六维非线性系统的复杂动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性科学是自上世纪60年代以来,在各门以非线性为特征的分支学科的基础上逐步发展起来的一门研究非线性共性现象的基础学科,被誉为上世纪自然科学的“第三次大革命”。非线性动力学系统理论把丰富的工程和物理内容与近代数学的抽象方法有机地结合在一起,是古典力学的现代数学表示形式。工程非线性系统中往往存在混沌运动,一些被认为是安全的实际工程系统中存在着平衡稳态的混沌运动、混沌运动的瞬变过程以及不稳定混沌运动的可能性。
     机械系统中许多问题的数学模型和动力学方程往往都可以用高维非线性系统来描述。对于高维非线性动力学系统的研究来说,不仅理论方法上有困难,几何描述和数值计算都有困难,因此,其系统动力学特性的研究难度比低维非线性动力学系统要大得多。目前,国际和国内关于高维非线性系统全局分叉和混沌动力学的理论方法研究的还不是很多,仍处于发展阶段。如何全面系统地了解和掌握高维非线性系统的全局分叉和混沌运动学特性,是分析高维非线性系统动力学特性的难题,也是国际非线性动力学领域的前沿研究课题。
     全局摄动方法和能量-相位法自从20世纪90年代被提出来以后,主要用于研究四维非线性系统的全局分叉和单脉冲及多脉冲混沌动力学。国际和国内在四维非线性系统的全局分叉和单脉冲及多脉冲混沌动力学的研究方面已经取得了一些成果,而对于六维非线性系统的全局分叉和单脉冲及多脉冲混沌动力学的研究还不多见。本文以四维非线性系统全局分叉和混沌动力学的研究结果为基础,在六维相空间中改进和推广了全局摄动方法和能量-相位法,首次利用这两种解析方法研究了具有实际工程应用背景的几个六维非线性系统,探索了这些系统中所存在的全局分叉和单脉冲及多脉冲混沌动力学特性,利用数值方法进行模拟验证了理论分析的结果。
     本文主要的研究内容包括以下几个方面。
     1.研究了1:2:3内共振情况下六维粘弹性传动带系统的同宿分叉现象和混沌动力学
     我们首先利用规范形理论和内积法对粘弹性传动带系统的六维平均方程进行化简,得到与原系统拓扑等价的较为简单的规范形。在此基础上,应用全局摄动方法对六维非线性系统进行摄动分析。研究结果发现,在小扰动情况下,系统存在连接同宿轨道的Shilnikov型单脉冲混沌运动。我们应用扩展的能量-相位法同样分析了这个六维非线性系统的复杂动力学特性,研究结果发现系统存在着从不变流形的不动点出发,经过n个跳跃以后,落点仍然位于该不动点收敛域内的Shilnikov型多脉冲轨道。数值模拟结果表明系统出现具有跳跃轨道的混沌运动,激励f 1和f 2对粘弹性传动带系统的非线性动力学行为具有显著的影响。
     2.研究了1:3:3内共振情况下的复合材料层合矩形板的混沌动力学
     应用规范形理论对1:3:3内共振情况下复合材料层合矩形板的六维平均方程进行化简,得到较为简单的规范形。在此基础上,应用全局摄动方法研究了这个系统的同宿分叉和Shilnikov型单脉冲混沌运动;应用能量-相位法分析了系统的异宿分叉和Shilnikov型多脉冲轨道。应用数值模拟进一步验证了理论分析结果的正确性,数值结果表明系统存在着单脉冲和多脉冲混沌运动,同时,我们还发现在一定的参数条件下,激励f 3对系统的非线性动力学行为有显著的影响,系统响应的变化过程呈现为混沌→周期→混沌→周期。
     3.利用能量-相位法对1:2:4内共振情况下压电复合材料层合矩形板的混沌动力学进行研究
     应用规范形理论对1:2:4内共振情况下压电复合材料层合矩形板的六维平均方程进行化简,得到与原系统拓扑等价的较为简单的规范形。应用扩展的能量-相位法研究了这个系统的复杂动力学特性。理论研究结果表明,在一定的条件下,系统可以发生同宿分叉,在小扰动情况下,系统存在着Shilnikov型多脉冲轨道和混沌运动。通过数值模拟研究,我们发现当取某些参数时,压电复合材料层合矩形板可以出现具有跳跃轨道的混沌运动,进一步验证了理论分析结果的正确性。
Since the 1960s, the basic research of nonlinear phenomenon was successfully developed from different branches in nonlinear sciences. Henceforth, it is regarded as“The Third Revolution”in natural sciences in the 20th century. The theories of nonlinear science are established from the multidisciplinary subjects in engineering, physics and mathematics. There frequently exist the chaotic motions in nonlinear dynamical systems. In reality, it is possible to find the steady state response, transient process and instable state of chaotic motions in practical problems.
