教研组译.激光在大地测量中的应用[M].北京:科学出版社,1976.
    [79]曹福祥,袁建平,郑谔.高精度位置GPS/SINS组合导航系统研究[J].航空电子技术,1999,第9期:21~24.
    [80]昌颜君,朱光喜,彭复员,朱耀庭.机载激光海洋测深技术综述[J].科学视野,2002,26(5):34~36.
    [81]昌彦君,彭复员,朱光喜,刘应状,胡颖松.基于Gabor展开的水下目标激光探测的信号检测与识别[J].中国激光,2003,30(3):282~284.
    [82]陈烽.机载激光测深系统中激光传输通道的光学特性[J].应用光学,2000,21(3):32~38.
    [83]陈坚,金翔龙.机载激光测深技术进展及应用[J].海洋通报,2002,21(6):75~83.
    [84]陈静,朱晓,杨克成,李再光.机载激光测深系统的环境噪声分析[J].激光技术,1999,23(6):360~364.
    [85]陈默,高成发.GPS精密单点定位静态精度分析[J].现代测绘,2006,29(3):17~19.
    [86]陈卫标,陆雨田,褚春霖,翟国君,黄谟涛.机载激光水深测量精度分析[J].中国激光,2004,31(1):101~104.
    [87]陈文革,黄铁侠,柳健.机载海洋激光雷达的试验和模拟研究[J].华中理工大学学报,1997,25(5):61~64.
    [88]陈文革,黄铁侠,柳健.激光雷达测量海水光学水质参数[J].华中理工大学学报,1997,25(5):65~66.
    [89]陈文革,罗志祥,黄铁侠,柳健.海洋激光雷达系统接收信号噪声的相空间分析[J].华中理工大学学报,1997,25(5):65~66.
    [90]陈文革,罗志祥,黄铁侠,柳健.机载海洋激光雷达系统中的光束扩散[J].电子学报,1996,24(3):112~116.
    [91]陈文革,熊兆飞,卢益民,杜竹峰,黄铁侠.海洋激光雷达系统的最大测深能力计算公式的修正[J].华中理工大学学报,1995,23(10):63~65.
    [92]陈宪冬.GPS精密定位中的海潮负荷改正[J].西南交通大学学报,2006,46(6):429~441.
    [93]戴锦年,朱晓,杨克成,李再光.机载激光测深的有效衰减系数[J].华中理工大学学报,1998,25(6):91~94.
    [94]高星伟.GPS/GLONASS网络RTK的算法研究与程序实现[D].武汉大学,2003.
    [95]郭东美,韩保民,熊熊.低轨卫星定轨中精密卫星钟差的插值方法[J].大地测量与地球动力学,2007,27(2):103~106.
    [96]郝明,欧吉坤,郭建锋,袁运斌.一种加速精密单点定位收敛的新方法[J].武汉大学学报·信息科学版,2007,32(10):902~905.
    [97]贺细顺,朱晓,谭雪松,杨克成,杨坤涛.海水散射引起激光脉冲传输延迟的研究[J].激光与红外,2001,31(1):19~21.
    [98]胡善江,贺岩,藏华国,崔雪梅,朱小磊,陈卫标.新型机载激光测深系统及其飞行实验结果[J].中国激光,2006,23(9):1164~1167.
    [99]黄军,李松.基于表面回波的机载激光测深系统的最佳扫描方案[J].激光杂志,2001,22(6):82~88.
    [100]黄谟涛,翟国君,管铮.利用卫星测高数据反演海洋重力异常研究[J].测绘学报,2001,30(2):184~199.
    [101]黄谟涛,翟国君,欧阳永忠,刘雁春,陆秀平,王克平.多波束与单波束测深数据的融合技术[J].测绘学报,2001,30(4):299~303.
    [102]黄谟涛,翟国君,欧阳永忠,陆秀平.机载激光测深系统中的波浪改正技术[J].武汉大学学报信息科学版,2003,28(4):389~392.
    [103]黄谟涛,翟国君,谢锡君,王瑞,欧阳永忠,管铮.多波束和机载激光测深位置归算及载体姿态影响研究[J].测绘学报,2000,29(1):82~88.
