高维非线性系统的全局分叉和多脉冲混沌动力学的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
力学、航空航天和机械工程等领域中,许多问题的力学模型可用高维非线性系统来描述。当这些系统受到外部激励,并且在系统内部非线性耦合的情况下,系统将表现出复杂的非线性动力学行为,如模态作用、能量转移、跳跃现象和多脉冲混沌动力学等。无论从非线性动力学理论角度还是从实际工程应用方面,寻找这些复杂行为出现的机理并对系统施加合理的控制是一个非常有意义的研究课题。近年来研究高维非线性系统的动力学是国际非线性动力学领域的前沿课题和重要课题,同时也是科研难题。
     目前研究高维非线性系统全局动力学的解析方法还不多,主要有研究共振条件下单脉冲混沌动力学的Melnikov方法,研究多脉冲混沌动力学的广义Melnikov方法和能量-相位法,以及非共振条件下的标准Melnikov方法和指数二分法。这些方法为工程问题中的高维非线性系统全局动力学的分析提供了强有力的工具,但是这些方法都具有一定的局限性。例如能量-相位法分析的系统的未扰动部分一般要求是四维的Hamilton系统,广义Melnikov方法分析的系统未扰动作用-角变量部分可以不是Hamilton系统,但是其它的未扰动部分要求是完全可积的高维非线性系统,指数二分法可以分析高维非线性系统的全局动力学,但分析过程比较复杂并且缺乏几何的直观性。
     本文首先推广了研究一类高维非线性系统的全局分叉和多脉冲混沌动力学的广义Melnikov方法,然后推导出了该类四维子系统N-脉冲跳跃轨道的能量-相位函数,改进了研究一类高维非自治慢变振子的全局分叉和混沌动力学的Melnikov方法。应用这些全局解析方法分析一些工程系统的全局动力学,揭示系统多脉冲跳跃和多脉冲混沌运动等复杂非线性动力学行为及不稳定运动产生的机理。论文的研究内容主要有以下几个方面。
     (1)改进Melnikov方法对高维非线性系统完全可积性条件的限制,利用同宿流形变分方程解的结构、不变流形纤维丛理论和几何奇异摄动理论,进一步发展了研究一类高维非线性系统的全局分叉和多脉冲混沌动力学的广义Melnikov方法。
     (2)研究了一类同时具有Hamilton扰动和耗散扰动的四维非线性系统,首次利用广义Melnikov函数推导出了该类系统的N-脉冲跳跃轨道的能量-相位函数。当未扰动系统是四维Hamilton系统时,所得到的能量-相位函数和Haller发展的能量-相位法中定义的能量-相位函数是一致的,进一步分析了广义Melnikov方法和能量-相位法之间的区别和联系。
     (3)利用快流形方法和同宿流形变分方程解的结构,改进了研究一类高维非自治慢变振子的全局分叉和混沌动力学的Melnikov方法,推广后的方法更适合分析一些复杂工程系统的全局动力学问题。
     (4)基于非线性非平面运动悬臂梁的模型,利用广义Melnikov方法分析了1:1内共振条件下非平面运动悬臂梁的全局分叉和多脉冲混沌运动,首次利用能量-相位法研究了1:2内共振条件下非平面运动悬臂梁的全局分叉和多脉冲混沌动力学。分析结果揭示了非平面运动悬臂梁产生模态作用、能量转移、多脉冲跳跃和多脉冲混沌运动的机理。数值模拟的结果表明非线性非平面运动悬臂梁的确存在多脉冲跳跃和多脉冲混沌运动等复杂的非线性现象。
     (5)利用指数二分法和广义平均法,首次研究了屈曲矩形薄板的混沌运动。研究结果表明,当外激励频率和非屈曲线性系统的固有频率发生主共振,当参数激励的频率和非屈曲线性系统的固有频率发生基本参数共振时,矩形薄板的非双曲子系统不会影响整个系统混沌运动发生的临界条件。数值模拟研究了参数激励和外激励对屈曲矩形薄板共振混沌动力学的影响,数值结果验证了双曲子系统的混沌运动决定着整个系统也是混沌运动的结论。
     (6)利用广义Melnikov方法分析了1:1内共振条件下功能梯度材料矩形板的全局分叉和多脉冲混沌动力学。为了克服运动控制方程中的平方和立方非线性项为系统动力学分析带来的困难,采用了高阶多尺度方法推导出控制系统的振幅和相位的平均方程。全局摄动分析揭示了功能梯度材料矩形板产生模态作用、能量转移、多脉冲跳跃和多脉冲混沌运动的机理。数值模拟研究了参数激励和外激励对功能梯度材料矩形板动力学的影响,其结果表明了功能梯度材料矩形板的确存在多脉冲混沌运动等复杂的非线性现象。
     (7)利用能量-相位法分析了1:1内共振条件下非线性振动减震器的全局分叉和多脉冲混沌动力学。全局摄动分析揭示了非线性减震器产生跳跃现象、模态作用、能量转移和多脉冲混沌运动的机理。数值模拟研究了参数激励、阻尼参数和调谐参数对系统动力学的影响,结果表明非线性振动减震器的确存在多脉冲跳跃和多脉冲混沌运动等复杂的非线性现象。
     在结束语中,对全文进行了总结,提出了可能存在的问题和进一步的研究方向。
The mechanical models for a variety of problems in the field of mechanics, aircraft, aerospace, mechanical engineering, can be described by high-dimensional nonlinear systems. When these systems are subjected to external excitations and internal coupling of nonlinearity, complex dynamical behaviors of the high-dimensional nonlinear systems will occur, such as modal interactions, the transfer of energy, the phenomena of jumping, multi-pulse chaotic dynamics. It is a meaningful topic to find the mechanism of these complex dynamical behaviors and improve reasonable control on these systems. Recently, studies on complex dynamics in high-dimensional nonlinear systems have become the leading, significant and difficult topics in the field of nonlinear dynamics.