     In engineering problems, the mathematical models and its dynamical equations can be governed by the high-dimensional nonlinear systems. Contrary to the low-dimensional nonlinear systems, the theory, geometric description and numerical simulation of high-dimensional ones are much more sophisticated. Heretofore, the analytical methods are often unavailable for studying the global bifurcation and chaotic dynamics of high-dimensional nonlinear systems. The development of theories and the provision of systematic applications to many engineering problems are very appealing and challenging. Hence, it is important to provide an all-embracing understanding of high-dimensional nonlinear systems, including the global bifurcation and the chaotic dynamics. It is a research forefront in nonlinear science as well.
     The Melnikov method and the energy-phase method are mainly used to probe the global bifurcation and chaotic dynamics of four-dimensional nonlinear systems. There have been numerous studies on the four-dimensional nonlinear system. In this dissertation, the global perturbation and energy-phase methods are improved to study the global bifurcation and chaotic dynamics of six-dimensional nonlinear mechanical systems. Numerical simulation is also given to verify the analytical solutions. The main research scopes of this dissertation are categorized as follows.
     1. The chaotic dynamics and jumping orbits of the six-dimensional nonlinear system are investigated for the first time, which represents the averaged equation of an axially moving viscoelastic belt in the case of 1:2:3 internal resonance.
     To simplify the six-dimensional averaged equation to a simpler normal form with the same topological equivalence, the theory of normal form and the method of the inner product are adopted. The global perturbation method is employed to analyze the existence of the homoclinic bifurcation and the single-pulse Shilnikov orbits for the six-dimensional nonlinear system. Using the energy-phase method, it is found that the system contains the multi-pulses jumping. The takeoff point is a fixed point in the invariant manifold and the landing point lies in the domain of the attraction of the fixed point. From the numerical results, the chaotic motions and jumping phenomena of orbits in the nonlinear system are demonstrated. Besides, it is found that the excitations f 1 and f 2 have significant effects on the nonlinear dynamical behavior of the belt.
     2. The dynamical characteristics of the six-dimensional nonlinear system are revealed for the first time, which is the nonlinear averaged equation of the composite laminated plate in the case of 1:2:3 internal resonances.
     First, the theory of normal form is used to simplify the six-dimensional averaged equation to a simpler normal form. Then, the global perturbation method is also employed to study the homorclinic bifurcation and the single-pulse Shilnikov orbits for the nonlinear system with small perturbation. in addition, The energy-phase method is extended to study the heteroclinic bifurcation and multi-pulse Shilnikov type orbits of the nonlinear system. From the numerical results, the chaotic motions and jumping phenomena of orbits for the composite laminated thin plate are discovered under certain conditions. It is also shown that the excitation f 3 performs significant effect on the nonlinear dynamical behaviors of the composite laminated thin plate. The motions of the composite laminated thin plate are changed to the particular sequence by increasing the forcing excitation f 3 as: the chaotic motion→the periodic motion→the chaotic motion→the periodic motion.
     3. By combining the theory of normal form and the energy-phase method, the multi-pulse and dynamic characteristics of the six-dimensional nonlinear system are studied for the first time. This high-dimensional system is used to describe the laminated composite piezoelectric rectangular plate in the case of 1:2:4 internal resonances.
     The theory of normal form is used to simplify the six-dimensional averaged equation to a simpler normal form with the same topological equivalence. The energy-phase method is extended to study the homorclinic bifurcation and the multi-pulse Shilnikov orbits for the nonlinear system with small perturbation. From the numerical results, it is illustrated that there exist the chaotic motions and jumping phenomena of orbits in the laminated composite piezoelectric rectangular plate under certain conditions.
引文
1. S. Wiggins, Introduction to Applied Nonlinear Dynamics Systems, Springer-Verlag, New York, 1990.
    2. J. Guckenheimer and P. J. Holmes, Nonlinear Oscillators, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
    3. P. J. Holmes and J. E, Marsden. Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems, Journal of Mathematical Physics 23, p669-675, 1982.