    [104]黄先锋,陶闯,江万涛,龚健雅.机载激光雷达点云数据的实时渲染[J].武汉大学学报·信息科学版,2005,30(11):975~978.
    [105]姜璐,朱海,李松.机载激光雷达最大探测深度同海水透明度的关系[J].激光与红外,2005,35(6):397~399.
    [106]凯林格(美),穆拉迪(美),廖品霖(译).光和激光遥感[M].成都:成都电讯工程学院出版社,1987.
    [107]蓝信鉅.激光技术-2版[M].北京:科学出版社,2005.
    [108]李桂春.气动光学[M].北京:国防工业出版社,2007.
    [109]李松.机载激光海洋测深及其质量控制[D].武汉大学,2002.
    [110]李学友.IMU/DGPS辅助航空摄影测量原理、方法及应用[D].郑州:解放军信息工程大学,2005.
    [111]李正周.MATLAB数字信号处理与应用[M].北京:清华大学出版社,2008.
    [112]刘基余,李松.机载激光测深系统测深误差源的研究[J].武汉大学学报·信息科学版,2000,25(6):491~495.
    [113]刘基余.略论机载激光测深系统的激光脉宽选择[J].海洋测绘,2002,22(3):3~5.
    [114]刘经南,叶世榕.GPS非差相位精密单点定位技术探讨[J].武汉大学学报信息科学版,2005,25(6):651~661.
    [115]刘经南,张小红.激光扫描测高技术的发展与现状[J].武汉大学学报·信息科学版,2003,28(2):132~137.
    [116]刘精攀.GPS非差相位精密单点定位方法与实现[D].河海大学,2007.
    [117]刘少创,尤红建,李树凯.机载激光测距——扫描成像系统的定位原理与误差分析[J].武汉测绘科技大学学报,1999,24(2):124~128.
    [118]刘士峰,褚春霖,陆雨田.机载激光测深系统中回波信号形成过程的MONTE CARLO模拟[J].光学技术,2001,27(1):44~46.
    [119]刘士峰.机载激光测深系统在使用中的应考虑到几个问题[J].测绘科学,1999,402(6):32~35.
    [120]刘晓刚,叶修松,吴星,蒋仕华.下行L波段轨道法时间比对计算模型及其精度评估[J].海洋测绘,2009,29(3):4~6.
    [121]刘炎雄,周兴华,张卫红,吴永亭.改进沿海RBN/DGPS系统的方法[J].测绘通报,2006,第1期:13~15.
    [122]刘雁春,肖付民,暴景阳,徐卫明.海道测量学概论[M].北京:测绘出版社,2006.
    [123]刘子超,赵云惠.液雾及颗粒的激光测量原理[M].北京:宇航出版社,1988.
    [124]柳响林.精密GPS动态定位的质量控制与随机精化[D].武汉大学,2001.
    [125]卢益民,杜竹峰,黄铁侠,杨宗凯.激光雷达视场角的研究[J].激光技术,1999,23(1):46~49.
    [126]卢益民,罗志祥,陈文革,杨宗凯.机载海洋激光雷达信号中噪声的混沌行为初探[J].激光技术,1998,22(3):139~143.
    [127]马兰.机载激光测深的技术装备[J].测绘技术装备,2003,5(2):39~42.
    [128]毛敏娟,张寅超,方海涛,戚福弟,邵石生,周军.机载激光雷达对青岛及周边海域的气溶胶探测[J].地球物理学报,2007,50(2):370~376.
    [129]欧阳永忠,黄谟涛,翟国君,陆秀平,申家双,陈卫标,章传银,程鹏飞.机载激光测深中的深度归算技术[J].海洋测绘,2003,23(1):1~5.
    [130]庞振兴,张传定,叶修松.Surfer8.0在重力异常数据格网化中的应用[J].海洋测绘,2008,28(1):43~45.
    [131]祁芳.卡尔曼滤波算法在GPS非差相位精密单点定位中的应用研究[D].武汉大学,2003.
    [132]任来平,赵俊生,翟国君,黄谟涛.机载激光测深海面扫描轨迹计算分布[J].武汉大学学报·信息科学版,2002,27(2):138~142.
    [133]申家双,黄谟涛,任来平.机载激光测深的位置归算技术研究[J].海洋测绘,2003,23(5):55~60.
