小型太阳能吸收式空调系统及其吸收器的研究与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对一种太阳能热源驱动的小型增压式、绝热吸收的吸收式制冷循环进行了理论研究和模拟。基于传热传质分离强化的理论在循环中使用了绝热吸收、循环冷却的填料吸收器。系统的冷凝器、蒸发器和吸收器的散热器均采用蒸发式换热器。由于发生压力较低,在发生器和冷凝器之间带有罗茨真空泵作为增压机。该系统设计在80℃热水驱动下工作,其热力学计算结果表明这种新型吸收式制冷循环能够很好地提升系统性能。
     由于吸收器是吸收式循环中最重要的部件之一,如何提高吸收器的吸收效率和减小吸收器的体积也是小型太阳能吸收式制冷的难题之一,因此本文利用Aspen Plus的非平衡级模型RateFrac对吸收器中的吸收过程进行了模拟分析。该模拟对于这种LiBr电解质水溶液吸收水蒸汽的过程采用了ELECNRTL性质方法。通过对不同尺寸和类型的填料模拟得到的吸收度进行比较,能够实现对吸收器设计参数的优化。
     在吸收过程模拟的基础上运用Aspen Plus对系统流程进行了模拟分析,并将模拟结果与热力学编程计算的结果进行了比较。结果进一步表明该制冷循环在太阳能热源驱动下具有较好的系统性能。通过对Aspen Plus的电解质物性方法得出的LiBr溶液热力学参数与饱和LiBr溶液焓浓图中的数据进行对比,分析了模拟误差产生的来源,并提出了进一步改进的措施。
Studies and simulation is done on a small solar-powered adiabatic absorption refrigeration cycle. Based on the theory of the separation and respective aggrandizement on the heat and mass transfer, uses an absorber of adiabatic absorption with packing inside and circular cooling in the cycle. Evaporative exchangers are applied in the system as the condenser, evaporator and the radiator of the absorber. Because of the low pressure in the generator, a roots vacuum pump is used as a compressor between the generator and condenser. The system is powered by the hot water of 80℃. Results of the simulation have showed this novel absorption refrigeration cycle brings an improvement in the system performance.
     As the absorber is one of the most important components, how to improve the efficiency and reduce the volume of the absorber is also one of the difficulties of small solar-powered absorption refrigeration system, simulates and analyses the process of the absorption in Aspen Plus with a non-equilibrium stage model of RateFrac. This simulation adopts a method of ELECNRTL in simulating the process of LiBr electrolytical aqueous solution absorbs water vapor. With the results of the simulation on the packing with different sizes and types, a parameter optimization of the absorber could be done.
     Simulates the system process with Aspen Plus based on the simulation of absorption, and compares the results obtained from the simulation and thermodynamic calculation program. It further shows this solar-powered refrigeration cycle has a better performance. By the comparison between the thermodynamic parameters of LiBr solution obtained respectively from the electrolytical property method in Aspen Plus and the enthalpy- concentration map of LiBr saturated solution, analyses the source of deviation in the simulation, and proposes measures to further improvement.
引文
[1]李戬洪,马伟斌,江晴等. 100kW太阳能制冷空调系统,太阳能学报. 1999, 20(3):239-243
    [2] M.Hammad and Y.Zurigat. Performance of a second generation solar cooling unit.Solar Energy,1998,62(2):79~84
    [3] Z.F. Li, K. Sumathy. Experimental studies on a solar powered air conditioning system with partitioned hot water storage tank. Solar Energy, 2001,71(5) : 285-297
    [4] Z.F. Li, K. Sumathy. Simulation of a solar absorption air conditioning system. Energy Conversion & Management 42(2001):313~327
    [5] A. Syed, M. Izquierdo, P. Rodriguez, G. Maidment, et al. A novel experimental investigation of a solar cooling system in Madrid. Internation Journal of refrigeration 28(2005)859-871
    [6] A. Pongtornkulpanich, S. Thepa, M. Amornkitbamrung, et al. Experience with fully operational solar-driven 10-ton LiBr/H2O single-effect absorption cooling system in Thailand. Renewable Energy 33 (2008) 943-949
    [7] Jesse D. Killion, Srinivas Garimella. A critical review of models of coupled heat and mass transfer in falling-film absorption. Internation Journal of refrigeration 24 (2001) 755-797
    [8] Icksoo Kyung, Keith E. Herold, Yong Tae Kang. Model for absorption of water vapor into aqueous LiBr flowing over a horizontal smooth tube. International Journal of Refrigeration 30 (2007) 591e600
    [9] Icksoo Kyung, Keith E. Herold, Yong Tae Kang. Experimental verification of H2O/LiBr absorber bundle performance with smooth horizontal tubes. International Journal of Refrigeration 30 (2007) 582e590
    [10] Summerer F, Zigler F, Riesch P, et al. Hydroxide absorption heat pumps with spray absorber[J]. ASHRAE Trans, 1996, 102(1):1010-1016
    [11]王林,陈光明,钟明.一种风冷绝热吸收式燃气空调器研究,流体机械. 2005, 33(6) : 57-60
    [12]谷雅秀,吴裕远,张林颖等.小型无泵溴化锂吸收式制冷系统的实验研究,制冷学报.2006,27(5) : 17-21
    [13] Ibrahim Atmaca, Abdulvahap Yigit. Simulation of solar-powered absorption cooling system. Renewable Energy28(2003):1277-1293
    [14] F. Assilzadeh, S.A. Kalogirou, Y. Ali, K. Sopian. Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors. Renewable Energy 30 (2005) 1143–1159
    [15] Gommed K, Grossman G, Koenig MS. Numerical study of absorption in a laminar falling film of ammonia-water. Forthcoming in ASHRAE Transactions 2001.