    4. S. Wiggins, Global bifurcations and chaos analytical methods, Springer-Verlag, New York, 1988.
    5. G. Kovacic and S. Wiggins, Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation, Physica D 57, p185-225, 1992.
    6. G. Kovacic, Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems, Journal of Dynamics and Differential Equations 5, p559-597, 1993.
    7. G. Kovacic, Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipative systems, SIMA Journal of Mathematical Analysis 26, p1611-1643, 1995.
    8. G. Kovacic, Hamiltonian dynamics of orbits homoclinic to a resonance band, Physics Letters A 167, p137-142, 1992.
    9. G. Kovacic, Dissipative dynamics of orbits homoclinic to a resonance band, Physics Letters A 167, p143-150, 1992.
    10. M. Rudnev and S. Wiggins, Existence of exponentially small separatrix splittings and homoclinic connections between whiskered tori in weakly hyperbolic near-integrable Hamiltonian systems, Physica D 114, p3-80, 1998.
    11. K. Yagasaki, Periodic and homoclinic motions in forced, coupled oscillators, Nonlinear Dynamics 20, p319-359, 1999.
    12. K. Yagasaki, The method of Melnikov for perturbations of multi-degree-of-degree Hamiltonian systems, Nonlinearity, 12, p799-822, 1999.
    13. K. Yagasaki, Codimension-two bifurcations in a pendulum with feedback control, International Journal of Nonlinear Mechanic 34, p983-1002, 1999.
    14. K. Yagasaki, Horseshoe in two-degree-of-freedom Hamiltonian systems with saddle-centers, Archive for Rational Mechanics and Analysis 154, p275-296, 2000.
    15. K. Yagasaki, Homoclinic and heteroclinic orbits to invariant tori in multi- degree- of-freedom Hamiltonian systems with saddle-centers, Nonlinearity 18, p1331-1350, 2005.
    16. K. Yagasaki, Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of freedom Hamiltonian systems with saddle centers, Nonlinearity 16, p2003-2012, 2003.
    17. K. Yagasaki, Chaotic dynamics of quasi-periodically forced oscillators detected by Melnikov method, SIAM Journal of Mathematical Analysis 23, p1230-1254, 1992.
    18. K. Yagasaki, Homoclinic tangles, phase locking, and chaos in a two-frequency perturbation of Duffing equation, Journal of Nonlinear Science 9, p131-148, 1999.
    19. K. Yagasaki and T. Wagenknecht, Diction of symmetric homoclinic orbits to saddle-center in reversible systems, Physica D 214, p169-181, 2006.
    20. P. Veerman and P. Holmes, The existence of arbitrarily many distinct periodic orbits in a two degree of freedom Hamiltonian system, Physica D 14, p177-192, 1985.
    21. P. Veerman and P. Holmes, Resonance bands in a two degree of freedom Hamiltonian system, Physica D 2, p413-422, 1986.
    22. Z. C. Feng and S. Wiggins, On the existence of chaos in a class of two-degree-of- freedom, damped, strongly parametrically forced mechanical systems with brokenΟ(2)symmetry, Zeritschrift for Angewandte Mathematic and Physic 44, p202-248, 1993.
    23. R. Camassa, On the geometry of an atmospheric slow manifold, Physica D 84, p357-397, 1995.
    24. Siu-Kei Tin, Transversality of double-pulse homoclinic orbits in the inviscid Lorenz-Krishnamurthy system, Physica D 83, p383-408, 1995.
    25. S. Balasuriya, C. K. R. T. Jones and B. Sandstede, Viscous perturbations of vorticity-conserving flows and separatrix splitting, Nonlinearity 11, p47-77, 1998.
    26. G. Hek, A. Doelman and P. Holmes, Homoclinic saddle-node bifurcations and sub-shifts in a three-dimensional flow, Archive for Rational Mechanics and Analysis 145, p291-329, 1998.
    27. Z. C. Feng and K. M. Liew, Global bifurcations in parametrically excited systems with zero-to-one internal resonance, Nonlinear Dynamics 21, p249-263, 2000.
    28. B. Sandstede, S. Balasuriya, C. K. R. T. Jones and P. Miller, Melnikov theory for finite-time vector fields, Nonlinearity 13, p1357-1377, 2000.