     Up to now, there is very few analytical method which can be used to study the global dynamics of high-dimensional nonlinear systems. These methods mainly include the Melnikov method, the global perturbation method for investigating the single-pulse chaotic dynamics, the extended Melnikov method and energy-phase method for studying the multi-pulse chaotic dynamics in the case of resonance, and the method of exponential dichotomies for studying the chaotic dynamics in the case of non-resonance. These methods are powerful tools to investigate the global bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering. However, these methods have many limitations for applying them to analyze the global bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering. For example, the unperturbed parts of high-dimensional nonlinear systems, which can be analyzed by the energy-phase method, are generally requested to be four-dimensional Hamiltonian systems. The extended Melnikov is usually employed to analyze the global bifurcations and chaotic dynamics of high-dimensional nonlinear systems with the action-angle variable. The unperturbed part of the action-angle variable may not be a Hamiltonian system. However, other parts of the unperturbed systems must be Hamiltonian with completely integrability. The method of exponential dichotomies can be utilized to analyze the chaotic dynamics of high-dimensional nonlinear systems. However, the process of analysis is too complex and lack of the geometric intuition for engineering researchers.
     In this dissertation, firstly, the extended Melnikov method is further generalized to study the global bifurcations and multi-pulse chaotic dynamics for a class of high-dimensional nonlinear systems. The energy-phase function is derived for the four-dimensional subsystem of a class of high-dimensional nonlinear systems. The Melnikov method is also improved to study the global bifurcations and chaotic dynamics for a class of high-dimensional non-autonomous slowly varying oscillators. Then, the aforementioned global perturbation methods are utilized to investigate the global bifurcations and multi-pulse chaotic dynamics of several engineering systems. The results obtained here reveal the mechanism on complex nonlinear dynamical behaviors and the instability of motions, such as the multi-pulse jumping and multi-pulse chaotic motions of high-dimensional nonlinear systems in engineering.
     The major research contents of this dissertation are briefly summarized as follows.
     (1) After improving the limitations of completely integrability for the Melnikov method in high-dimensional nonlinear systems and using the structure of solutions for variational equation along homoclinic manifolds, the theory of fibers for invariant manifolds and geometric singular perturbation theory, the extended Melnikov method is further improved to study the global bifurcations and multi-pulse chaotic dynamics for a class of high-dimensional nonlinear systems.
     (2) A class of four dimensional nonlinear systems subjected to both Hamiltonian and dissipative perturbations are investigated. The energy-phase function for N-pulse jumping orbits is derived using the extended Melnikov function for the first time. The energy-phase function is the same as the one given by Haller in energy-phase method when the unperturbed system is Hamiltonian. Moreover, the differences and connections between the energy-phase method and the extended Melnikov method are also analyzed.
     (3) Applying the technique of fast manifold and the structure of solutions for variational equation along homoclinic manifolds, the Melnikov method is improved to investigate the global bifurcations and chaotic dynamics for a class of high-dimensional non-autonomous slowly varying oscillators. The generalized methods are more suitable to analyze the global dynamics of complex engineering systems.
     (4) Based on the governing equations of nonlinear nonplanar motion for a cantilever beam, the global bifurcations and multi-pulse chaotic motions for the cantilever beam in the case of one-to-one internal resonance are analyzed using the extended Melnikov method. The global bifurcations and multi-pulse chaotic motions for the cantilever beam in the case of one-to-two internal resonance are investigated using the energy-phase method for the first time. These results obtained here can reveal the mechanism of complex nonlinear motions for the cantilever beam, such as modal interactions, the transfer of energy, the multi-pulse jumping and the multi-pulse chaotic motions. Numerical simulations are implemented to demonstrate the existence of the complex nonlinear phenomena, such as multi-pulse jumping and the multi-pulse chaotic motions for the cantilever beam.
     (5) The exponential dichotomies and the generalized averaged procedure are employed to study the chaotic motions for a buckled rectangular thin plate for the first time. In the case of primary resonance and principle parametric resonance, it is found that non-hyperbolic subsystem of the rectangular thin plate does not affect the critical condition on the occurrence of chaotic motions for the full system of the rectangular thin plate. Numerical simulations are implemented to explain the influence of external and parametric excitations on the chaotic motions for the rectangular thin plate. Numerical results show that the chaotic motions of the hyperbolic subsystem are shadowed by the chaotic motions for the full system of the rectangular thin plate.
