非均匀杂波环境下机载雷达STAP方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空时二维自适应信号(STAP)处理技术可以有效对杂波进行抑制,改善机载机载雷达的目标检测性能。经过30多年的发展,国内外对STAP技术已经逐渐从理论研究转向实际应用中。
     由于机载雷达往往工作在复杂的环境中对运动目标的检测,但是由于载机平台的运动,导致杂波谱在多普勒上严重扩散,使得运动目标会被淹没在杂波中,传统的一维时域或空域滤波器均不能形成与杂波相匹配的凹口,难以达到有效抑制杂波的目的。然而杂波谱在空域和时域上是耦合的,空时二维自适应信号处理是在空域和时域上的二维联合滤波,同时具有空域和时域自由度,二维域上杂波与目标重合的概率很小,它可以在空时二维谱平面上形成凹口有效地抑制杂波,提高机载雷达系统的目标检测性能。因此空时二维自适应滤波就成为了机载雷达抑制杂波的一项关键技术。
     空时二维自适应处理的基本原理已经清楚,但是在实际应用还有一系列的问题需要解决。本论文针对空时二维自适应处理技术在机载雷达中应用所遇到的问题展开研究,提出和改进了一些信号处理算法,并针对一些具体问题给出了解决方案。本论文的研究内容主要包括以下几个方面:
     1.第二章系统地研究了机载雷达杂波谱结构和降维STAP方法,提出了JDF$A和JRF$A方法,表明在处理器维数一定、辅助样本数有限的条件下,降维处理可以取得较好的处理结果。
     2.第三章针对前视阵中雷达杂波谱的距离依赖关系,而呈现严重的非平稳性,导致杂波协方差矩阵估计困难,提出了几种谱补偿的方法以减轻这种杂波谱对距离的依赖性。这些方法分别是空域导向矢量拟合方法、杂波子空间方法、级数展开的方法和传播算子方法,它们是利用相干信号的处理的方法对杂波谱进行有效的补偿,实验结果证明具有运算量较小优点。
     3.在研究了非正侧阵中杂波谱的补偿方法的基础上,提出了基于空域导向矢量拟合的剔除强散射点的STAP方法,该方法利用非均匀检测器消除孤立干扰对采样协方差矩阵的估计的影响,以构造出与杂波相近的杂波协方差矩阵,提高机载雷达STAP的检测性能,;为了提高数据处理的速度,降低运算量,提出了基于CZT的空域导向矢量拟合方法;但这些方法都需要对数据进行FFT变换,因此提出了DBU-MWF方法,该方法可以直接对接收的数据进行处理,并降低矩阵的求逆运算量;通过衡量训练单元与待检单元数据的相似性,提出了一种相似性度量的杂波谱补偿方法。
     4.重点研究了机载双基雷达杂波二维分布与双基几何构型,由于双基结构复杂多变,给出了四种经典的双基STAP结构和杂波谱,并结合第三章的方法对其中两种结构下的杂波谱进行了补偿,并且通过分析证明变换矩阵是一种无损失的变换。
Space Time Adaptive Processing(STAP)can suppress clutter effectively and improve the detection performance of airborne phased array radar. The research on STAP has been performed for more than 30 years. At present, this technique has been gradually applied to airborne phased array radar for moving targets indication (MTI) from the theory research to the practical applications at home and abroad.
     It is an important task that the clutter has to be suppressed effectively for airborne phased array radar in the complicated environment. However, due to the motion of airborne platform, the ground clutter spectrums are expended in space-time domain, which leads to the target would be submerged into the clutter. So, the traditional one-dimensional filter can not form a notch that matches for the ground clutter, and it can not suppress clutter effectively. If the clutter has the characteristic of space-time-coupling, the Space Time Adaptive Processing is a two-dimensional filter in space-time domain, which has both the temporal degrees of freedom and the spatial degrees of freedom; the coincidence probability is very small between the clutters and targets, so it can suppress ground clutter perfectly and improve the performance of the moving targets indication. Therefore, STAP becomes a key technique in airborne phased array radar for clutter suppression.
     Focusing on the STAP applying to airborne phased array radar and the related problems of airborne radar for reduced-rank, suppress clutter and MTI, the dissertation presents and improves some signal processing algorithms. The main contents of the dissertation are described as following.
     1. Chapter 2 study the relationship between the clutter distribution of phased array airborne radar and its radar system parameters. In succession, we specifically analyzes the general principle of STAP and reduced rank (RR) STAP, the means of JDF$A and JRF$A is presented, which shows that the result will be probably near as the full rank STAP.
