薄壁零件高速铣削过程中非线性振动的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代国防装备中,如航天飞行器、飞机、火箭、卫星等所用的特殊材料和特殊型面的构件,用传统加工不可能达到理想精度要求,必须采用多轴联动、高速、高精度的数控机床进行加工。因此,高性能的数控机床对国防现代化和我国汽车工业的高速发展起着至关重要的作用,它所带来的技术和产品已经关系到我国经济的发展和国防的进步。但是在高速切削金属零件过程中发生的强烈振动,会恶化被加工零件的表面质量,影响被加工零件的加工精度,使零件的废品率提高,严重时会破坏机床主轴,造成重大的经济损失。随着国防事业的发展,对型面特殊的,质量轻,柔度大的铝合金零件的需求不断增大,也对高速铣削加工数控中心提出了更高的要求。
     因此,目前高速铣削过程中开口薄壁零件的非线性振动问题日益突出,逐渐成为了限制高速铣削加工生产技术水平和生产效率的主要问题。对高速铣削过程中薄壁零件非线性问题的研究有着重要的理论意义和工程实际价值。本文主要采用理论研究和数值分析相结合的方法对于切削力作用下的高速铣削中薄壳和薄板零件的非线性振动、分叉和混沌动力学特性进行研究。论文的主要研究内容有以下几方面。
     (1)高速铣削过程中薄壳零件的动力学建模
     研究了高速铣削过程中航空发动机叶片的非线性振动问题,发动机叶片柔度大,并且受到切削力的作用,基于高速铣削过程中加工发动机叶片的工作状态,利用Hamilton原理建立了切削力作用下高速铣削过程中薄壳类零件的非线性动力学方程。选取了第一阶模态和第二阶模态,利用Galerkin方法对所得到的薄壳构件的偏微分方程进行了离散,得到了两自由度非线性动力学方程,用来描述系统的运动。
     (2)高速铣削过程中薄壳零件非线性动力学特性的研究
     分别考虑了主参数共振情况下1:1内共振和1:2内共振的情况,利用多尺度方法得到了系统的四维平均方程。基于四维平均方程,利用数值方法研究了高速铣削过程中薄壳零件的非线性动力学行为以及动态分叉特性。数值结果表明,系统的非线性动态响应幅值随着外激励的增加而非线性增加。在特定参数情况下,第二阶模态的幅值有可能大于第一阶模态的幅值。所以,只考虑第一阶模态并不能全面的反映系统非线性振动情况。通过随外激励变化的分叉图,发现系统呈现出混沌运动→周期运动→单倍周期运动→多倍周期运动→概周期运动→混沌运动的交替变化过程。从所得到的系统阻尼参数分叉图中可以看出,阻尼系数对系统的动态响应有着很大的影响,随着阻尼系数的增加系统的运动趋于稳定的周期运动。因此,可以适当的调节系统的阻尼用来抑制混沌运动的出现。
     (3)高速铣削过程中薄板类零件的非线性振动和混沌运动的研究
     利用Hamilton原理建立了高速铣削过程中薄板零件的非线性动力学方程。选取了第一阶模态和第二阶模态,利用Galerkin方法对所得到的切削力作用下薄板零件的偏微分方程进行了离散,得到了薄板零件的两自由度非线性动力学方程。
     分别考虑主参数共振情况下1:1内共振和1:3内共振情况,利用多尺度方法得到系统的四维平均方程。基于四维平均方程,利用数值方法研究了高速铣削过程中薄板零件的非线性动力学行为及动态分叉特性。数值结果表明,系统在外激励作用下存在着混沌运动、周期运动和概周期运动。从所得到的随系统阻尼参数变化的分叉图中可以看出,阻尼系数对系统的动态响应有很大的影响。
     (4)高速铣削过程中时滞参数对系统非线性振动的影响
     时滞现象普遍存在于切削加工中,本文分别研究了高速铣削薄壳零件和高速铣削薄板零件非线性动力学问题中时滞的影响。根据四维平均方程,通过数值分析,研究了时滞参数对系统非线性振动的影响。通过固定其他参数并改变时滞参数,发现系统存在周期运动,混沌运动和概周期运动。系统对时滞参数的改变非常敏感,可以通过改变时滞参数来抑制系统混沌运动的出现。
The equipments that are used for modern national defense, spacecraft, aircraft,rockets, satellites, are normal made of special materials with complex finishing surfaces.The components of these equipments are impossible to be manufactured by traditionalmachines but rather by multi axis CNC machine with high speed, and high precision.Therefore, the CNC machines with high performance play a vital role in themodernization of national defense, modern aircraft and automobile industry. Thehigh precision workpieces related to the progress of China's economic development andnational defense. In the process of high speed milling, however, the thin walledworkpieces frequently have strong vibrations which can result in poor surface finishing,high rejection rate, even the machine axis damage. With the rapid development of nationaldefense, the requirement of workpieces with light weight, low stiffness and good surfaceare bloomed. So that the new technology of CNC machine are corresponding demanded.
     Research on the nonlinear vibrations of thin walled workpieces during high speedmilling becomes more and more important in engineering. In this paper, the nonlinearvibrations of thin walled workpieces subjected to the cutting force in high speed millingprocess are studied by using theoretical and numerical methods. The main research field ofthis dissertation is introduces as follows.