     (6) The global bifurcations and multi-pulse chaotic dynamics for a functionally graded material rectangular plate are investigated in the case of one-to-one internal resonance using the extended Melnikov method. In order to overcome the difficulty for dynamical analysis brought by the square and cubic nonlinear terms in the governing equations of motion, the method of high-order multiple scales is applied to derive the averaged equation governing the amplitude and phase. The extended Melnikov method is employed to detect the mechanism of complex motions for the FGM rectangular plate, such as modal interactions, the transfer of energy, the multi-pulse jumping and the multi-pulse chaotic motions. Numerical simulations are finished to study the influence of the external and parametric excitations on the nonlinear dynamics for the FGM rectangular thin plate. Numerical results indicate the existence of multi-pulse chaotic motions and other complex nonlinear phenomena for the FGM rectangular plate.
     (7) The global bifurcations and multi-pulse chaotic dynamics for a nonlinear vibration absorber are studied in the case of one-to-one internal resonance using the energy-phase method. The mechanism of complex motions for the nonlinear vibration absorber is detected, such as modal interactions, the transfer of energy, the multi-pulse jumping and the multi-pulse chaotic motions. Numerical simulations are given to study the effect of the parametric excitation, the damping parameter and the detuning parameters on the nonlinear dynamic responses for the nonlinear vibration absorber. Numerical results illustrate the existence of multi-pulse jumping, multi-pulse chaotic motions and other complex nonlinear phenomena for the nonlinear vibration absorber.
     In the last section, the dissertation is summarized. Moreover, the further studies on global bifurcations and multi-pulse chaotic dynamics for high-dimensional nonlinear systems are discussed.
引文
1. V. K. Melnikov, On the stability of the centre for time periodic perturbations, Transantions of the Moscow Mathematical Society 12, p1-56, 1963.
    2. V. I. Arnold, Instability of dynamical systems with many degrees of freedom, Soviet Mathematics Doklady 5, p581-585, 1964.
    3. P. Holmes, A nonlinear oscillation with a strange attractor, Philosophical Transactions of the Royal Society A 292, p419-448, 1979.
    4. S. Wiggins. Global bifurcations and chaos, New York: Springer-Verlag, 1988.
    5. G. Kovacic and S. Wiggins, Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation, Physica D 57, p185-225, 1992.
    6. G. Kovacic, Hamiltonian dynamics of orbits homoclinic to a resonance band, Physics Letters A 167, p137-142, 1992.
    7. G. Kovacic, Dissipative dynamics of orbits homoclinic to a resonance band, Physics Letters A 167, p143-150, 1992.
    8. G. Kovacic, Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems, Journal of Dynamics and Differential Equations 5, p559-597, 1993.
    9. G. Kovacic, Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipative systems, SIMA Journal of Mathematical Analysis 26, p1611-1643, 1995.
    10. T. J. Kaper and G. Kovacic, Multi-bump orbits homoclinic to resonance bands, Transactions of the American Mathematical Society 348, p3835-3887, 1996.
    11. K. Yagasaki, Chaotic dynamics of quasi-periodically forced oscillators detected by Melnikov method, SIAM Journal of Mathematical Analysis 23, p1230-1254, 1992.
    12. K. Yagasaki, Homoclinic tangles, phase locking, and chaos in a two-frequency perturbation of Duffing equation, Journal of Nonlinear Science 9, p131-148, 1999.
    13. K. Yagasaki, The method of Melnikov for perturbations of multi-degree-of-freedom Hamiltonian systems, Nonlinearity 12, p799-822, 1999.
    14. K. Yagasaki, Periodic and homoclinic motions in forced coupled oscillators, Nonlinear Dynamics 20, p319-359, 1999.
    15. K. Yagasaki, Horseshoe in two-degree-of-freedom Hamiltonian systems withsaddle-centers, Archive for Rational Mechanics and Analysis 154, p275-296, 2000.
    16. K. Yagasaki, Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of freedom Hamiltonian systems with saddle centers, Nonlinearity 16, p2003-2012, 2003.
    17. K. Yagasaki, Homoclinic and heteroclinic orbits to invariant tori in multi-degree- of-freedom Hamiltonian systems with saddle-centers, Nonlinearity 18, p1331-1350, 2005.
    18. K. Yagasaki and T. Wagenknecht, Diction of symmetric homoclinic orbits to saddle-center in reversible systems, Physica D 214, p169-181, 2006.
    19. Z. C. Feng and P. R. Sethna, Global bifurcations and chaos in parametrically forced systems with one-one resonance, Dynamics and Stability of Systems 5, p201-225, 1990.
    20. Z. C. Feng and P. R. Sethna, Global bifurcations in the motion of parametrically excited thin plate, Nonlinear Dynamics 4, p389-408, 1993.
    21. Z. C. Feng and S. Wiggins, On the existence of chaos in a parametrically forced mechanical systems with broken O(2) symmetry, Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 44, p201-248, 1993.
    22. Z. C. Feng and K. M. Liew, Global bifurcations in parametrically excited systems with zero-to-one internal resonance, Nonlinear Dynamics 21, p249-263, 2000.
    23. N. Malhotra and N. Sri Namachchivaya, Global bifurcations in externally excited two-degree-of-freedom nonlinear systems, Nonlinear Dynamics 8, p85-109, 1995.
    24. G. Kovacic and T. A. Wettergren, Homoclinic orbits in the dynamics of resonantly driven coupled pendula, Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 47, p221-264, 1996.
    25. N. Malhotra and N. Sri Namachchivaya, Chaotic dynamics of shallow arch structures under 1:2 resonance. Journal of Engineering Mechanics 6, p612-619, 1997.