     2. Chapter 3 specifically analyzes the clutter spectrum depends highly on range for forward-looking radar, which results in heterogeneous ground clutter and inaccurately estimation of clutter covariance matrix in space-time adaptive processing (STAP), we propose four approaches to mitigating the effect of the range dependence. These methods are spatial steering vector fitting, clutter-subspace, series expansion and propagator, which use the coherent signal method to compensate the clutter spectrum and the result shows these means reduce the computational load.
     3. Chapter 4 study the clutter spectrum compensation in the squint radars. In order to mitigate the influence of isolated interference on the covariance matrix estimation, we use the non-homogeneity detector (NHD) to remove these interferences in the preprocessing data. The method starts by transforms clutter returns from element-pulse domain into element-Doppler domain by Chirp z-transform (CZT), which can improve the efficiency of spectrum samples, and has lower computational burden of spectrum analysis than that produced by DFT. Following that, the spatial steering vector fitting method is used to process the new space-time data that can eliminate the nonstationarity of the ground clutter. However, these means need FFT, so a method of DBU-MWF is presented. This method could process it in the data domain, and reduce the computation load of matrix inversion. A method for compensation of clutter spectrum base on similar measure, which the similarity for spectrum structure by a set of values defined by the inner product between the steering vector of range bin under test and of adjacent range bins.
     4. Chapter 5 studies the STAP application to bistatic airborne radar. According to the clutter model, this dissertation specifically analyzes the relationship between the bistatic clutter distribution and the bistatic geometry. Under the chapter 3 studies, this chapter uses the spatial steering vector fitting means to compensate the clutter spectrum for the first two schemes.
引文
[1] L. E. Brennan, J. D. Mallett, I. S. Reed. Theory of adaptive radar[J]. IEEE Trans. on AES., 1973, 9(2): 237-251.
    [2]廖桂生.相控阵天线AEW雷达时-空二维自适应处理.博士学位论文,西安:西安电子科技大学,1992.
    [3]许志勇. AEW雷达空时二维自适应处理降维方法研究.博士学位论文,西安:西安电子科技大学,1997.
    [4]张良.机载相控阵雷达降维STAP研究.博士学位论文,西安:西安电子科技大学,1999.
    [5]王彤.机载雷达简易STAP方法及其应用.博士学位论文,西安:西安电子科技大学,2001.
    [6]董瑞军.机载雷达非均匀STAP方法及其应用.博士学位论文,西安:西安电子科技大学,2002.
    [7]王万林.非均匀环境下的相控阵机载雷达STAP研究.博士学位论文,西安:西安电子科技大学,2004.
    [8]孟祥东.空时二维自适应信号处理与动目标检测.博士学位论文,西安:西安电子科技大学,2009.
    [9] J.Ward. space-time adaptive processing for airborne radar. Technical Report 1015, MIT Lincoin Laboratory,1994.
    [10]R. Klemm. Space-time adaptive processing: principles and applications[J]. IEE Radar, Sonar, Navigation and Avionics 9, London: IEEE Press, 1998.
    [11]R. Klemm. Principles of space-time adaptive processing.[C]// IEE Radar, Sonar, Navigation and Avionics 12, London: IEEE Press, 2002.
    [12]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社,2000.
    [13]R. Klemm. Oprimum clutter suppression in airborne phased array radar.[C]// Proc. of the IEEE ICASSP. Paris, France. 1982: 1509-1512.
    [14]R. Klemm. Suboptimum clutter suppressing for airborne phased array radar.[C]//Proc. of the IEE Internation Conference on Radar’82, London, UK 1982: 473-476.
    [15]R. Klemm. Adaptive clutter suppression for airborne phased array radars[J]. IEE Pt. F, 1983, 130(1): 125-132.
    [16]R. Klemm. Some properties of space-time covariance matrices.[C]// Proc. of Internation Conference Radar, Paris, 1986: 357-362.
    [17]R. Klemm. Adaptive airborne MTI: an auxiliary channel approach[J]. IEE Proc. F, 1987, 134(3): 269-276.
    [18]R. Klemm. Airborne MTI via subgroup processing.[C]// Proc. of Internation Conference on Radar’89, Paris, France, 1989: 43-48.
    [19]R. Klemm, J. Ender J. New aspects of airborne MTI.[C]// Proc. of IEEE Internation Conference on Radar, Arlington, USA, 1990: 335-340.