     (1) Modelling of the shell shaped workpiece during high speed milling process isestablished.
     During the process of machining engine blades, the workpiece with low stiffness hasstrong vibrations which result in poor surface finishing, high rejection rates and machinedamage. Based on the milling process, the shell shaped workpiece is modeled as acantilevered thin shell subjected to the cutting force with time delay effects. Equations ofmotion are derived by using Hamilton principle based on the classical shell theory. Theresulting nonlinear partial differential equations are reduced to a two degree of freedomnonlinear system by applying the Galerkin’s approach.
     (2) Nonlinear vibrations of the shell shaped workpiece during high speed millingprocess is investigated.
     The averaging method is used to obtain two sets of the four dimensional averagedequations by considering the1:1and1:2internal resonances, respectively. Using thenumerical method, dynamics of the cantilevered shell shaped workpiece is studied under dumping coefficient and forcing excitation. It is concluded that there exit complexnonlinear behaviors including the chaotic motion, periodic and quasi periodic motions. Itis observed from the bifurcation diagram of forcing excitation that with the increase of theamplitude of the non dimensional forcing excitation, the motions of the cantileveredshell shaped workpiece demonstrate the following pattern: chaotic motion→periodicmotion→quasi periodic motion→chaotic motion. The nonlinear dynamic behavior of theshell shaped workpiece form the chaotic motion is controlled by varying the amplitude ofthe damping coefficient.
     (3) Nonlinear vibrations, bifurcations and chaos of the thin plate workpiece duringhigh speed milling process are studied.
     Because of the cutting force in the milling process, the thin plate workpiece vibratestrongly. Based on the cutting process, the thin plate workpiece is modeled as acantilevered thin plate subjected the cutting force. Applying the Hamilton principle, theequations of motion of the thin plate workpiece are derived based on Kirchhoff platetheory. Utilizing the Galerkin’s approach, the resulting equations are reduced to atwo degree of freedom nonlinear system. The method of Asymptotic Perturbation isutilized to obtain two sets of four dimensional averaged equations by considering1:1and1:3internal resonances, respectively. Using numerical simulations, the influence ofdifferent parameters on nonlinear vibrations of the thin plate workpiece is detected. It isconcluded that there exist complex nonlinear behaviors including chaotic motion, periodicmotion and periodic n motion. The motion of the system is very sensitive by varying thedumping coefficient.
     (4) The influences of time delay effects on the thin walled workpiece duringhigh speed milling process are analyzed.
     The statuses of the system in the past or a certain time before have impact on thecurrent system. There exists a time lag. The time delay effects frequently happen in thecutting system. In this study, based on the four dimensional averaged equations, theinfluence of time delay parameters on the thin walled workpiece is numerically analyzed.It is stated that nonlinear behaviors of the thin walled workpiece is sensitive on thevarying time delay parameters.
引文
1.董辉跃,航空整体结构件加工过程的数值仿真,浙江大学博士学位论文,2004.
    2. S. T. Chiang, C. M. Tsai and A. C. Lee, Analysis of cutting forces in ball end milling,Journal Master Process Technology47,p231249,1995.
    3. S. Jayaram, S. G. Kapoor and R. E. Devor, Estimation of the specific cutting pressuresfor mechanistic cutting force models, International Journal Machine ToolsManufacture41, p265281,2001.
    4. R. Zhu, S. G. Kapoor and R. E. Devor, Mechanistic modeling of the ball end millingprocess for multi axis machining of free form surfaces, ASME Journal ManufactureScience and Engineering123,p369379,2001.
    5. T. Bailey, M. A. Elbestawi and T. I. El Wardany, Generic simulations approach formulti axis machining, Parts1and2, ASME Journal Manufacture Science andEngineering124, p624642,2002.
    6. J. J. Wang and C. M. Zheng, Identification of shearing and ploughing cuttingconstants from average forces in ball end milling, International Journal MachineTools Manufactuer42, p695705,2002.
    7. J. J. Wang and C. M. Zheng, An analytical force model with shearing and ploughingmechanisms for end milling, International Journal Machine Tools Manufacture42,p761771,2002.
    8. P. J. Cheng, J. T. Tsay and S. C. Lin, A study on instantaneous cutting forcecoefficients in face milling, International Journal Machine Tools Manufacture37,p13931408,1997.
    9. J. Gradisek, M. Kalveram and K. Weinert, Mechanistic identification of specific forcecoefficients for a general end mill, International Journal Machine Tools Manufacture44, p401414,2003.
    10. A. Azeem, H. Y. Feng and L. Wang, Simplified and efficient calibration of amechanistic cutting force model for ball end milling, International Journal MachineTools Manufacture44,p291298,2004.
    11. W. A. Kline, R. E. Devon and J. R. Lindberg, The prediction of cutting forces in endmilling with application to cornering cuts, International Journal of Machine ToolDesign&Research22, p712,1982.
    12. W. A. Kline, R. E. Devon and I. A. Sharee, The prediction of surface accuracy in endmilling,Transactions of ASME Journal of Engineering for Industry104, p272278,1982.