    26. N. Malhotra and N. Sri Namachchivaya, Chaotic motion of shallow arch structures under 1:1 internal resonance, Journal of Engineering Mechanics 6, p620-627, 1997.
    27. G. Samaranayake, S. Samaranayake and A. K. Bajaj, Non-resonant and resonant chaotic dynamics in externally excited cyclic systems, Acta Mechanica 150, p139-160, 2001.
    28. W. Zhang, Global and chaotic dynamics for a parametrically excited thin plate, Journal of Sound and Vibration 239, p1013-1036, 2001.
    29. W. Zhang, Z. M. Liu and P. Yu, Global dynamics of a parametrically and externally excited thin plate, Nonlinear Dynamics 24, p245-268, 2001.
    30. W. Zhang and Y. Tang, Global dynamics of the cable under combined parametrical and external excitations, International Journal of Non-Linear Mechanics 37, p505-526, 2002.
    31. W. Zhang, F. X. Wang and J. W. Zu, Computation of normal forms for high dimensional nonlinear systems and application to non-planar nonlinear oscillations of a cantilever beam, Journal of Sound and Vibration 278, p949-974, 2004.
    32. W. Zhang, Chaotic motion and its control for nonlinear nonplanar oscillations of a parametrically excited cantilever beam, Chaos, Solitons and Fractals 26, p731-745, 2005.
    33. W. Zhang, F. X. Wang and M. H. Yao, Global bifurcation and chaotic dynamics in nonlinear nonplanar oscillations of a parametrically excited cantilever beam, Nonlinear Dynamics 40, p251-279, 2005.
    34. D. X. Cao and W. Zhang, Global bifurcations and chaotic dynamics for a string-beam coupled system, Chaos, Solitons and Fractals 37, p858-875, 2008.
    35. P. C. Xu and Z. J. Jing, Silnikov’s orbit in coupled Duffing’s systems, Chaos, Solitons and Fractals 11, p853-858, 2000.
    36. W. Li and P. C. Xu, The existence of Silnikov’s orbit in four-dimensional Duffing’s systems, Acta Mathematic Applicated Sinica, English Series 19, p677-690, 2003.
    37. B. L. Guo and H. L. Chen, Homoclinic orbit in a six-dimensional model of a perturbed higher-order nonlinear Schr?dinger equation, Communications in Nonlinear Science and Numerical Simulation 9, p431-441, 2004.
    38. M. H. Yeo and W. K. Lee, Evidences of global bifurcations of an imperfect circular plate, Journal of Sound and Vibration 293, p138-155, 2006.
    39. W. Q. Yu and F. Q. Chen, Global bifurcations of a simply supported rectangular metallic plate subjected to a transverse harmonic excitation, Nonlinear Dynamics 59, p129-141, 2010.
    40. R. Camassa, G. Kovacic and S. K. Tin, A Melnikov method for homoclinic orbits with many pulses, Archive for Rational Mechanics and Analysis 143, p105-193, 1998.
    41. W. Zhang and M. H. Yao, Theories of multi-pulse global bifurcations for high- dimensional systems and applications to cantilever beam, International Journal of Modern Physics B 22, p4089-4141, 2008.
    42. W. Zhang, J. H. Zhang and M. H. Yao, The extended Melnikov method for non-autonomous nonlinear dynamical systems and application to multi-pulse chaotic dynamics of a buckled thin plate, Nonlinear Analysis: Real World Applications, in press, 2009.
    43. W. Zhang, M. H. Yao and J. H. Zhang, Using the extended Melnikov method to study the multi-pulse global bifurcations and chaos of a cantilever beam, Journal of Sound and Vibration 319, p541-569, 2009.
    44. S. B. Li, W. Zhang and M. H. Yao, Global bifurcations and multipulse type chaotic dynamics in the interactions of two flexural modes of a cantilever beam, ASME 2009 International Mechanical Engineering Congress and Exposition, Nov.13-19, 2009, Lake Buena Vista, Florida, USA.
    45. W. Zhang, J. H. Zhang, M. H. Yao and Z. G. Yao, Multi-pulse chaotic dynamics of non-autonomous nonlinear system for a laminated composite piezoelectric rectangular plate, Acta Mechanica 211, p23-47, 2010.
    46. G. Haller and S. Wiggins, Orbits homoclinic to resonances: the Hamiltonian case, Physics D 66, p298-346, 1993.
    47. G. Haller and S. Wiggins, Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schr?dinger equation, Physica D 85, p311-47, 1995.
    48. G. Haller and S. Wiggins, Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Physica D 90, p319-365, 1996.
    49. G. Haller, Multi-dimensional homoclinic jumping and the discretized NLS equation, Communications in Mathematical Physics 193, p1-46, 1998.
    50. G. Haller, Homoclinic jumping in the perturbed nonlinear Schr?dinger equation, Communications on Pure and Applied Mathematics 52, p1-47, 1999.
    51. G. Haller, G. Menon and V. M. Rothos, Silnikov manifolds in coupled nonlinear Schr?dinger equations, Physics Letters A 263, p175-185, 1999.
    52. G. Haller, Chaos near resonance, New York: Springer-Verlag, 1999.
    53. N. Malhotra, N. Sri Namachchivaya and R. J. McDonald, Multipulse orbits in the motion of flexible spinning discs, Journal of Nonlinear Science 12, p1-26, 2002.