    [20]R. Klemm, J. Ender J. Two-dimensional filters for radar and sonar applications[C]// Proc. of IASTED, Lugano, Switzerland, 1990: 2023-2026.
    [21]R. Klemm. Adaptive airborne MTI with two dimensional motion compensation[J]. IEE Proc. F, 1991, 138(6): 551-558.
    [22]R. Klemm. Adaptive air- and spaceborne MTI under jamming conditions.[C]// Proc. of 1993 IEEE National Radar Conference, Boston, USA, 1993: 167-172.
    [23]保铮,张玉洪,廖桂生,王永良,吴仁彪.机载预警雷达空时二维滤波的一种方案及其改进.[C]//机载雷达研讨会北京,1992: 24-38.
    [24]保铮,廖桂生,吴仁彪,张玉洪,王永良.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报, 1993, 21(9):1-7
    [25]Wang Yongliang, Peng Yingning, Bao zheng. Space-time processing for airborne radar with various array orientation[J]. IEE Proc.Radar, Sonar Navigation, 1997,144(6):330~340.
    [26]Wang Yongliang, Bao Zheng, Liao Guisheng. Three united Conferenceigurations on adaptive spatial-temporal processing for airborne surveillance radar system.[C]// Proc. of International Conference on signal processing, Beijing, 1993:381-386.
    [27]R. Dipietro. Extended factored space-time processing for airborne radar systems.[C]// Proc. of the 26th Asilomar Conference on Signals, Systems, and Computing, Pacific Grove, CA, 1992:425-430.
    [28]H. Wang, L. Cai. On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE. Trans. on AES., 1994, 30(3): 660-669.
    [29]Yongliang. Wang, Jianwen Chen, Zheng. Bao, Yingning Peng. Robust space-time adaptive processing or airborne radar in nonhomogeneous clutter environments[J]. IEEE Trans. on AES., 2003, 39(1): 70-81.
    [30]Y. Zhang, H. Wang. Further results of∑△-STAP approach to airborne surveillance radars.[C]// Proc. of the IEEE National Radar Conference, 1997: 337-342.
    [31]R. D. Brown, R. A. Schneible, M. C. Wicks, H. Wang, Y. Zhang. STAP for clutter suppression with sum and difference beams[J]. IEEE Trans. on AES., 2000, 36(2): 634-646.
    [32]J. R. Roman, M. Rangaswamy, D. W. Davis, Q. Zhang, B. Himed, J. H. Michels. Parametric adaptive matched filter for airborne radar applications[J]. IEEE Trans. on AES., 2000, 36(2): 677-692.
    [33]Q. G. Liu, Y. N. Peng. analysis of array Errors and a short-time processor in airborne phased array radars[J]. IEEE Trans. on AES., 1996, 32(2):587-597.
    [34]廖桂生,保铮,张玉洪.相控阵AEW雷达杂波抑制的简化辅助通道法[J].电子科学学刊, 1993,15 (5).475-481.
    [35]J. S. Goldstein, S. M. Kogon, I. S. Reed, et al. Partially adaptive radar signal processing: The cross-spectral approach.[C]// Proc. of the 29th Asilomar Conference on Signal, systemsand Computers, Pacific Grove, CA, 1995: 1383-1387.
    [36]J. S. Goldstein, I. S. Reed. Reduced rank adaptive filtering[J]. IEEE Trans. on SP., 1997,45(2): 493-496.
    [37]J. S. Goldstein, I. S. Reed. Theory of partially adaptive Radar[J]. IEEE Trans. on AES., 1997, 33(4): 1309-1325.
    [38]J. Ward. Space-Time Adaptive Processing for Airborne Radar.[C]// Technical Report of Lincoln Lab, US. 1994.
    [39]J. S. Goldstein, I. S. Reed. P. A. Zulch, et al. A multistage STAP CFAR detection technique.[C]// Proc. of the IEEE National Radar Conference, Dallas, 1998: 111-116
    [40]J. S. Goldstein, I. S. Reed., L. L. Scharf. A multistage representation of the Wiener filter based on orthogonal projections[J]. IEEE Trans. IT., 1998, 44(7): 2943-2959.
    [41]J. S. Goldstein, I. S. Reed. P. A. Zulch. Multistage partially adaptive STAP CFAR detection algorithm[J]. IEEE Trans. on AES., 1999, 35(2): 645-661.
    [42]I. S. Reed, J. D. mallett, L. E. Brennan. Rapid convergence rate in adaptive arrays[J]. IEEE Trans. on AES., 1974, 10(6): 853-863.