    13. J. W. Sutherland and R. E. Devon, An improved method for cutting force and surfaceerror prediction in flexible end milling systems, Transactions of ASME Journal ofEngineering for Industry108, p269279,1986.
    14. J. S. Tsai and C. L. Liao, Finite element modeling of static surface errors in theperipheral milling of thin walled workpieces, Journal of Materials ProcessingTechnology94, p235246,1999.
    15. Y. Altintas and A. Spence, End milling force algorithms for CAD systems,Annals ofthe CIRP40, p3134,1991.
    16. X. W. Liu, K. Cheng and D. Webb,Prediction of cutting force distribution and itsinfluence on dimensional accuracy in peripheral milling, International Journal ofMachine Tools and Manufacture42, p791800,2002.
    17. E. Budak and Y. Altintas. Modeling and avoidance of static form errors in peripheralmilling of plates, International Journal of Machine Tools and Manufacture35,p459476,1995.
    18. E. Budak, Mechanics and dynamics of milling thin walled structures. Vancouver,Canada: The University of British Columbia,1994.
    19. A. Larue and B. Anselmetti, Deviation of a machined surface in flank milling,International Journal of Machine Tools and Manufacture43, p129138,2003.
    20. M. Wan and W. H. Zhang, Efficient algorithms for calculations of static form errors inperipheral milling, Journal of Materials Processing Technology171, p156165,2006.
    21. C. Sim and M. Yang, The prediction of the cutting force in ball end milling with aflexible cutter, International Journal Machine Tools Manufacture33, p267284,1993.
    22. H. Y. Feng and C. H. Meng, A flexible ball end milling system model for cutting forceand machining error prediction, ASME Journal Manufacture. Science andEngineering118, p461469,1996.
    23. W. S. Yun and D. W. Cho, Accurate3D cutting force prediction using cuttingcondition independent coefficients in end milling, International Journal MachineTools Manufacture41,p463478,2001.
    24.倪其民,李从心,吴光琳,考虑刀具变形的球头铣刀铣削力建模与仿真.机械工程学报38,p108112,2002.
    25.阎兵,张大卫,徐安平,球头刀铣削过程动力学模型.机械工程学报38,p2226,2002.
    26. C. Sim and M. Y. Yang, The prediction of the cutting force in ball end milling with aflexible cutter International Journal of Machine Tools and Manufacture33, p267284,1993.
    27. H. Y. Feng and C. Menq, The prediction of cutting force in the ball end millingprocess I: Model Formulation and Model Building Procedure, International Journalof Machine Tools and Manufacture34, p711719,1994.
    28. F. Koenigsberger and A. J. P. Sabberwal, An investigation into the cutting forcepulsations during milling, International Journal Machine Tools Design Research1,p1533,1961.
    29. K. Shirase and Y. Altintas, Cutting force and dimensional peripheral milling withpitch helical end mills, International Journal of Machine Tools Manufacture36,p567584,1996.
    30. X. W. Liu, K. Cheng, D. Webb and X. C. Luo, Prediction of cutting force distributionand its influence on dimensional accuracy in peripheral milling, International Journalof Machine Tools and Manufacture42, p791~800,2002.
    31. M. Y. Yang and H. Park, The prediction of cutting force in ball end milling,International Journal of Machine Tools and Manufacture31, p4554,1991.
    32. H. Y. Feng and C. H. Menq, The prediction of cutting forces in the ball end millingprocess—II. Cut geometry analysis and model verification International Journal ofMachine Tools and Manufacture34, p711719,1994.
    33. C. C. Tai and K. Fuh, A predictive force model ball end milling including eccentricityeffects, International Journal of Machine Tools and Manufacture34, p959979,1994.
    34. G. Yucesan and Y. Altintas, Prediction of ball end milling force. Transition of ASMEJournal of Engineering for Industry2, p95103,1996.
    35. T. C. Ramaraj and E. Eleftheriou, Analysis of mechanics of machining with taperedend milling cutters, Transition of ASME of Journal of Engineering for Industry8,p398404,1994.
    36. Y. Altintas and P. Lee, A general mechanics and dynamics model for helical end mills,Annals of the CIRP1, p5964,1996.
    37.阎兵,张大卫,球头刀铣削过程动力学模型,机械土程学报38,p2226,2002.
    38.阎兵,徐安平,张大卫,黄田,一种新的螺旋刃铣刀铣削力模型,中国机械工程13,p160163,2002.
    39.张雷,李营,高速铣削的非线性建模,兵工自动化2l,p4851,2002.
    40.顾红欣,高速铣削过程中铣削力的建模,天津工程师范学院学报17,p11,2007.
    41. F. W. Taylor, On the art of cutting metals, Transactions of the American Society ofMechanical Engineers28, p31350,1907.
    42. J. Tlusty, A. Polacek, C. Danek and J. Spacek, Selbsterregte Schwingungen anWerkzeugmaschinen, VEB Verlag Technik, Berlin,1962.
    43. S. A. Tobias, Machine Tool Vibration, Blackie, London,1965.
    44. F. C. Moon, Dynamics and Chaos in Manufacturing Processes, Wiley, New York,1998.
    45. J. E. Halley, A. M. Helvey, K.S.Smith and W. R. Winfough, The impact of high speedmachining on the design and fabrication of aircraft components, Proceedings of1999the American Society of Mechanical Engineers Design and Technical Conferences,Las Vegas, NV, paper no. DETC99/VIB8057(CD ROM),1999.