    [134]申家双.机载激光测深数据处理方法研究[D].郑州:解放军信息工程大学,2003.
    [135]沈永欢,粱在中,徐履瑚,蔡蒨蒨.实用数学手册[M].北京:科学出版社,1992.
    [136]史照良,曹敏.基于LiDAR技术的海岛礁、滩涂测绘研究[J].测绘通报,2007,第5期:49~53.
    [137]舒宁.激光成像[M].武汉:武汉大学出版社,2005.
    [138]孙长库,叶声华.激光测量技术[M].北京,电子工业出版社,1989.
    [139]孙景群.激光大气探测[M].北京:科学出版社,1986.
    [140]孙渝生.激光多普勒测量及其应用[M].上海:上海科学技术文献出版社,1995.
    [141]唐冬梅,叶修松.地理信息的服务与探讨[J].测绘与空间地理信息,2008,31(4):140~143.
    [142]田中敬一(日),朴大植(译).激光与测量:新测量领域的开拓[M].北京:中国计量出版社,1987.
    [143]万德安.激光基准高精度测量技术[M].北京:国防工业出版社,1999.
    [144]王建,白世彪,陈晔.Surfer8地理信息制图[M].北京:中国地图出版社,2008.
    [145]王丽红,王红伟,叶修松.航空矢量重力测量中载体加速度矢量[J].海洋测绘,2009,29(4):9~12.
    [146]王留石,王甫红,粱洪有.GPS精密单点定位在空中三角测量中的应用[J].测绘信息与工程,2007,32(6):10~12.
    [147]韦建超.GPS精密单点定位的数据处理研究[D].中南大学,2007.
    [148]魏子卿,葛茂荣.GPS相对定位的数学模型[M].北京:测绘出版社,1997.
    [149]吴华意,宋爱红,李新科.机载激光雷达系统的应用与数据后处理技术[J].测绘与空间地理信息,2006,29(3):58~63.
    [150]吴星,张传定,叶修松,韩智超.卫星重力梯度数据的模拟研究[J].测绘科学技术学报,2008,25(6):391~395.
    [151]夏琳元.GPS多路径效应计算结果[D].武汉大学,2000.
    [152]秀一足田达(日),马元珽(译).直升飞机机载激光雷达系统[J].水利水电快报,2003,24(1):30~32.
    [153]徐启阳,杨军,朱晓,杨克成,谢明杰,李再光.机载激光测深回波信号的处理和研究[J].光子学报,1996,25(9):788~792.
    [154]徐启阳,杨坤涛,王新兵,许德胜.蓝绿激光雷达海洋探测[M].北京:国防工业出版社,2007.
    [155]徐启阳,杨涛,王新兵许德胜.蓝绿激光雷达海洋探测[M].北京:国防工业出版社,2007.
    [156]徐前祥,廖明生,杨建思.基于距离限制的机载激光数据滤波方法[J].武汉大学学报信息科学版,2007,32(7):605~609.
    [157]徐祖舰,王滋政,阳锋.机载激光雷达测量技术及工程应用实践[M].武汉:武汉大学出版社,2009.
    [158]杨海全,余洁,秦昆,张国宁.基于知识的LIDAR数据地物提取研究[J].测绘通报,2006,12(1):9~12。
    [159]杨克成,朱晓,李再光.机载激光测深系统中回波信号大动态范围的偏振压缩[J].中国激光,2001,28(1):74~76.
    [160]杨元喜.自适应动态导航定位[M].北京:测绘出版社,2006.
    [161]姚春华,陈卫标,藏华国,陆雨田.机载激光测深系统的最小可探测深度研究[J].光学学报,2004,24(10):1406~1410.
    [162]姚春华,陈卫标,藏华国,汪权东,陆雨田.机载激光测深系统中的精确海表测量[J].红外与激光工程,2003,32(4):351~355.
    [163]叶达忠.GPS精密单点定位(PPP)原理、测试及应用[J].广西水利水电,2007,第1期:24~26.
    [164]叶世榕.GPS非差相位精密单点定位理论与实现[D].武汉大学,2002.
    [165]叶修松,黄谟涛,欧阳永忠,李凯锋.信号处理技术在机载激光测深中的应用[C].南京:测绘科学前沿技术论坛,2008,P75~79.