    [43]B. Widrow, et. al. Adaptive antenna system[J]. Proc. of the IEEE. 1967, 55(12):2143-2159.
    [44]S. P. Applebaum. Adaptive arrays[J]. IEEE Tans. on AP., 1976, 24(5): 585-598.
    [45]S. P. Applebaum, D. J. Chapman. Adaptive arrays with main beam constraints[J]. IEEE Trans. on AP., 1976, 24(5): 650-662.
    [46]R. C. Johnson. Introduction to Adaptive Arrays[C]// Proc. of the IEEE. 1982, 70(2):205-206.
    [47]Joachim, H. G. Ender. Detection and Estimation of Moving Target Signals by Multi-Channel SAR.[C]// Proc. of EUSAR'96, Germany,1996:411-417.
    [48]Eli Yadin. A Performance Evaluation Model for A Two Port Interferometer SAR-MTI.[C]// Proc. of the IEEE National Radar Conference, 1996:261-266.
    [49]Tim J.Nohara, Peter Weber, Al Premji, Chuck Livingstone. SAR-GMTI Processing with Canada’s Radarsat 2 Satellite. Adaptive systems for signal processing.[C]// communications, and control symposium 2000 AS-SPCC, Canada. 2000:.379-384.
    [50]L. Lightstone, D. Faubert, G. Remple. Multiple phase center DPCA for airborne radar.[C]// Proc. of the IEEE National Radar Conference, 1991: 36-40.
    [51]P. G. Richardson. Relationships between DPCA and adaptive space-time processing techniques for clutter suppression.[C]// Proc. of 1994 IEEE International Radar Conference, 1994: 295-300.
    [52]T. J. Nohara. Comparison of DPCA and STAP for space-based radar.[C]// IEEE International Radar Conference, 1995: 113-119.
    [53]Chen Jianwen, Wang Yongliang, Huang Fukan, et al. Research on multiple phase center multiple delay taps DPCA for airborne radar.[C]// Proc. of International Conference on Computational Electromagnetics and Its Applications, Beijing, China, 1999: 1-4.
    [54]陈建文.机载雷达空时自适应处理方法研究.博士学位论文,国防科技大学, 2000.
    [55]P. G. Richardson, S. D. Hyaward. Adaptive space-time processing for forward looking radar.[C]// Proc. of 1995 IEEE International radar Conference, 1995:629-634.
    [56]M. Zatman. Circular array STAP[J]. IEEE Trans. on AES., 2000, 36(2),510-517.
    [57]R. Klemm. Forward looking radar/SAR: clutter and jammer rejection with STAP.[C]// Proc. of EUSAR’96, Konigswinter, Germany,1996: 485-488.
    [58]H. Braham, J. H. Michels, Y. Zhang. Bistatic STAP performance analysis in radar applications. [C]//Proc. of the IEEE Radar Conference, 2001: 198-203.
    [59]R. Klemm. Ambiguities in bistatic STAP radar. [C]// Proc. of IEEE International Geoscience and Remote Sensing Symposium, 2000(3):1009-1011.
    [60]W. L. Melvin, B. Himed, M. Davis. Doubly adaptive bistatic clutter filtering. [C]// Proc. of the 2003 IEEE Radar Conference, the Huntsville Marriott, Huntsville, Alabama, 2003: 171-178.
    [61]O. Kreyenkamp, R.Klemm. Doppler compensation in forward-looking STAP radar[J].IEE Proc.-Radar, Sonar, Navig., 2001, 148(5): 253-258.
    [62]G. K. Borsari. Mitigating effects on STAP processing caused by an inclined array.[C]// Proc. of the IEEE National Radar Conference, Dallas, 1998: 135-140.
    [63]F. D. Lapierre, J. G. Verly, M. V. Droogenbroeck. New solutions to the problem of range dependence in bistatic STAP radars. [C]// Proc. of 2003 IEEE Radar Conference, the Huntsville Marriott, Huntsville, Alabama, 2003: 452-259
    [64]F. D. Lapierre, M. V. Droogenbroeck, J. G. Verly. New methods for handling the range dependence of the clutter spectrum in non-sidelooking monostatic STAP radars. [C]// Proc. of ICASSP’03, 2003: V73-V76.
    [65]S. M. Kogon, M. A. Zatman. Bistatic STAP for airborne radar systems. [C]//ASAP Workshop, MIT Lincoln Laboratory, Lexington, 2001.
    [66]G. W. Titi, D. Marshall. The ARPA/NAVY mountaintop program-Adaptive signal processin for airborne early warning radar.[C]// Proc. of ICASSP’96, Atlanta, GA, 1996: 1165-1168.