    29. L. Nana, T. C. Kofane and E. Kaptouom, Horseshoe-shaped maps in chaotic dynamics of long Josephson junction driven by bi-harmonic signals, Chaos, Solitons and Fractals 11, p2259-2271, 2000.
    30. M. Wechselberger, Extending Melnikov theory to invariant manifolds on non-compact domains, Dynamical systems 17, p215-233, 2002.
    31. R. H. Goodman, P. Holmes and M. I. Weinstein, Interaction of Sine-Gordon kinks with defects: phase space transport in a two-mode model, Physica D 161, p21-44, 2002.
    32. V. Rottschafer and T. J. Kaper, Geometric theory for multi-bump, self-similar, blowup solutions of the cubic nonlinear Schr?dinger equation, Nonlinearity 16, p929-961, 2003.
    33. O. Koltsova, L. Lerman, A. Delshams and P. Gutierrez, Homoclinic orbits to invariant tori near a homoclinic orbit to center-center-saddle equilibrium, Physica D 201, p268-290, 2005.
    34. J. Shatah and C. C. Zeng, Homoclinic orbits for the perturbed Sine-Gordon equation, Communications on Pure and Applied Mathematics LIII, p0283-0299, 2000.
    35. C. C. Zeng, Homoclinic orbits for a perturbed nonlinear Schr?dinger equation, Communications on Pure and Applied Mathematics LIII, p1222-1283, 2000.
    36. J. Shatah and C. C. Zeng, Orbits homoclinic to centre manifolds of conservative PDEs, Nonlinearity 16, p591-614, 2003.
    37. D. D. Holm, G. Kovacic and T. A. Wettergren, Near-integrability and chaos in a resonant-cavity laser model, Physics Letters A 200, p299-307, 1995.
    38. A. Aceves, D. D. Holm, G. Kovacic and I. Timofeyev, Homoclinic orbits and chaos in a second-harmonic generating optical cavity, Physics Letters A 233, p203-208, 1997.
    39. C. S. Trevino and T. J. Kaper, Higher-order Melnikov theory for adiabatic systems, Journal of Mathematical Physics 37, p6220-6249, 1996.
    40. M. L. Frankel, G.. Kovacic, V. Roytburd and I. Timofeyev, Finite-dimensional dynamical system modeling thermal instabilities, Physica D 137, p295-315, 2000.
    41. N. Malhotra and N. Sri Namachchivaya, Chaotic dynamics of shallow arch structures under 1:2 resonance, Journal of Engineering Mechanics 6, p612-619, 1997.
    42. N. Malhotra and N. Sri Namachchivaya, Chaotic motion of shallow arch structures under 1:1 internal resonance, Journal of Engineering Mechanics 6, p620-627, 1997.
    43. P. C. Xu and Z. J. Jing, Shilnikov’s orbit in coupled Duffing’s systems, Chaos, Solitons and Fractals 11, p853-858, 2000.
    44. W. Li and P. C. Xu, The existence of Shilnikov’s orbit in four-dimensional Duffing’ssystems, Acta Mathematic Applicated Sinica, English Series 19, p677-690, 2003.
    45. W. Zhang, Global and chaotic dynamics for a parametrically excited thin plate, Journal of Sound and Vibration 239, p1013-1036, 2001.
    46. W. Zhang and Y. Tang, Global dynamics of the cable under combined parametrical and external excitations. International Journal of Non-Linear Mechanics 37, p505-526, 2002.
    47. B. L. Guo and H. L. Chen, Homoclinic orbit in a six-dimensional model of a perturbed higher-order nonlinear Schr?dinger equation, Communications in Nonlinear Science and Numerical Simulation 9, p431-441, 2004.
    48. W. Zhang, F. X. Wang and M. H. Yao, Global bifurcations and chaotic dynamics in nonlinear non-planar oscillations of a parametrically excited cantilever beam, Nonlinear Dynamics 40, p251-279, 2005.
    49.王凤霞,柔性悬臂梁的非线性振动与全局动力学的研究,北京工业大学工学硕士学位论文, 2002.
    50. Z. J. Jing, Z. Y. Yang and T. Jiang, Complex dynamics in Duffing-van der Pol equation, Chaos, Solitons and Fractals 27, p722-747, 2006.
    51. D. X. Cao and W. Zhang, Global bifurcations and chaotic dynamics for a string-beam coupled system, Chaos, Solitons and Fractals 37, p858-875, 2008.