    54. M. H. Yao and W. Zhang, Multi-pulse Shilnikov orbits and chaotic dynamics for nonlinear nonplanar motion of a cantilever beam, International Journal of Bifurcation and Chaos 15, p3923-3952, 2005.
    55. M. H. Yao and W. Zhang, Multi-pulse homoclinic orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt, International Journal of Nonlinear Sciences and Numerical Simulation 6, p37-45, 2005.
    56. W. Zhang, M. H. Yao and L. Bai, A new multi-pulse chaotic motion for parametrically excited viscoelastic axially moving string, ASME 2005 International Design Engineering Technical Conference & Computers and Information in EngineeringConference, Sep.24-28, 2005, Long Beach, California, USA.
    57. W. Zhang, M. H. Yao, X. P. Zhan and L. Bai, Multi-pulse chaotic motions of a rotor-active magnetic bearing with time-varying stiffness, ASME 2005 International Design Engineering Technical Conference & Computers and Information in Engineering Conference, Sep.24-28, 2005, Long Beach, California, USA.
    58. W. Zhang and M. H. Yao, Multi-pulse orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt, Chaos, Solitons and Fractals 28, p42-66, 2006.
    59. M. H. Yao and W. Zhang, Shilnikov type multi-pulse orbits and chaotic dynamics of a parametrically and externally excited rectangular thin plate, International Journal of Bifurcation and Chaos 17, p851-875, 2007.
    60. W. Zhang, M. J. Gao, M. H. Yao and Z. G. Yao, Higher-dimensional chaotic dynamics of a composite laminated piezoelectric rectangular plate, Science in China Series G: Physics, Mechanics & Astronomy 52, p1989-2000, 2009.
    61. W. A. Coppel, Dichotomies in Stability Theory, Springer-Verlag, New York, 1978.
    62. K. J. Palmer, Exponential dichotomies and transversal homoclinic points, Journal of Differential Equations 55, p225-256, 1984.
    63. J. Gruendler, The existence of homoclinic orbits and the method of Melnikov for systems in R n, SIAM Journal on Mathematical Analysis 16, p907-931, 1985.
    64. F. Battelli and C. Lazzari, Exponential dichotomies, heteroclinic orbits and Melnikov functions, Journal of Differential Equations 86, p342-366, 1990.
    65. J. Gruendler, Homoclinic solutions for autonomous dynamical systems in arbitrary dimension, SIAM Journal on Mathematical Analysis 23, p702-721, 1992.
    66. J. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with non-autonomous perturbations, Journal of Differential Equations 122, p1-26, 1995.
    67. J. Gruendler, The existence of transverse homoclinic solutions for higher order equations, Journal of Differential Equations 130, p307-320, 1996.
    68. J. Gruendler, Homoclinic solutions and chaos in ordinary differential equations with singular perturbations, Transactions of American Mathematical society 350, p3797-3814, 1998.
    69. M. Feckan and J. R. Gruendler, Transversal bounded solutions in systems with normal and slow variables, Journal of Differential Equations 165, p123-142, 2000.
    70. M. Feckan and J. R. Gruendler, Bifurcations from homoclinic to periodic solutions in singular ordinary differential equations, Journal of Mathematical Analysis and - 149 -Applications 246, p245-264, 2000.
    71. M. Feckan and J. R. Gruendler, The existence of chaos for ordinary differential equations with a center manifold, Bulletin of the Belgian Mathematical Society 11, p77-94, 2004.
    72. M. Feckan and J. R. Gruendler, Transverse bounded solutions to saddle-centers in periodically perturbed ordinary differential equations, Nonlinear Analysis 67, p249 -269, 2007.
    73. M. Feckan and J. R. Gruendler, The existence of chaos in infinite dimensional non-resonant system, Dynamics of Partial Differential Equations 5, p185-209, 2008.
    74. J. Guckenheimer and P. Holmes, Nonlinear Oscillators, Dynamical Systems, and Bifurcations of Vector Fields, New York: Springer-Verlag, 1983.
    75. S. Wiggins, Introduction to Applied Nonlinear Dynamics Systems, New York: Springer-Verlag, 1990.
    76.张伟和胡海岩,非线性动力学理论及应用的新进展,科学出版社, 2009.
    77. P. Holmes and J. Marsden, A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam, Archive for Rational Mechanics and Analysis 76, p135-165, 1981.
    78. A. R. Bishop, K. Fesser and P. S. Lomdahl, Coherent spatial structure versus time chaos in a perturbed Sine-Gordon system, Physical Review Letters 50, p1095-1098, 1983.
    79. K. Nozaki and N. Bekki, Chaos in a perturbed nonlinear Schr?dinger equation, Physical Review Letters 50, p1226-1229, 1983.
    80. A. R. Bishop and P. S. Lomdahl, Nonlinear dynamics in driven, damped Sine-Gordon systems, Physica D: Nonlinear Phenomena 18, p54-66, 1986.
    81. A. R. Bishop, M. G. Forest, D. W. McLaughlin and E. A. Overman II, A quasi-periodic route to chaos in a near-integrable pde, Physica D: Nonlinear Phenomena 23, p293-328, 1986.
    82. K. Nozaki and N. Bekki, Low-dimensional chaos in a driven damped nonlinear Schr?dinger equation, Physica D: Nonlinear Phenomena 21, p381-393, 1986.