    [67]M.O. Little, W.P. Berry. Real-time multichannel airborne radar measurements.[C]// Proc. of IEEE Internation Conference Radar Syracuse. New York. 1997.
    [68]D. Sloper, D. Fenner, J. Arntz, E. Fogle. Multi-Channel airborne radar measurement (MCARM), MCARM flight test. Contract F30602-92-C-0161, Westinghouse Electronic Systems, 1996.
    [69]L. E. Brennan, et al. Comparison of space-time processing approaches using experimental airborne radar data.[C]// Proc. of the IEEE 1993 National Radar Conference, 1993: 175-781.
    [70]W. L. Melvin. Eigenbased modeling of nonhomogeneous airborne radar environments.[C]// Proc. of the IEEE 1998 National Radar Conference, Dallas, 1998: 171-176.
    [71]W. L. Melvin, M. C. Wicks. Improving Practical Space-Time Adaptive Radar.[C]// Proc. of the IEEE National Radar Conference, 1997: 48-53.
    [72]M. H. Linderman, R. W. Linderman. Real-time STAP demonstration on an embedded high performance computer[J]. IEEE Trans. on AES. Magazine, 1998, 13(3): 15-31.
    [73]Z. Cu, R. S. Blum, W. L. Melvin, M. C. Wicks. Comparison of STAP algorithms for airborne radar.[C]// Proc. of the IEEE 1997 National Radar Conference, Syracuse, 1997: 60-65.
    [74]A. P. Dimitris, T. Tzeta, H. M. James, M. C. Wicks. Joint domain space-timeadaptive processing with small training data sets.[C]// Proc. of the IEEE 1998 National Radar Conferenceerence, Dallas, 1998: 99-104.
    [75]D. K. Fenner, W. F. Hoover. Test results of a space-time adaptive processing system for airborne early warning radar.[C]// Proc. of the IEEE 1996 National Radar Conference, Ann Arbor, MI, 1996: 88-93.
    [1]保铮,廖桂生,吴仁彪,王永良.相控阵机载雷达杂波抑制的空时二维自适应滤波[J].电子学报,1993, 21(9):1-7.
    [2]廖桂生,保铮等.机载雷达时空二维部分联合自适应处理[J].电子科学学刊, 1993,15(6):575-580
    [3]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理(1)[J].现代雷达,1994,16(1): 38-48.
    [4]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理(2)[J].现代雷达,1994, 16(2):17-27.
    [5]黄家典.机载合成孔径雷达动目标检测技术研究.硕士学位论文,西安:西安电子科技大学,2006.
    [6]王永良,彭应宁.空时自适应处理[M] .北京:清华大学出版社,2000.
    [7] S. Barbarossa. Detection and Imaging of Moving Objects with Synthetic Aperture Radar, Part I: Optional Detection and Parameter Estimation Theory[J]. IEE Proc. -f, 1992, l:79-88.
    [8] S. Barbarossa , A. Farina. Detection and Imaging of Moving Objects with Synthetic Aperture Radar, Part II: Joint Time-Frequency Analysis by Wigner-Ville distribution[J]. IEE Proc.-f, 1992, l: 89-97.
    [9] Xingdong Liang, Ran Tao, Siyong Zhou. Novel Method for Ground Clutter Cancellation of the Low Speed Targets Based on Space Time Adaptive processing. [C]// Proc. of the RADAR 2001 CIE, 2001:961-965.
    [10]S. Barbarossa, A. Farina. Space-Time- frequency processing of synthetic aperture radar signals[J]. IEEE Trans. on AES., 1994,30(2):341-358.
    [11]R. Klemm. Adaptive airborne MTI: an auxiliary channel approach. [C]// IEE Proc. Pt.F,1987, 134(3): 269-276.
    [12]廖桂生.相控阵天线AEW雷达时-空二维自适应处理.博士学位论文,西安:西安电子科技大学,1992.
    [13]保铮,廖桂生,吴仁彪等.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报, 1993,21(9):1-7.
    [14]Wang H, Cai L. On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE Trans. on AES., 1994, 30(3): 660-670.
    [15]王永良,吴志文,彭应宁.适于非均匀杂波环境的空时自适应处理方法[J].电子学报,1999,27(9):56-58.
    [16]J. S. Goldstein, S. M. Kogon, I. S. Reed, et al. Partially adaptive radar signal processing: The cross-spectral approach. [C]// Proc. of the 29th Asilomar Conference. on Signal, systems and Computers, Pacific Grove, CA, 1995: 1383-1387.