    46. D. J. Seagalman and E. A. Butcher, Suppression of regenerative chatter via impedancemodulation, Journal of Vibration and Control6, p243256,2000.
    47. A. M. Gouskov, S. A. Voronov, H. Paris and S. A. Batzer, Cylindrical workpieceturning using multiple cutter tool heads, Proceedings of the American Society ofMechanical Engineers2001Design Engineering Technical Conferences, Pittsburgh,PA,2001.
    48. G. Stepan, Retarded Dynamical Systems, Longman, Harlow,1989.
    49. G. Stepan, Delay differential equation models for machine tool chatter, in F. C. Moon(Ed.), Dynamics and Chaos in Manufacturing Processes, Wiley, New York,p165192,1998.
    50. J. Gradisek, E. Govekar and I. Grabec, Time series analysis in metal cutting: chatterversus chatter free cutting, Mechanical Systems and Signal Processing12, p839854,1998.
    51. J. Gradisek, E. Govekar and I. Grabec, Using coarse grained entropy rate to detectchatter in cutting, Journal of Sound and Vibration214, p941952,1998.
    52. J. Tlusty and F. Ismail, Basic nonliearity in Machining Chatter, Annals CIPP30,p299304,1981.
    53. N. H. Hanna and S. A. Tobias, The non linear dynamic behaviour of a machine toolstructure, International Journal of Machine Tool Design and Research3, p293307,1969.
    54. P. E. Gygax, Cutting dynamics and process structure interactions applied to milling,Mechanism and Machine Theory1,p161184,1980.
    55. S. A. Tobias, Machine Tool Vibration, Blackie, London,1965.
    56. F. Koenigsberger and J. Tlusty, Machine tool structures1, p122,1970.
    57. G. Stepan,Retarded dynamical systems: stability and characteristic functions, PitmanResearch Notes in Mathematics210, p151,1989.
    58. A. H. Nayfeh, C. M. Chin and J. Pratt, Perturbation methods in nonlineardynamics applications of machining dynamics, Journal of Manufacturing Science andEngineering19, p485493,1997.
    59. J. Pratt and A. H. Nayfeh, Design and modeling for chatter control, NonlinearDynamics19, p4969,1999.
    60. T. Kalmar, G. Stepan and F. Moon, Subcritical Hopf bifurcation in the delay equationmodel for machine tool vibrations, Nonlinear Dynamics26, p121142,2001.
    61. Halanay, Stability theory of linear periodic systems with delay, Revue deMathematiques Pures et Appliquees6, p633653,1961.
    62. J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations,Springer, New York,1993.
    63. M. Farkas, Periodic Motions, Springer, New York,1994.
    64. I. Minis and T. Yanushevsky, A new theoretical approach for the prediction ofmachine tool chatter in milling, Transition of ASME Journal Engineering Industry115, p1~8,1993.
    65. I. Minis and T. Yanushevsky, Analysis of' linear and nonlinear chatter in milling,Annals CIRP39, p459462,1990.
    66. I. Minis and T. Yanushevsky, A new theoretical approach for the prediction ofmachine tool chatter in milling, American Society of Mechanical Engineers Journal ofEngineering for Industry115, p18,1993.
    67. Y. Altintas and E. Budark, Analytical prediction of stability lobe in milling, Annals ofthe CIRP44, p357362,1995.
    68. T. Insperger and G. Stepan, Stability of the milling process, Periodica Polytechnica44,p4757,2000.
    69. M. A. Davies, J. R. Pratt, B. Dutterer, and T. J. Burns, Stability prediction of lowradial immersion milling, Journal of Manufacturing Science and Engineering124,p217225,2002.
    70. P. V. Bayly, J. E. Halley, B. P. Mann and M. A. Davies, Stability of interrupted cuttingby temporal finite element analysis, Proceeding of the ASME2001DesignEngineering Technical Conferences, Pittsburgh,2001.
    71. T. Insperger, G. Stepan and S. Namachchivaya, Comparison of the dynamics of lowimmersion milling and cutting with varying spindle speed, Proceedings of the ASME2001Design Engineering Technical Conferences, Pittsburgh,2001.
    72. B. Balachandran and M. X. Zhao, A mechanics based model for study of dynamics ofmilling operations, Meccanica35, p89109,2000.
    73. T. Insperger and G. Stepan, Stability of high speed milling, Proceedings of the ASMESymposium on Nonlinear Dynamics and Stochastic Mechanics, Orlando, FL241,p119123,2000.
    74. W. T. Corpus and W. J. Endres, A high order solution for the added stability lobes inintermittent machining, Proceedings of the ASME Symposium on MachiningProcesses11, p871878,2000.
    75. G. Stepan and R. Szalai, Nonlinear vibrations of highly interrupted machining,Proceedings of Dynamics and Control of Mechanical Processing, Budapest, Hungary,p5964,2001.