    83. Y. Li, Backlund transformations and homoclinic structures for the integral discretization of the NLS equation, Physics Letters A 163, p181-187, 1992.
    84. Y. Li and D. W. McLaughlin, Morse and Melnikov functions for NLS PDEs, Communications on Pure and Applied Mathematics 162, p175-214, 1994.
    85. B. L. Guo and Y. H. Wu, Global existence and nonexistence of solution of a forced nonlinear Schr?dinger equation, Journal of Mathematics Physics 36, p35-55, 1995.
    86. D.W. Mclaughlin and J. Shatah, Melnikov analysis for PDE’s, in Lectures in Applied Mathematics 31, p51-100, 1996.
    87. Y. Li, D. W. McLaughlin, J. Shatah and S. Wiggins, Persistent homoclinic orbits for a perturbed nonlinear Schr?dinger equation, Communications on Pure and Applied Mathematics 49, p1175-1255, 1996.
    88. Y. Li and D. W. McLaughlin, Homoclinic orbits and chaos in discretized perturbed NLS systems: part I. homoclinic orbits, Journal of Nonlinear Science 7, p211-269, 1997.
    89. D.W. Mclaughlin and J. Shatah, Homoclinic orbits for PDE’s, in Proceedings of Symposia in Applied Mathematics 54, p281-299, 1998.
    90. J. Shatah and C. C. Zeng, Homoclinic orbits for the perturbed Sine-Gordon equation, Communications on Pure and Applied Mathematics 53, p283-299, 1999.
    91. C. C. Zeng, Homoclinic orbits for a perturbed nonlinear Schr?dinger equation, Communications on Pure and Applied Mathematics 53, p1222-1283, 2000.
    92. B. L. Guo and H. L. Chen, Homoclinic orbits for a perturbed quintic-cubic NLS equation, Communication in Nonlinear Science and Numerical Simulation 6, p227-230, 2001.
    93. J. Shatah and C. C. Zeng, Orbits homoclinic to centre manifolds of conservative PDEs. Nonlinearity 16, p591-614, 2003.
    94. Y. Li, Persistent homoclinic orbits for nonlinear Schr?dinger equation under singular perturbations, Dynamics of Partial Differential Equations 1, p87-123, 2004.
    95. R. Teman, Infinite-dimensional dynamical systems in mechanics and physics, New York: Springer-Verlag, 1988.
    96.郭柏灵,高平和陈瀚林,近可积无穷维动力系统,国防工业出版社, 2004.
    97. N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana University Mathematics Journal 21, p193-225, 1971.
    98. N. Fenichel, Asymptotic stability with rate conditions, Indiana University Mathematics Journal 23, p1109-1137, 1974.
    99. N. Fenichel, Asymptotic stability with rate conditions II, Indiana University Mathematics Journal 26, p81-93, 1977.
    100. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations 31, p53-98, 1979.
    101. S. Wiggins and P. Holmes, Periodic orbits in slowly varying oscillators, SIAM Journal on Mathematical Analysis 18, p592-611, 1987.
    102. S. Wiggins and P. Holmes, Homoclinic orbits in slowly varying oscillators, SIAM Journal on Mathematical Analysis 18, p612-629, 1987.
    103. S. Wiggins and S. W. Shaw, Chaos and three-dimensional horseshoes in slowly varying oscillators, Journal of Applied Mechanics 55, p959-968.
    104. S. Wiggins, On the detection and dynamical consequences of orbits homoclinic to hyperbolic periodic orbits and normally hyperbolic invariant tori in a class of ordinary differential equations, SIAM Journal on Applied Mathematics 48, p262-285, 1988.
    105. S. L. Chen and S. W. Shaw, A fast-manifold approach to Melnikov functions for slowly varying oscillators, International Journal of Bifurcations and Chaos 6, p1575-1578, 1996.
    106. F. Lakrad and M. M. Charafi, Perturbation methods and the Melnikov functions for slowly varying oscillators, Chaos, Solitons and Fractals 25, p675-680, 2005.
    107. M. R. M. Crespo da Silva and C. C. Glynn, Nonlinear flexural-flexural-torsional dynamics of inextensional beams, Journal of Structural Mechanics 6, p437-448, 1978.
    108. M. R. M. Crespo da Silva and C. C. Glynn, Nonlinear flexural-flexural-torsional dynamics of inextensional beams, Journal of Structural Mechanics 6, p449-461, 1978.
    109. M. R. M. Crespo da Silva and C. C. Glynn, Nonlinear nonplanar resonant oscillations in fixed-free beams with support asymmmetry, International Journal of Solids and Structures 15, p209-219, 1979.
    110. C. C. Glynn and M. R. M. Crespo da Silva, Nonlinear equations of motion for assemblies of beam elements and discrete masses, University of Cincinnati, Engineering Science Department Report No. E. S, p76-111, 1976.
    111. M. R. M. Crespo da Silva and C. C. Glynn, Out-of-plane vibrations of a beam including nonlinear inertia and nonlinear curvature effects, International Journal of Non-linear Mechanics 13, p261-271, 1979.
    112. M. R. M. Crespo da Silva and C. L. Zaretzky, Nonlinear flexural-flexural torsional interactions in beams including the effect of torsional dynamics. I: primary resonance, Nonlinear Dynamics 5, p3-23, 1994.