    52. T. J. Kaper and G. Kovacic, Multi-bump orbits homoclinic to resonance bands, Transactions of the American mathematical society 348, p3835-3887, 1996.
    53. R. Camassa, G. Kovacic and S. K. Tin, A Melnikov method for homoclinic orbits with many pulses, Archive for Rational Mechanics and Analysis 143, p105-193, 1998.
    54.姚明辉,张伟,用广义Melnikov方法分析柔性悬臂梁非平面运动的多脉冲轨道,中国力学学会学术大会,北京, 1565, 2005.
    55. M. H. Yao, W. Zhang and J. F. Hong, Many pulses heteroclinic orbits with a Melnikov method and chaotic dynamics of a parametrically and externally excited thin plate, The Second International Conference on Dynamics, Vibration and Control, 2006.
    56. W. Zhang and M. H. Yao, Many pulses homoclinic orbits and chaotic dynamics for nonlinear nonplanar motion of a cantilever beam, the IUTAM Symposium onDynamics and Control of Nonlinear Systems with Uncertainty, Sep.18-22, 2006, Nanjing, China.
    57. G. Haller and S. Wiggins, Orbits homoclinic to resonances: the Hamiltonian case, Physica D 66, p298-346, 1993.
    58. G. Haller and S. Wiggins, Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schr?dinger equation, Physica D 85,p311-347, 1995.
    59. G. Haller and S. Wiggins, Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Physica D 90, p319-365, 1996.
    60. G. Haller, Multi-dimensional homoclinic jumping and the discredited NLS equation, Communications in Mathematical Physics 193, p1-46, 1998.
    61. G. Haller, Homoclinic jumping in the perturbed nonlinear Schr?dinger equation, Communications on Pure and Applied Mathematics LII, p1-47, 1999.
    62. G. Haller, G. Menon and V. M. Rothos, Shilnikov manifolds in coupled nonlinear Schr?dinger equations, Physics Letters A 263, p175-185, 1999.
    63. G. Haller, Chaos near resonance, Springer-Verlag, New York, 1999.
    64. N. Malhotra, N. Sri Namachchivaya and R. J. McDonald, Multi-pulse orbits in the motion of flexible spinning discs, Journal of Nonlinear Science 12, p1-26, 2002.
    65. M. H. Yao and W. Zhang, Multi-pulse shilnikov orbits and chaotic dynamics in nonlinear non-planar motion of a cantilever beam, International Journal of Bifurcation and Chaos 15, p3923-3952, 2005.
    66. M. H. Yao and W. Zhang, Multi-pulse homoclinic orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt, International Journal of Nonlinear Sciences and Numerical Simulation 6, p37-45, 2005.
    67.张伟,姚明辉,两自由度机械系统的Shilnikov型多脉冲轨道,中国力学学会学术大会,北京, p90, 2005.
    68. W. Zhang, M. H. Yao and L. Bai, A new multi-pulse chaotic motion for parametrically excited viscoelastic axially moving string, ASME 2005 International Design Engineering Technical Conference & Computers and Information in Engineering Conference, Sep.24-28, 2005, Long Beach, California, USA.
    69. W. Zhang and M. H. Yao, Multi-pulse orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt, Chaos, Solitons and Fractals 28, p42-66, 2006.
    70. M. H. Yao and W. Zhang, Multi-pulse Shilnikov orbits and chaotic dynamics of a parametrically and externally excited thin plate, International Journal of Bifurcations and Chaos 17, p1-25, 2007.
    71. W. Zhang and M. H. Yao, Theories of multi pulse global bifurcations for high dimensional systems and applications to cantilever beam, International Journal of Modern Physics B 22, p4089-4141, 2008.
    72. R. H. Rand and P. J. Holmes, Bifurcation of periodic motions in two weakly coupled Van der Pol oscillators, International Journal of Non-linear Mechanics 15, p387-399,1980.
    73. P. J. Holmes, Center manifolds normal forms and bifurcations of vector fields with application to coupling between periodic and steady motions, Physica D 2, p39-48, 1981.
    74. P. R. Sethna and S. W. Shaw, On codimension-three bifurcations in the motion of articulated tubes conveying a fluid, Physica D 24, p305-327, 1987.
    75. R. Grauer, Nonlinear interactions of tearing modes in the vicinity of a bifurcation point of codimension two, Physica D 35, p107-126, 1989.
    76. C. Baesens, J. Guckenheimer, S. Kim and R. S. MacKay, Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos, Physica D 49, p387-475, 1991.