    76. J. Tlusty, The dynamics of high speed milling, Journal of Engineering for Industry108, p5967,1986.
    77. R. Shridar, R. E. Hohn and G. W. Long, A general formulation of the milling processequation, Transactions of the American Society of Mechanical Engineers79,p139148,1957.
    78. R. Shridar, R. E. Hohn and G. W. Long, A stability algorithm for the general millingprocess, Journal of Engineering for Industry90, p330334,1968.
    79. Y. Altintas and E. Budark, Analytical prediction of stability lobe in milling, Annals ofthe CIRP44, p357362,1995.
    80. P. Bayly, J. E. Halley, M. A. Davies and J. R. Pratt, Stability analysis of interruptedcutting with finite time in cut, Proceedings of the ASME Manufacturing EngineeringDivision11, p989996,2000.
    81. P. Wahi and A. Chatterjee, Regenerative tool chatter near a co dimension2hopf pointusing multiple scales, Nonlinear Dynamics40, p323338,2005.
    82. J. Tlusty and F. Ismail, Basic Non linearity in machining chatter, Annals of the CIRP30, p299304,1981.
    83. Y. Kondo, O. Kawano and H. Sato, Behavior of self excited chatter due to multipleregenerative effect, Transactions of the American Society of Mechanical Engineers,Journal of Engineer for Industry103, p324329,1981.
    84. T. Kaneko, T. Sato, Y. Tani and M. O. Hori,Self excited chatter and its marks inturning, Transactions of the American Society of Mechanical Engineers,Journal ofEngineering for Industry103, p222228,1984.
    85. N. H. Hanna and S. A. Tobias, A theory of non linear regenerative chatter,Transactions of the American Society of Mechanical Engineers, Journal ofEngineering for Industry96, p247255,1974.
    86. H. M. Shi and S. A. Tobias, Theory of finite amplitude machine tool instability,International Journal of Machine Tool Design and Research24, p4569,1984.
    87. J. S. Lin and C. I. Weng, A non linear dynamic model of cutting, InternationalJournal of Machine Tools and Manufacture30, p5364,1990.
    88. C. C. Hwang, R. F. Fung and J. S. Lin, Strong non linear dynamics of cutting process,Journal of Sound and Vibration203, p363372,1997.
    89. S. Karube, W. Hoshino, T. Soutome and K. Sato, The non linear phenomena invibration cutting system the establishment of dynamic model, International Journal ofNon-Linear Mechanics37, p541564,2000.
    90. B. Y. Lee and Y. S. Tarng, Modeling of the process damping force in chatter vibration,International Journal of Machine Tools and Manufacture35, p951~962,1995.
    91. Y. Kondo, Eiji, Ota and Hiroshi, Effects of tool flank wear on occurrences ofregenerative chatter (1st report, A model of dynamic undercutting forces caused bytool flank wear), Transactions of the Japan Society of Mechanical Engineers Part C61, p1279~1285,1995.
    92. E. Marui, M. Hashimoto and S. Kato, Regenerative chatter vibration occurring inturning with different side cutting edge angles, Journal of Engineering for Industry,Transactions of the ASME117, p551558,1995.
    93. M. A. Davies and B. Dutterer, On the dynamics of high speed milling with long,slender end mills, CIRP Annals-Manufacturing Technology47, p5560,1998.
    94. E. David and Gilsinn, Estimating critical hopf bifurcation parameters for a secondorder delay differential equation with application to machine tool chatter, Nonlineardynamics30, p103154,2002.
    95. J. C. Fu, C. A. Troy and K. Mori, Chatter classification by entropy functions andmorphological processing in cylindrical traverse grinding, Precision Engineering18,p110117,1996.
    96. M. Pakdemirli and A. G. Ulsoy, Perturbation analysis of spindle speed vibration inmachine tool chatter, Journal of Vibration and Control3, p261278,1997.
    97. Y. Ning, M. Rahman and Y. S. Wong, Investigation of chip formation in high speedend milling, Journal of material processing technology113, p360367,2001.
    98.梁睿君,王宁生,姜澄宇,薄壁零件高速铣削动态切削力,南京航空航天大学学报40,p8993,2008.
    99. W. A. Kline, R. E. Devor and I. A. Shareef, The prediction of surface accuracy in endmilling, Journal of Engineering for Industry104, p272278,1982.
    100.J. W. Sutherland and R. E. Devor, An improved method for cutting force and surfaceerror prediction in flexible end milling systems, Journal of Engineering for Industry108, p269279,1986.
    101.R. E. Devor, Control of surface error in end milling, Eleventh north Americanmanufacturing research conference proceedings, p356362,1983.
    102.E. Budak and Y. Altintas, Modeling and avoidance of static form errors in peripheralmilling of plates, International Journal of Machine Tools and Manufacture Industry35, p459476,1995.
    103.武凯,何宁,姜澄宇,有限元技术在航空薄壁件立铣变形分析中的作用.应用科学学报21, p6971,2003.
    104.王志刚,何宁,张兵,航空薄壁零件加工变形的有限元分析,航空精密制造技术36,p711,2000.
    105.王立涛,关于航空框体结构件铣削加工残余应力和变形机理的研究,浙江大学博士学位论文,2003.