    113. C. L. Zaretzky and M. R. M. Crespo da Silva, Nonlinear flexural-flexural torsional interactions in beams including the effect of torsional dynamics. II: combination resonance, Nonlinear Dynamics 5, p161-180, 1994.
    114. A. H. Nayfeh and P. F. Pai, Nonlinear nonplanar parametric responses of an inextensional beam, International Journal of Non-linear Mechanics 24, p139-158,1989.
    115. P. F. Pai and A. H. Nayfeh, Nonlinear nonplanar oscillations of a cantilever beam under lateral base excitations, International Journal of Non-linear Mechanics 24, p455-474, 1990.
    116. T. J. Anderson, A. H. Nayfeh and B. Balachandran, Coupling between high-frequency modes and a low-frequency mode: theory and experiment, Nonlinear Dynamics 11, p17-36, 1996.
    117. H. N. Arafat, A. H. Nayfeh and C. M. Chin, Nonlinear nonplanar dynamics of parametrically excited cantilever beams, Nonlinear Dynamics 15, p31-61, 1998.
    118. P. Malatkar and A. H. Nayfeh, On the transfer of energy between widely spaced modes in structures, Nonlinear Dynamics 31, p225-242, 2003.
    119.姚明辉,多自由度非线性机械系统的全局分叉和混沌动力学研究,北京工业大学工学博士学位论文, 2006.
    120. M. N. Hamdan, A. A. Al-Qaisia and B. O. Al-Bedoor, Comparison of analytical techniques for nonlinear vibrations of a parametrically excited cantilever beam, International Journal of Mechanical Sciences 43, p1521-1542, 2001.
    121. S. A. Q. Siddiqui, M. F. Golnaraghi and G. R. Heppler, Large free vibrations of a beam carrying a moving mass, International Journal of Non-linear Mechanics 38, p1481-1493, 2003.
    122. W. K. Lee, K. S. Lee and C. H. Pak, Stability analysis for nonplanar free vibrations of a cantilever beam by using nonlinear normal modes, Nonlinear Dynamics 52, p217-225, 2008.
    123. A. Banerjee, B. Bhattacharya and A. K. Mallik, Large deflection of cantilever beams with geometric nonlinearity: analytical and numerical approaches, International Journal of Non-Linear Mechanics 43, p366-376, 2008.
    124. S. N. Mahmoodi, N. Jalili and S. E. Khadem, An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams, Journal of Sound and Vibration 311, p1409-1419, 2008.
    125.王凤霞,柔性悬臂梁的非线性振动与全局动力学的研究,北京工业大学工学硕士学位论文, 2002.
    126. A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, Wiley-Interscience, New York, 1979.
    127. J. Hadian and A. H. Nayfeh, Modal interaction in circular plates, Journal of Sound and Vibration 142, p279-292, 1990.
    128. T. A. Nayfeh and A. F. Vakakis, Subharmonic traveling waves in a geometricallynonlinear circular plate, International Journal of Non-linear Mechanics 29, p233-245, 1994.
    129. X. L. Yang and P. R. Sethna, Local and global bifurcations in parametrically excited vibrations nearly square plates, International Journal of Non-linear Mechanics 26 p199-220, 1990.
    130. A. Abe, Y. Kobayashi and G. Yamada, Two-mode response of simply supported, rectangular laminated plates, International Journal of Non-linear Mechanics 33, p675-690, 1998.
    131. J. Awrejcewicz, V. A. Krysko and A. V. Krysko, Spatio-temporal chaos and solitons exhibited by von kármán model, International Journal of Bifurcation and Chaos 12, p1465-1513, 2002.
    132. J. Awrejcewicz and A. V. Krysko, Analysis of complex parametric vibrations of plates and shells using Bubnov-Galerkin approach, Archive of Applied Mechanics 73, p467-532, 2003.
    133. J. Awrejcewicz, V. A. Krysko and G. G. Narkaitis, Bifurcations of a thin plate-strip excited transversally and axially, Nonlinear Dynamics 32, p187-209, 2003.
    134. Q. Han, L. Dai, and M. Dong, Bifurcation and chaotic motion of an elastic plate of large deflection under parametric excitation, International Journal of Bifurcation and Chaos 15, p2849-2863, 2005.
    135. S. N. Akour and J. F. Nayfeh, Nonlinear dynamics of polar-orthotropic circular plates, International Journal of Structural Stablilty and Dynamics 6, p253-268, 2006.
    136. C. Y. Chia, Non-linear Analysis of Plate, McMraw-Hill Inc. 1980.
    137. J. K. Hale, Ordinary Differential Equations, Springer-Verlag, New York, 1991.
    138. M. Yamanoushi, M. Koizumi, T. Hiraii and I. Shiota, Proceedings of the First International Symposium on Functionally Gradient Materials, Sendai, Japan, 1990.
    139. M. Koizumi, The concept of FGM, Ceramic Transactions, Functionally Gradient Materials 34, p3-10, 1993.
    140. G. N. Parveen and J. N. Reddy, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, International Journal of Solids and Structures 35, p4457-4476, 1998.
    141. Z. Q. Cheng and R. C. Batra, Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates, Journal of Sound and Vibration 229, p879-895, 2000.