    [17]J. S. Goldstein, I. S.Reed. Reduced rank adaptive filtering[J]. IEEE Trans. on SP., 1997,45(2): 493-496.
    [18]J. S. Goldstein, I. S.Reed. Theory of partially adaptive Radar[J]. IEEE Trans. on AES., 1997, 33(4): 1309-1325.
    [19]J. S. Goldstein, I. S.Reed, P. A. Zulch, et al. A multistage STAP CFAR detection technique[C]// Proc. of the IEEE National Radar Conference, Dallas, 1998:111-116.
    [20]J. S. Goldstein, I. S.Reed, L. L. Scharf. A multistage representation of the Wiener filter based on orthogonal projections[J]. IEEE Trans. IT., 1998, 44(7): 2943-2959.
    [21]J. S. Goldstein, I. S.Reed, P. A. Zulch. Multistage partially adaptive STAP CFAR detection algorithm[J]. IEEE Trans. on AES., 1999, 35(2): 645-661.
    [22]L. E. Brennan, D. J. Piwinski, F. M. Standaher. Comparison of space-time adaptive processing approaches using experimental airborne radar data. [C]// The Record of 1993 IEEE National Radar Conference, Massachusetts, USA, 1993:176-181.
    [23]张良.机载相空阵雷达降维STAP研究:博士论文,西安:西安电子科技大学, 1999.
    [24]保铮,廖桂生等.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报,1993,21(9): 1-7.
    [25]J. T. Carlo, T. K. Sarkart, M. C. Wicks. A Least Squares Multiple Constraint Direct Data Domain Approach for STAP. [C]// Proc. of 2003 IEEE Radar Conference, 2003: 431-438.
    [26]Lin-ru You, Xiao-qin Wen, Shu-E Bi. Knowledge-based space-time processing. [C]// Proc. of the 6th International Conference on Machine Learning and Cybernetics, 2007: 2431-2435.
    [1] L. E. Brenna, I. S.Reed. Theory of adaptive radar[J]. IEEE Trans. on AES., 1973, 9(2): 237-252.
    [2]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理[J].现代雷达,1994,16(2): 17-27.
    [3] G. K. Borsari. Mitigating effects on STAP processing caused by an inclined array. [C]// Proceedings of the IEEE National Radar Conference, Dallas, 1998: 135-140.
    [4] O. Kreyenkamp, R. Klemm. Doppler compensation in forward-looking STAP radar[J]. IEE proceedings Radar, Sinaer Navigation, 2001, 148(5):253-258
    [5]王彤,保铮,廖桂生.机载火控雷达近距离地面慢速目标检测[J].电子学报, 2001, 29(6):721-725.
    [6] F. D. Lapierre, J. G. Verly, M. V. Droogenbroeck. New solutions to the problem of range dependence in bistatic STAP radars.[C]// Proc. of 2003 IEEE Radar Conference., the Huntsville Marriott, Huntsville, Alabama, 2003: 452-259.
    [7]王万林,廖桂生,张光斌.相控阵AEW雷达杂波抑制的非均匀处理方法研究[J].电波科学学报,2004 , 19(3):348-353.
    [8]宁蔚,廖桂生.机载双通道雷达空时自适应处理中的样本去污[J].电波科学学报,2007 , 22(3): 470-475.
    [9] Z. Bao, G.S. Liao, etc. Adaptive Spatial-Temporal Processing for Airborne Radars [J]. Chinese Journal of Electronics, 1993, 2: 2-7.
    [10]S. Valaee, P. Kabal. Wideband Array Processing Using a Two-sided Correlation Transformation [J]. IEEE Trans. on SP., 1995, 43(1):160-172.
    [11]保铮,廖桂生等.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报, 1993,21(9): 1-7.
    [12]廖桂生,保铮.机载雷达时空二维部分联合自适应处理[J].电子科学学刊,1993,15(6): 575-580.
    [13]M. A. Doron, A. J. Weisis. on focusing matrices for coherent signal subspace processing [J]. IEEE Trans. on SP., 1992, 40(6): 1295-1302.
    [14]M. A. Doron, E. Doron, J. Weissa. Coherent Wide-Band Processing for Arbitrary Array Geometry [J]. IEEE Trans. on SP., 1993, 41(5): 414-417.
    [15]Jiang Hui, Liao Guisheng, Qu Yi. Compensation of Clutter Spectrum for forward-looking Radar Based on clutter subspace transformation. [C]// radar 2009 (NO. 0322), France: IEEE Press.