    106.M. Wan, W. H. Zhang, G. Tan and G. H. Qin, New Cutting Force Modeling Approachfor Flat End Mill, Chinese Journal of Aeronautics20, p282288,2007.
    107.T. Stoferle and H. Grad, Vermeiden von Ratterschen Schwungen durch Periodish heDrehzahlaenderung, Werkstatt and Betrieb105, p727729,1972.
    108.T. Inamura and T. Sata,Stability analysis of cutting under varying spine speed, CIRP23,1974.
    109.J. S. Sexton, R. D. Milne and B. J. Stone, A stability analysis of single pointmachining with varying spindle speed, Applied Mathematical Modelling1, p310318,1977.
    110.T. Hoshi, Study for Practical Application of Fluctuating speed cutting forRegenerative chatter control, CIRP25,1977.
    111.A. Demir, A. Hasanov and N. Sri Namachchivaya, Delay equations with fluctuatingdelay related to the regenerative chatter, International Journal of Non-LinearMechanics41, p464474,2006.
    112.C. Mei, Active regenerative chatter suppression during boring manufacturing process,Robotics and Computer-Integrated Manufacturing21, p153158,2005.
    113.J. S. Tsai and C. L. Liao, Finite element modeling of static surface errors in theperipheral milling of thin walled workpieces, Journal of Materails ProcessingTechnology94, p235246,1999.
    114.N. Sri Namachchivaya and H. J. Van Roessel, A centre manifold analysis of variablespeed machining, Dynamical Systems18, p245270,2003.
    115.N. Malhotra and N. Sri Namachchivaya, Chaotic dynamics of shallow arch structuresunder1:2resonance, Journal of Engineering Mechanics6, p612619,1997.
    116.N. Malhotra and N. Sri Namachchivaya, Chaotic motion of shallow arch structuresunder1:1internal resonance, Journal of Engineering Mechanics6, p620627,1997.
    117.R. Szalai, G. Stepan and S. J. Hogan, Global dynamics of low immersion high speedmiling, Chaos14, p10691077,2004.
    118.M. A. Davies, J. R. Pratt, B. Dutterer and T. J. Burns, Stability prediction of low radialimmersion milling, Journal of Manufacturing Science and Engineering125,p217225,2002.
    119.P. V. Bayly, J. E. Halley, B. P. Mann and M. A. Davies, Stability of interrupted cuttingby temporal finite element analysis, Journal of Manufacturing Science andEngineering125, p220225,2003.
    120.T. Insperger and G. Stepan, Stability of high speed milling, Proceedings of the ASMESymposium on Nonlinear Dynamics and Stochastic Mechanics, Orlando, FL241,p119123,2000.
    121.T. Insperger, B. P. Mann, G. Stepan, and P. V. Bayly, Stability of up milling anddown milling, part I: Alternative analytical methods, International Journal ofMachine Tools Manufacturing43, p2534,2003.
    122.B. P. Mann, T. Insperger, P. V. Bayly and G. Stepan, Stability of up milling anddown milling, part II: Experimental verification, International Journal of MachineTools&Manufacture43, p3540,2003.
    123.T. Insperger and G. Stepan, Vibration frequencies in high speed milling process or apositive answer to davies, pratt, dutterer and burns, Journal of Manufacturing Scienceand Engineering126, p481487,2004.
    124.C. Mei, J. G. Cherng and Y. Wang, Active control of regenerative chatter during metalcutting process, Journal of Manufacturing Science and Engineering, Technical Briefs128, p346349,2006.
    125.杨玉坚,梅志坚,杨叔子,师汉民,用机床颤振的非线性理论对变速切削抑制颤振的研究,四川工业学院学报8,p2326,1989.
    126.陈花玲,戴德沛,机床切削颤振的非线性理论研究,振动工程学报5,p335342,1992.
    127.鲁宏伟,汤燕斌,吴雅,杨叔子,机床颤振的混沌特征,华中理工大学学报23,p105108,1995.
    128.鲁宏伟,杨叔子,基于非线性模型的切削过程的混沌研究,振动工程学报9,p169172,1996.
    129.孔繁森,于俊一,切削过程再生颤振的模糊稳定性分析,振动工程学报11,p106109,1998.
    130.W. Min, W. H. Zhang, G. Tan, and G. H. Qin, New algorithm for calibration ofinstantaneous cutting force coefficients and radial run out parameters in flat endmilling, Journal of Engineering Manufacture221, p10071019,2007.
    131.J. W. Dang, W. H. Zhang, Y. Yang and M. Wan, Cutting force modeling for flat endmilling including bottom edge cutting effect, International Journal of Machine Tools&Manufacturep50, p986997,2010.
    132.W. Min and W. H. Zhang, Calculations of chip thickness and cutting forces in flexibleend milling, International Journal of Advanced Manufacture Technology29,p637647,2005.
    133.胡海岩,王在华,非线性时滞动力系统的研究进展,力学进展29,p501512,1999.
    134.秦元勋,刘永清,王联,郑祖庥,带有时滞的动力系统的稳定性(第二版),科学出版社,北京,1989.
    135. H. Y. Hu, Z. H. Wang, Dynamics of Controlled Mechanical Systems with DelayedFeedback, Springer Verlag, New York,2002
    136.徐鉴,裴利军,时滞系统动力学近期研究进展与展望,力学进展36, p1730,2006.