    77. S. A. Campbell and P. Holmes, Heteroclinic cycles and modulated traveling waves in a system with D4 symmetry, Physica D 59, p52-78, 1992.
    78. P. Hirschberg and E. Knobloch, Shilnikov-Hopf bifurcation, Physica D 62, p202-216, 1993.
    79. C. Chicone, Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators, Journal of Differential Equations 112, p407-447, 1994.
    80. N. Malhotra and N. Sri, Global dynamics of parametrically excited nonlinear reversible systems with non-semisimple 1:1 resonance, Physica D 89, p43-70, 1995.
    81. J. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with non-autonomous perturbations, Journal of Differential Equations 122, p1-26, 1995
    82. B. L. Guo and Y. H. Wu, Global existence and nonexistence of solution of a forced nonlinear Schr?dinger equation, Journal of Mathematics Physics 36, p35-55, 1995.
    83. B. L. Guo and H. L. Chen, Homoclinic orbits for a perturbed quintic-cubic NLS equation, Communication in Nonlinear Science and Numerical Simulation 6, p227-230, 2001.
    84. V. G. Leblanc and W. F. Langford, Classification and unfoldings of 1:2 resonant Hopf bifurcation, Archive for Rational Mechanics and Analysis 136, p305-357, 1996.
    85. P. Holmes, J. Jenkins and N. E. Leonard, Dynamics of the Kirchhoff equations I: Coincident centers of gravity and buoyancy, Physica D 118, p311-342, 1998.
    86. J. Porter and E. Knobloch, New type of complex dynamics in the 1:2 spatial resonance, Physica D 159, p125-154, 2001.
    87. L. H. Anna and R. K. Vered, Parabolic resonances in 3 degree of freedom near integrable Hamiltonian systems, Physica D 164, p213-250, 2002.
    88.徐鉴,陆启韶,黄克累,两自由度非对称三次系统非线性模态的奇异性质,应用数学和力学22, p869-878, 2001.
    89. G. Hek, Fronts and pulses in a class of reaction-diffusion equations: a geometric singular perturbation approach, Nonlinearity 14, p35-72, 2001.
    90. T. Uzer, C. Jaffe, J. Palacian, P. Yanguas and S. Wiggins, The geometry of reaction dynamics, Nonlinearity 15, p957-992, 2002.
    91. K. Yagasaki, Detection of homoclinic bifurcation in resonance zones of forced oscillators, Nonlinear Dynamics 28, p285-307, 2002.
    92. K. Yagasaki, Melnikov’s method and codimension-two bifurcations in forced oscillators, Journal of Differential Equations 185, p1-24, 2002.
    93. R. V. Abramov, G. Kovacic and A. J. Majda, Hamiltonian structure and statistically relevant conserved quantities for the truncated Burgers-Hopf equation, Communications on Pure and Applied Mathematics LVI, p1-46, 2003.
    94. C. Chandre, S. Wiggins and T. Uzer, Time-frequency analysis of chaotic systems, Physica D 181, p171-196, 2003.
    95. A. R. Champenys and J. Hartenich, Cascade of homoclinic orbits to a saddle-centre for reversible and perturbed Hamiltonian systems, Dynamics and Stability of Systems 15, p231-252, 2003.
    96. T. Bakri, R. Nabergoj, A. Tondl and F. Verhulst, Parametric excitation in nonlinear dynamics, International Journal of Nonlinear Mechanics 39, p311-329, 2004.
    97. O. D. Feo, Qualitative resonance of shilnikov-like strange attractors, part I: experimental evidence, International Journal of Bifurcation and Chaos 14, p873-891, 2004.
    98. O. D. Feo, Qualitative resonance of shilnikov-like strange attractors, part II: mathematical analysis, International Journal of Bifurcation and Chaos 14, p893-912, 2004.
    99. K. Toshihiro, Chaos in a four-dimensional system consisting of fundamental lag elements and the relation to the system eigenvalues, Chaos, Solitons and Fractals 23, p1413-1428, 2005.
    100. W. Zhang and X. P. Zhan, Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying, Nonlinear Dynamics 41, p331-359, 2005.
    101. W. Zhang, Chaotic motion and its control for nonlinear nonplanar oscillations of a parametrically excited cantilever beam, Chaos, Solitons and Fractals 26, p731-745, 2005.