    [16]Jiang Hui, Liao Guisheng, Qu Yi. Compensation of Clutter Spectrum for forward-looking Radar Based on the spatial steering vector fitting. [C]// IET’09 (NO.0344) Guang Xi, 2009.
    [17]J. S. Araujo, S. Marcos. Statistical Analysis of the Propagator Method for DOA Estimation without Eigendecomposition. [C]// Proceedings of statistical signal and array processing’94, Greece: IEEE Press, 1994:570-573.
    [18]S. Marcos, A. Marsal, M. Benidir. The propagator method for source bearing estimation[J]. signal processing. 1995, 42:121-138.
    [19]S. Marcos, A. Marsal, M. Benidir. Performance analysis of the propagator method for source bearing estimation. [C]// Proc. of ICASSP’96. Montreal: IEEE Press, 1996:IV237-IV240.
    [1] D. K. Fenner, W. F. Hoover. Test results of a space-time adaptive processing system for airborne early warning radar. [C]// Proc. of the IEEE National Radar Conference, Ann Arbor, Michigan, 1996: 88-93.
    [2] W. C. Ogle, H. N. Nguyen, J. S. Goldstein. Nonhomogeneity detection and multistage wiener filter. [C]// Proc. of the 2002 IEEE Radar Conference, Long Beach, CA,2002: 53-57.
    [3] Z. Oang. A STAP approach to estimate drift angle and aircraft velocity. [C]// Proc. of IEEE Conference on Radar, 2006: 24-27.
    [4]J. A. Draidi, M. A. Khasawneh. Two-Dimensional Chirp z-transform and Its Application to Zoom Wigner Bispectrum. [C]// Proc. of ISCAS, 1996, 2:540-543.
    [5]曲毅.机载阵列雷达动目标检测与定位方法研究.博士论文,西安:西安电子科技大学, 2009.
    [6]Jiang Hui, Liao Guisheng, Qu Yi. Compensation of Clutter Spectrum for forward-looking Radar Based on the spatial steering vector fitting. [C]// IET’09 (NO.0344) Guang Xi, 2009.
    [7] S. Valaee, P. Kabal. Wideband Array Processing Using a Two-sided CorrelationTransformation[J]. IEEE Trans. on SP., 1995,43(1):160-172.
    [8]S. D. Hayward. Adaptive beamforming for rapidly moving arrays. [C]// Proc. Internation Conference. on ASSP, 1996: 1165-1168.
    [9]M. A. Zatman. The properties of adaptive algorithms with time varying weights.[C]// Proc. of IEEE Sensor Array and Multichannel Signal Processing Workshop, 2000:82-86.
    [10]M. A. Zatman. Circular array STAP.[C]// Proc. of the IEEE National Radar Conference,Boston, MA, 1999: 108-113.
    [11]S. M. Kogon, M. A. Zatman. Bistatic STAP for airborne radar systems. ASAP.Workshop, MIT Lincoln Laboratory, Lexington, 2001.
    [12]张良.机载相控阵雷达降维STAP研究.博士论文,西安:西安电子科技大学,电子工程学院,1999.
    [13]曹建蜀,汪学刚.机载前向阵雷达近程地面目标检测[J].信号处理,2007, 23(3): 379-382.
    [14]Rosenberg, Luke. Reduced Rank Fast-time STAP using the Multistage Wiener Filter in Multichannel SAR. [C]// International Radar Symposium, 2006:1-4.
    [15]S. Werner, M. With, V. Koivunen. Householder Multistage Wiener Filter for Space-Time Navigation Receivers[J]. IEEE Trans. on AES., 2007, 7(43): 975-988.
    [16]曹建蜀,汪学刚.机载前向阵雷达近程杂波频移补偿[J].电子科技大学学报,2006, 6 (35):320-323.
    [17]Xie, Wenchong, Wang, Yongliang, Hu, Wenlin. Study on Clutter Suppression Approach for Airborne Radar with Non-sidelooking Array.[C]// Radar’06, 2006:1-4.
    [18]C. H. Lim, B. Mulgrew. Prediction of inverse covariance matrix (PICM) sequences for STAP[J]. IEEE SP. Letters, 2006, 13(4): 236-239.
    [19]保铮,廖桂生等.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报, 1993,21(9): 1-7.
    [20]廖桂生,保铮.机载雷达时空二维部分联合自适应处理[J].电子科学学刊,1993,15(6): 575-580.