    137.K.Tchizawa and T. Matsumura, Stability of bifurcation delay in a delay differentialequation with time delay, Nonlinear Analysis: Theory, Methods&Applications71,p18691879,2009.
    138.Y. Z. Hu and C. M. Huang, Existence results and the moment estimate for nonlocalstochastic differential equations with time varying delay, Nonlinear Analysis: Theory,Methods&Applications75, p405416,2012.
    139.C. Grebogi, E. Ott and J. A. Yorke, Crises, Sudden changes in chaotic attractors, andtransient chaos, Physica D7, p181200,1983.
    140.B. Deng and K. Sakamoto, Shilnikov Hopf bifurcations, Journal of DifferentialEquations119, p123,1995.
    141.V. G. Leblanc and W. F. Langford, Classification and unfoldings of1:2resonant hopfbifurcation, Archive for Rational Mechanics and Analysis136, p305357,1996.
    142.G. Hek, A. Doelman and P. Holmes, Homoclinic saddle node bifurcations andsub shifts in a three dimensional flow, Archive for Rational Mechanics and Analysis145, p291329,1998.
    143.Yagasaki, Codimension two bifurcations in a pendulum with feedback control,International Journal of Nonlinear Mechanics34, p9831002,1999.
    144.A. Maccari, Modulated motion and infinite period homoclinic bifurcation forparametrically excited Lienard systems, International Journal of Non-linearMechanics35, p239262,2000.
    145.A. Doelman and G. Hek, Homoclinic saddle node bifurcations in singularly perturbedsystems, Journal of Dynamics and Differential Equations12, p169216,2000.
    146.S. A. Gils, M. Krupa and V. Tchistiakov, Homoclinic twist bifurcation in a system oftow coupled oscillators, Journal of Dynmacis and Differential Equations12,p733806,2000.
    147.J. Lu, T. Zhou, G. Chen and S. Zhang, The compound structure of chen’s attractor,International Journal of Bifurcation and Chaos12, p855858,2002.
    148.J. Lu, T. Zhou and S. Zhang, Chaos synchronization between linearly coupled chaoticsystems, Chaos, Solitons and Fractals14, p529541,2002.
    149.J. Lu and G. Chen, A new chaotic attractor coined, International Journal ofBifurcation and Chaos12, p659663,2002.
    150.L. Q. Chen, J. Wu and J. W. Zu, The chaotic response of the viscoelastic travelingstring: an integral constitutive law, Chaos, Solitons and Fractals21, p349357,2004.
    151.W. Zhang, Global and chaotic dynamics for a parametrically excited thin plate,Journal of Sound and Vibration239, p10131036,2001.
    152.W. Zhang, Z. M. Liu and P. Yu, Global dynamics of a parametrically and externallyexcited thin plate, Nonlinear Dynamics24, p245268,2001.
    153.W. Zhang and Y. Tang, Global dynamics of the cable under combined parametricaland external excitations, International Journal of Non-Linear Mechanics37,p505526,2002.
    154.W. Zhang, F. X. Wang and M. H. Yao, Global bifurcations and chaotic dynamics innonlinear non planar oscillations of a parametrically excited cantilever beam,Nonlinear Dynamics40, p251279,2005.
    155.D. X. Cao and W. Zhang, Global bifurcations and chaotic dynamics for a string beamcoupled system, Chaos, Solitons and Fractals37, p858875,2008.
    156.W. Zhang, F. X. Wang and M. H. Yao, Global bifurcations and chaotic dynamics innonlinear non planar oscillations of a parametrically excited cantilever beam,Nonlinear Dynamics40, p251279,2005.
    157.姚明辉,张伟,用广义Melnikov方法分析柔性悬臂梁非平面运动的多脉冲轨道,中国力学学会学术大会,北京, p1565,2005.
    158.M. H. Yao, W. Zhang and D. X. Cao, Multi pulse heteroclinic orbits with a Melnikovmethod and chaotic dynamics in motion of parametrically excited viscoelastic movingbelt, Proceedings of the ASME2007International Mechanical EngineeringConferences and Exposition, Seattle, Washington, USA. November1115,2007.
    159.W. Zhang, M. H. Yao and J. H. Zhang, Using the extended Melnikov method to studythe multi pulse global bifurcations and chaos of a cantilever beam, Journal of Soundand Vibration319, p541569,2009.
    160.A. Haller and S. Wiggins, Orbits homoclinic to resonances, the Hamiltonian case,Physics D66, p298346,1993.
    161.A. Haller and S. Wiggins, Multi pulse jumping orbits and homoclinic trees in a modaltruncation of the damped forced nonlinear Schrodinger equation, Physica D85,p31147,1995.
    162.A. Haller and S. Wiggins, Geometry and chaos near resonant equilibria of3DOFHamiltonian systems, Physica D90, p319365,1996.
    163.G. Haller, G. Menon and V. M. Rothos, Shilnikov manifolds in coupled nonlinearSchr dinger equations, Physics Letters A263, p175185,1999.
    164.G. Haller, Chaos near resonance, New York, Springer Verlag,1999.