    142. T. Y. Ng, K. Y. Lam and K. M. Liew, Effect of FGM materials on the parametric resonance of plate structures, Computer Methods in Applied Mechanics andEngineering 19, p953-962, 2000.
    143. J. Yang and H. S. Shen, Dynamic response of initially stressed functionally graded rectangular thin plates, Composite Structures 54, p497-508, 2001.
    144. J. Yang and H. S. Shen, Vibration characteristics and transient response of shear deformable functionally graded plates in thermal environment, Journal of Sound and Vibration 255, p579-602, 2002.
    145. J. Yang and H. S. Shen, Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels, Journal of Sound and Vibration 261, p871-893, 2003.
    146. J. Yang, Skitipomchai and K. M. Liew, Large amplitude vibration of thermo- electro-mechanically stressed FGM laminated plates, Computer Methods in Applied Mechanics and Engineering 192, p3861-3885, 2003.
    147. L. F. Qian, R. C. Batra and L. M. Chen, Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method, Composites Part B 35, p685-697, 2004.
    148. S. V. Senthil and R. C. Batra, Three-dimensional exact solution for the vibration of functionally graded rectangular plates, Journal of Sound and Vibration 272, p703-730, 2004.
    149. X. L. Huang and H. S. Shen, Nonlinear vibration and dynamic response of functionally graded plates in thermal environments, International Journal of Solids and Structures 41, p2403-2407, 2004.
    150. C. S. Chen, Nonlinear vibration of a shear deformable functionally graded plate, Composite Structures 68, p295-302, 2005.
    151. M. Ye, J. Lu, W. Zhang, and Q. Ding, Local and global nonlinear dynamics of a parametrically excited rectangular symmetric cross-ply laminated composite plate, Chaos, Solitons and Fractals 26, p195-213, 2005.
    152. M. Ye, Y. H. Sun, W. Zhang, X. P. Zhan and Q. Ding, Nonlinear oscillations and chaotic dynamics of an anti-symmetric cross-ply laminated composite rectangular thin plate under parametric excitation, Journal of Sound and Vibration 287, p723-758, 2005.
    153. W. Zhang, C. Z. Song and M. Ye, Further studies on nonlinear oscillations and chaos of a rectangular symmetric cross-by laminated plate under parametric excitation, International Journal of Bifurcation and Chaos 16, p325-347, 2006.
    154. Y. X. Hao, L. H. Chen, W. Zhang and J. G. Lei, Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate, Journal of Sound and Vibration 312, p862-892, 2008.
    155.郝育新,功能梯度材料板壳结构的非线性动力学研究,北京工业大学工学博士学位论文, 2008.
    156. W. Zhang, J. Yang and Y. X. Hao, Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory, Nonlinear Dynamics 59, p619-660, 2010.
    157. J. Yang, Y. X. Hao, W. Zhang and S. Kitipornchai, Nonlinear dynamic response of a functionally graded plate with a through-width surface crack, Nonlinear Dynamics 59, p207-219, 2010.
    158. S. C. Pradhana, C. T. Loya, K. Y. Lama and J. N. Reddy, Vibration characteristics of functionally graded cylindrical shells under various boundary conditions, Applied Acoustics 61, p111-129, 2000.
    159. Y. S. Touloukian, Thermophysical properties of high temperature solid materials, Mac Millian, New York, 1967.
    160. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, New York, 2004.
    161. J. N. Reddy, A simple higher-order theory for laminated plates, ASME Journal of Applied Mechanics 51, p745-752, 1984.
    162. J. N. Reddy, A refined nonlinear theory of plates with transverse shear deformation, International Journal of Solids and Structures 20, p881-896, 1984.
    163. W. Aliaga and J. N. Reddy, Nonlinear thermoelastic response of functionally graded plates using the third-order plate theory, International Journal of Computational Methods in Engineering Science and Mechanics 5, p753-780, 2004.
    164. A. Nosir and J. N. Reddy, A study of non-linear dynamic equations of higher-order deformation plate theories, International Journal of Non-Linear Mechanics 26, p233-249, 1991.
    165. J. C. Nissen, K. Popp and B. Schmalhorst, Optimization of a nonlinear dynamic vibration absorber, Journal of Sound and Vibration 99, p149-154, 1985.
    166. W. Shaw and S. Wiggins, Chaotic motions of a torsional vibration absorber, ASME Journal of Applied Mechanics 55, p952-958, 1988.
    167. J. S. Shaw, W. Shaw and A. G. Haddow, On the response of the nonlinear vibrationabsorber, International Journal of Non-linear Mechanics 24, p281-293,1989.
    168. W. Zhang, Chaos of nonlinear vibratory system with single well potential, Proceedings of ASME 1995 Design Engineering Technical Conference, DE-Vol.84-1, p841-846, 1995.
    169. S. S. Oueini, A. H. Nayfeh and J. R. Pratt, A nonlinear vibration absorber for flexible structures, Nonlinear Dynamics 15, p259-282, 1998.
    170. S. S. Oueini, C. M. Chin and A. H. Nayfeh, Dynamics of a cubic nonlinear vibration absorber, Nonlinear Dynamics 20, p283-295, 1999.
    171. W. Zhang and J. Li, Global analysis for a nonlinear vibration absorber with fast and slow modes, International Journal of Bifurcation and Chaos 11, p2179-2194, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700