    [16] Ryan, William Arthur. Adiabatic water absorption in a spray of an aqueous solution of lithium bromide[J]. UMI press, 1995
    [17]王林,陈光明,王勤等.小型节能风冷绝热吸收制冷循环研究.工程热物理学报,26(4):553~556
    [18]任志远.溴化锂溶液在填料式吸收器中预冷却绝热吸收过程研究:[硕士学位论文].天津:天津商学院,2006.
    [19]王如竹,代彦军.太阳能制冷.北京:化学工业出版社,2007.1
    [20] Z.F. Li, K. Sumathy. Performance study of a partitioned thermally stratified storage tank in a solar powered absorption air conditioning system. Applied Thermal Engineering 22 (2002) 1207–1216
    [21]白鹏,刘建新,王世昌.规整填料塔的设计计算模型.化工机械,28(4):232~236
    [22]王树楹.现代填料塔技术指南.北京:中国石化出版社,1998.
    [23]戴永庆.溴化锂吸收式制冷技术及应用.北京:机械工业出版.1996.
    [24]袁惠新.分离工程.北京:中国石化出版社,2002.
    [25]陆九芳.分离过程化学.北京:清华大学出版社,1993.
    [26]张祉佑,石秉三.低温技术原理与装置.北京:机械工业出版社,1987.
    [27]谢安俊,刘世华,张华岩,陈斌.大型化工流程模拟软件─A SPEN PLUS.石油与天然气化工, 1995,24(4):247~251.
    [28]赵琛琛.工业系统流程模拟利器——ASPENPLUS.电站系统工程,2003,19(2):56~58.
    [29] ASHRAE, ASHRAE Handbook-Refrigeration System and Application,2001
    [30] ASPEN PLUS Version 10.0 User Guide. Aspen Tech. Inc.
    [31] C.C. Chen, H.I. Britt, J.F. Boston et al. Local Composition Model for Excess Gibbs Energy of Electrolyte Systems. AIChE J,28(1982):588
    [32] G., Mauer. Electrolyte Solutions. Fluid Phase Equilibria13(1983):269
    [33] L.A. Bromley. Thermodynamic Properties of Strong Electrolytes in Aqueous Solutions. AIChE J,18(1973):313
    [34]刘兴高.精馏过程的建模优化与控制.北京:科学出版社,2007
    [35]屈一新.化工过程数值模拟及软件.北京:化学工业出版社,2006
    [36]杨友麒,项曙光.化工过程模拟与优化.北京:化学工业出版社,2006
    [37] Seader J D. The rate-based approach for modeling staged separations. Comp. Eng. Prog. ,1989,85(10):41~49
    [38] Tanase G D, Jose G S M. Chemical Engineering Research: Modeling, Simulation and Similitude. New York: John Wiley & Sons, 2003
    [39] George Wypych著,程斌等译.填料手册(第二版).北京中国石化出版社,2003.
    [40]宋海华.精馏模拟.天津:天津大学出版社,2005
    [41] Luyben W L. Plantwide Dynamic Simulation in Chemical Processing and Control. New York: Marcel Dekker Inc. , 2002
    [42] Seider W D, Seader J D, Lewin D R. Process Design Principles-Synthesis, Analysis, and Evaluation.北京:化学工业出版社,2002
    [43]吴重光.过程系统仿真技术.北京:中国石化出版社,1998
    [44]杨友麟.实用化工系统工程.北京:化学工业出版社,1989
    [45]方利国.计算机在化学化工的应用.北京:化学工业出版社,2003
    [46] Q. Smejkal et al. Comparison of computer simulation of reactive distillation using ASPEN PLUS and HYSYS software. Chemical Engineering and Processing, 2002,41:413~415.
    [47]贾明生.溴化锂水溶液的几个主要物性参数计算方程.湛江海洋大学学报,2002,22(3):52-58.
    [48] LA. McNeely. Thermodynamics properties of aqueous solution of lithium bromide. ASHRAE Trans.1979(85):413-434.
    [49]陈光进.化工热力学.北京:石油化工出版社,2006
    [50] Sheldon R A, Dunn I J. Dynamic Simulation-Modeling Processes, the Environment, the World. Chem Eng Progr, 2001,(12):44~48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700