    102. D. X. Cao and W. Zhang, Analysis on nonlinear dynamics of a string-beam coupled system, International Journal of Nonlinear Science and Numerical Simulation 6, p47-54, 2005.
    103. M. Ye, Y. H. Sun, W. Zhang, Nonlinear oscillations and chaotic dynamics of an anti-symmetric cross-ply laminated composite rectangular thin plate under parametric excitation, Journal of Sound and Vibration 287, p723-758, 2005.
    104. W. Zhang, Y. Chen and D. X. Cao, Computation of normal forms for eight-dimensional nonlinear dynamical system and application to a viscoelastic moving belt, International Journal of Nonlinear Sciences and Numerical Simulation 7, p35-58, 2006.
    105. W. Zhang, C. Z. Song and M. Ye, Further studies on nonlinear oscillations and chaos of a symmetric cross-ply laminated thin plate under parametric excitation, International Journal of Bifurcation and Chaos 16, p325-347, 2005.
    106. W. Zhang, M. H. Yao and X. P. Zhan, Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness, Chaos, Solitons and Fractals 27, p175-186, 2006.
    107. W. Zhang, M. H. Yao, Multi-pulse chaotic motions of a rotor-active magnetic bearing with time-varying stiffness, ASME 2005 International Design Engineering Technical Conference & Computers and Information in Engineering Conference, Sep. 24-28, 2005, Long Beach, California, USA.
    108. W. Zhang, D. X. Cao, Experimental investigation of nonplanar chaotic vibrations in a cantilever beam with vertical base excitation, Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Las Vegas, Nevada, USA, September 4-7, 2007.
    109.曹东兴,张伟,矩形截面悬臂梁倍周期分叉和混沌运动的实验研究,第11届全国非线性振动会议暨第8届全国非线性动力学和运动稳定性会议,石家庄, 2007.
    110. J. A. Wickert, CD. Mote. Jr, Current research on the vibration and stability of axially moving materials, Shock and Vibration Digest 20, p3-13, 1988.
    111. J. A. Wickert, C. D. Mote Jr. Classical vibration analysis of axially moving continua, ASME Journal of Applied Mechanics 57, p738-744, 1990.
    112. M. Pakdemirli, A. G. Ulsoy and A. Ceranoglu, Transverse vibration of an axially accelerating string, Journal of Sound and Vibration 169, p179-196, 1994.
    113. J. Moon and J. A. Wickert, Non-linear vibration of power transmission belts, Journal of Sound and Vibration 200, p419-431, 1997.
    114. R. F. Fung, J. S. Huang and Y. C. Chen, The trassient amplitude of the viscoelastic traveling string: an integral constitutive law, Journal of Sound and Vibration 201, p153-167, 1997.
    115. L. Zhang, J. W. Zu, Nonlinear vibrations of viscoelastic moving belts, part 1: free vibration analysis, ASME Journal of Applied Mechanics 66, p396-402, 1999.
    116. L, Zhang and J. W. Zu, Nonlinear vibrations of viscoelastic moving belts, part 2: forced vibration analysis, ASME Journal of Applied Mechanics 66, p403-409, 1999.
    117. C. H. Riedel and C. A. Tan, Coupled, forced response of an axially moving strip with internal resonance, International Journal of Nonlinear Mechanics 37, p101-116, 2002.
    118. L. Q. Chen, N. H. Zhang and J. W. Zu, Bifurcation and chaos of an axially moving viscoelastic string, Mechanics Research Communications 29, p81-90, 2002.
    119. K. Marynowski, Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension, Chaos, Solitons and Fractals 21, p481-490, 2004.
    120. W. Zhang, H. B. Wen and M. H. Yao, Periodic and chaotic oscillation of a parametrically excited viscoelastic moving belt with 1:3 Internal resonance, Acta Mechanics Sinica 36, p443–454, 2004.
    121. W. Zhang and C. Z. Song, Research on higher-dimensional periodic and chaotic oscillations for a parametrically excited viscoelastic moving belt with multiple internal resonances, International Journal of Bifurcation and Chaos 17, p1637-1660, 2007.
    122. L. H. Chen, W. Zhang and Y. Q. Liu, Modeling of nonlinear oscillations for viscoelastic moving belt using generalized Hamilton’s principle, ASME Journal of Vibration and Acoustics 129, p128-132, 2007.