    165.N. Malhotra, N. S. Namachchivaya and R. J. McDonald, Multi pulse orbits in themotion of flexible spinning discs, Journal of Nonlinear Science12, p126,2002.
    166.M. H. Yao and W. Zhang, Multi pulse Shilnikov orbits and chaotic dynamics innonlinear nonplanar motion of a cantilever beam, International Journal of Bifurcationand Chaos15, p39233952,2005.
    167.M. H. Yao and W. Zhang, Multi pulse homoclinic orbits and chaotic dynamics inmotion of parametrically excited viscoelastic moving belt, International Journal ofNonlinear Sciences and Numerical Simulation6, p3745,2005.
    168.张伟,姚明辉,两自由度机械系统的Shilnikov型多脉冲轨道,中国力学学会学术大会,北京, p90,2005.
    169.W. Zhang, M. H. Yao and L. Bai, A new multi pulse chaotic motion forparametrically excited viscoelastic axially moving string, ASME-DETC2005-84296,Long Beach, California, USA, Sep.2428,2005.
    170.W. Zhang and M. H. Yao, Multi pulse orbits and chaotic dynamics in motion ofparametrically excited viscoelastic moving belt, Chaos, Solitons and Fractals28,p4266,2006.
    171.M. H. Yao and W. Zhang, Multi pulse Shilnikov orbits and chaotic dynamics of aparametrically and externally excited thin plate, International Journal of Bifurcationsand Chaos17, p125,2007.
    172.W. Zhang and M. H. Yao, Theories of multi pulse global bifurcations for highdimensional systems and applications to cantilever beam, I. Theories, InternationalJournal of Modern Physics B22, p40894141,2008.
    173.I. Grabec, J. Gradisek and E. Govekar, A New Method for Chatter Detection inTurning, CIRP Annals-Manufacturing Technolgy48, p2932,1999.
    174.Gyu Man Kim, Chong Nan Chu, Mean cutting force prediction in ball end millingusing force map method, Journal of Materials processing Technology146, p303310,2004.
    175.Z. C. Wei, M.J. Wang, J. N. Zhu and L.Y. Gu, Cutting force prediction in ball endmilling of sculptured surface with Z level contouring tool path, International Journalof Machine Tools and Manufacture51, p428432,2011.
    176.J. Woo and S. A. Meguid, Nonlinear analysis of functionally graded plates andshallow shells, International Journal of Solids and Structures38, p74097421,2001.
    177.J. Woo, S. A. Meguid, J.C. Stranart, and K.M. Liew, Thermomechanical postbucklinganalysis of moderately thick functionally graded plates and shallow shells,International Journal of Mechanical Sciences47, p11471171,2005.
    178.F. J. Campa, L.N. Lopez de Lacalle an A. Celaya, Chatter avoidance in the milling ofthin floors with bull nose end mills: Model and stability diagrams, InternationalJournal of Machine Tools and Manufacture51, p4353,2011.
    179.E. Budak, L. Kops, Improving Productivity and Part Quality in Milling of TitaniumBased Impellers by Chatter Suppression and Force Control, CIRP Annals-Manufacturing Technology49, p3136,2000.
    180.M. Wan, Y. T. Wang, W. H. Zhang, Y. Yang and J.W. Dang, Prediction of chatterstability for multiple delay milling system under different cutting force models,International Journal of Machine Tools and Manufacture51, p281295,2011.
    181.I. Grabec, Chaotic dynamics of the cutting process, International Journal of MachineTools and Manufacture28, p1932,1988.
    182.K. Kolluru and D. Axinte, Coupled interaction of dynamic responses of tool andworkpiece in thin wall milling, Journal of Materials Processing Technology213,p15651574,2013.
    183.S. Seguy, G. Dessein and L. Arnaud, Surface roughness variation of thin wall milling,related to modal interactions, International Journal of Machine Tools andManufacture48, p261274,2008.
    184.F. J. Campa, L. N. Lopez de Lacalle, A. Celaya, Chatter avoidance in the milling ofthin floors with bull nose end mills: Model and stability diagrams, InternationalJournal of Machine Tools and Manufacture51, p4353,2011.
    185.A. Antoniadis and N. Tapoglou,3Dimensional kinematics simulation of face milling,Mesurement45, p13961405,2012.
    186.M. Zatarain, J. Mu oa, G. Peigne, and T. Insperger, Analysis of the influence of millhelix angle on chatter stability, Annals of the CIRP55, p365–368,2006.
    187.V. Thevenot, L. Arnaud, G. Dessein and G. Cazenave Larroche, Integration ofdynamic behaviour variations in the stability lobes method:3D lobes construction andapplication to thin walled structure milling, The International Journal of AdvancedManufacturing Technology27, p638644,2006.
    188. X. J. Zhang, C. H. Xiong, Y. Ding and M. J. Feng, Milling stability analysis withsimultaneously considering the structural mode coupling effect and regenerativeeffect, International Journal of Machine Tools and ManufactureProcessing53,p127140,2012.
    189.Y. S. Tarng and E. C. Lee, Critical investigation of the phase shift between the innerand outer modulation for the control of machine tool chatter, International Journal ofMachine Tools and Manufacture37, p16611672,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700