    [1] G. M. Herbert, P. G. Richardson. Benefits of space-time adaptive processing (STAP) in bistatic airborne radar[J]. IEE Proc. Radar, Sonar, Navigation, 2003,150(1): 13-17.
    [2] P. K. Sanyal, R. D. Brown, M. O. Little, R. A. Schneible, M. C. Wicks. Space-time adaptive processing bistatic airborne radar. [C]// The Record of the 1999 IEEE Radar Conference, 1999:114-118.
    [3]汤子跃,张守融.双站合成孔径雷达原理[M].北京:科学出版社,2003.
    [4]D. M. Fromm, J. P. Crockett, L.B. Palmer. BiRASP-The Bistatic Range-dependent Active System Performance Prediction Model [M]. Report for Department of the Navy. September, 1996.
    [5]王永良,魏进武,陈建文.双基地机载预警雷达空时二维杂波建模及特性分析[J].电子学报,2001, 29(12):1940-1943.
    [6]鲁远耀,张平,李国春.机载双基雷达STAP动目标检测的杂波特性分析[J]系统工程与电子技术, 2006, 28(2):231-233.
    [7]R. Klemm. Comparison between Monostatic and Bistatic Antenna Conferenceigurations for STAP[J]. IEEE Trans. on AES., 2000, 36(2):596-608.
    [8]鲁远耀,张平,李国春.双基雷达空时自适应处理的杂波特性[J].测试技术学报2005, 19(4):360-364.
    [9]宁蔚,廖桂生.双基机载雷达对地面杂波的背面效应及其在GMTI中的应用[J].电子学报,2005,33(12):2242-2245.
    [10]F. Colone, M. Fornari, P. Lombardo. A spectral slope-based approach for mitigating bistatic STAP clutter Dispersion.[C]// Proc. of 2007 IEEE Radar Conference, Boston, 2007:408-413.
    [11]W. L. Melvin, M. J. Callahan, M. C. Wicks. Bistatic STAP: application to airborneradar.[C]// Proc. of 2002 IEEE Radar Conference, Long Beach, CA, 2002: 1-7.
    [12]P. G. Tomlinson. Modeling and analysis of monostatic/bistatic space-time adaptive processing airborne and space-based radar. [C]// The Record of the 1999 IEEE Radar Conference, 1999: 102-107.
    [13]Y. Zhang, B. Himed. Effects of geometry on clutter characteristics of bistatic radars. [C]// Proc. of 2003 IEEE Radar Conference, Huntsville, Alabama, USA, 2003: 417-424.
    [14]R. Klemm. Ambiguities in bistatic STAP radar. [C]// Proc. of IEEE 2000 International GRS, 2000,3:1009-1011.
    [15]Han Li-juan, Chen Zhuming, Duan Rui, Jiang Chaoshu. Modeling of varying geometrical scenarios of bistatic radar.[C]// Proc. of 2007 International Symposium on Intelligent Signal Processing and Communication Systems. Xiamen, 2007:196-199.
    [16]谢文冲,王永良.圆柱型阵机载雷达杂波有抑制新方法[J].电子与信息学报, 2007, 29 (10) :2371-2374.
    [17]吴洪,王永良.双基地机载预警雷达杂波建模与分析[J].电子学报, 2006, 34 (12) :2209-2213.
    [18]孟祥东,吴建新,王彤,保铮.机载双基雷达杂波分析及其距离模糊杂波的抑制[J].西安电子科技大学学报, 2008, 35(6) :992-998.
    [19]G. Borsari. Mitigating effects on STAP processing caused by an inclined array.[C]// Proc. of the IEEE Radar Conference. 1998:135-140.Dallas
    [20]F. D. Lapierre, M. V. Droogenbroeck, J.G.Verly. New methods for handing the range dependence of the clutter spectrum in non-sidelooking monostatic STAP radars.[C]// Proc. of 2003 International Conference on Acoustice, Speech, and Signal Processing. Hong Kong, 2003:v73-v76.
    [21]M. A. Zatman. The properties of adaptive algorithms with time varying weights. [C]// Proc. of the IEEE Sensor Array and Multichannel Signal Processing Workshop. Cambridge, MA , 2000:82-86.
    [22]M.A. Doron, A.J.Weisis, on focusing matrices for coherent signal subspace processing [J]. IEEE Trans. on SP., 1992,40(6): 1295-1302.
    [23]廖桂生,保铮.机载雷达时空二维部分联合自适应处理[J].电子科学学刊,1993,15(6):575-580.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700