    [166]叶修松,黄谟涛,欧阳永忠,陆秀平.拉曼后向散射在海面检测及海面与陆地区分中的应用[J].海洋测绘,2008,28(6),P13~14.
    [167]叶修松,黄谟涛,任来平.机载激光雷达探测系统偏心量的测定与计算[C].成都:第二十一届海洋测绘综合性学术研讨会,2009,P155~158.
    [168]叶修松,王耿峰,黄谟涛,赵东明.航空激光测深仪海面和海底激光入射点分布[J].测绘科学技术学报,2010,26(2),P21~25.
    [169]叶修松,吴星,赵东明.应用预测滤波估计卫星姿态[J].测绘科学,2009,34(4),P15~18.
    [170]叶修松,徐广袖,王玉振.精密单点定位在机载GPS的应用实践[J].郑州:测绘学科博士生学术论坛,2009,P361~364.测绘科学技术学报,2010,27(1),P14~17.
    [171]叶修松,张传定,黄谟涛,吴星,王爱兵.应用自适应法减弱机载激光探测时湍流的干扰[J].拉萨:第二十海洋测绘综合性学术研讨会,2008,P75~79.海洋测绘,2009,29(4),P12~13.
    [172]叶修松,张传定,王爱兵,焦诚.机载激光水深测量误差分析[J].测绘科学技术学报,2008,25(6),P400~402.
    [173]尹增谦,管景峰,张晓宏,曹春梅.蒙特卡罗方法及应用[J].物理与工程,2002,12(3):45~49.
    [174]尤红建,苏林.基于机载激光扫描数据提取建筑物的研究现状[J].测绘科学,2005,30(5):114~117.
    [175]于秋则,曹矩,谭毅华,田金文,柳健.基于DEM与可见光图像的机载激光成像雷达强度像仿真[J].测绘学报,2004,29(1):249~254.
    [176]袁修孝,付建红,楼益栋.基于精密单点定位技术的GPS辅助空中三角测量[J].测绘学报,2007,36(6):251~255.
    [177]袁宇正.激光及其在测绘中的应用[M].北京:测绘出版社,1979.
    [178]翟国君,黄谟涛,谢锡君,欧阳永忠.卫星测高数据处理的理论与方法[M].北京:测绘出版社,2000.
    [179]张小红,耿江辉.机载激光扫描测高中激光脚点点群分割新方法[J].武汉大学学报·信息科学版,2006,31(7):586~588.
    [180]张小红,耿江辉.用不变矩从机载激光扫描测高点云数据中重建规则房屋[J].武汉大学学报·信息科学版,2006,31(2):168~171.
    [181]张小红,刘经南.机载激光扫描测高数据滤波[J].测绘科学,2004,29(6):50~53.
    [182]张小红.机载激光雷达测量技术理论与方法[M].武汉:武汉大学出版社,2007.
    [183]张小红.机载激光扫描测高数据滤波及地物提取[D].武汉:武汉大学,2002.
    [184]张新建,藏华国,崔雪梅,贺岩,陈卫标.用于机载激光测深系统的时间间隔测量模块[J].红外与激光工程,2005,34(2):159~163.
    [185]张勇.GPS非差精密单点定位方法及其应用研究[D].武汉大学,2006.
    [186]赵建虎.多波束深度及图像数据处理方法研究[D].武汉:武汉大学,2001.
    [187]甄洁,刘维亭.蓝绿激光下行通信云层信道特性研究[J].华东船舶工业学院学报·自然科学版,2004,18(6):47~50.
    [188]周杨眉.GPS精密定位的数学模型、数值算法及可靠性理论[D].武汉大学,2003.
    [189]朱坚,藏华国,贺岩,崔雪梅,朱小磊,陈卫标.激光测深系统中大动态范围压缩技术的实验研究[J].光学学报,2006,26(8):1172~1176.
    [190]朱晓,王华,齐丽君,掌蕴东.机载激光测深海水后向散射包络的频域分析[J].激光与红外,2003,33(1):25~27.
    [191]朱晓,杨克成,李再光.机载激光测深光电倍增管变增益探测方法[J].激光技术,1999,23(4):209~212.
    [192]朱晓,杨克成,李再光.机载激光测深试验[J].中国激光,1998,25(5):470~472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700