    123. Y. Q. Liu, W. Zhang and L. H. Chen, Nonplanar periodic and chaotic oscillation of an axially moving viscoelastic belt with one-to-one internal resonance, International Journal of Nonlinear Sciences and Numerical Simulation 8, p589-600, 2007.
    124. M. J. Gao, W. Zhang and M. H. Yao, Global analysis and chaotic dynamics of six-dimensional nonlinear system for an axially moving viscoelastic belt, International Journal of Modern Physics B.已录用.
    125. W. Zhang, F. X. Wang and Jean W. Zu, Computation of normal forms for high dimensional nonlinear systems and application to nonplanar nonlinear oscillations of a cantilever beam, Journal of Sound and Vibration 278, p949-974, 2004.
    126. Y. Chen and W. Zhang, Computation of the third order normal form for six-dimensional nonlinear dynamical systems, Journal of Dynamics and Control 2,p31-35, 2004.
    127. W. Zhang, Y. Chen and D. X. Cao, Computation of normal form for eight-dimensional nonlinear dynamical system and application to a viscoelastic moving belt, International Journal of Nonlinear Sciences and Nummerical Simulation 7, p35-58, 2006.
    128. J. Li, D. Wang and W. Zhang, General forms of the simplest normal form of Bogdanov-Takens singularities, Dynamics of Continuous, Discrete and Impulsive Systems 8, p519-530, 2001.
    129. G. T. Chen and J. Della Dora, An algorithm for computing a new normal form for dynamical systems, Journal of Symbolic Computation 29, p393-418, 2000.
    130. C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet and G. Iooss, A simple global characterization for normal forms of singular vector fields, Physica D 29, p95-117, 1987.
    131. S. N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, p65-78, 1994.
    132. V. Birman, Dynamic stability of thick rectangular plates, Mechanics Research Communication 14, p37-42, 1987.
    133. R S. Srinivasan and P. Chellapandi, Dynamic stability of rectangular laminated composite plates, Computers and Structures 24, p233-238, 1986.
    134. C. W. Bert and V. Birman, Dynamic instability of shear deformable anti-symmetric angle-ply plate, International Journal of Solid Structures 23, p1053-1061, 1987.
    135. A. Bhimaraddi, Large amplitude vibrations of imperfect antisymmetric angle-ply laminated plates, Journal of Solid Structures 162, p457-470, 1993.
    136. M. Ganapathi, B. P. Patel, P. Boisse and M. Touratier, Non-linear dynamic stability characteristics of elastic plate subjected to periodic in-plane load, International Journal of Non-linear Mechanics 35, p467-480, 2000.
    137. C. S. Chen, W. S. Cheng, R. D. Chien and J. L. Dong, Large amplitude vibration of an initially stressed cross ply laminated plates, Applied Acoustics 63, p939-956, 2002.
    138. Arcangelo Messina, Kostas and A. Soldatos, General vibration model of angle-ply laminated plated that accounts for the continuity of interlaminar stresses, International Journal of Solids and Structures 39, p617-635, 2002.
    139. Rivka Gilat and Jacob Aboudi, The lyapunov exponents as a quantitative criterion for the dynamic buckling of composite plates, International Journal of Solids and Structures 39, p467-481, 2002.
    140. T. W. Kim and J. H. Kim, Nonlinear vibration of viscoelastic laminated compositeplates, International Journal of Solids and Structures 39, p2857-2870, 2002.
    141. M. Ishihar and N. Noda, Nonlinear dynamic behavior of a piezothermoelastic laminated plate with anisotropic material properties, Acta Mechanica 166, p103-106, 2003.
    142. K. K. Shukla, J. M. Chen and J. H. Huang, Nonlinear dynamic analysis of composite laminated plates containing spatially oriented short fibers, International Journal of Solids and Structures 41, p365-384, 2004.
    143. M. Ye, J. Lu, Q. Ding and W. Zhang, Nonlinear dynamics of a parametrically excited rectangular symmetric cross-ply laminated composite plate, Acta Mechanica Sinica 37, p64-71, 2004.
    144. M. Ye, Y. Sun, W. Zhang, X. P. Zhan and Q. Ding, Nonlinear oscillations and chaotic dynamics of an antisymmetric cross-ply laminated composite rectangular thin plate under parametric excition, Journal of Sound and Vibration 287, p723-758, 2005.
    145.姚明辉,多自由度非线性机械系统的全局分叉和混沌动力学研究,北京工业大学博士论文, 2006.
    146. J. H. Zhang, W. Zhang, M. H. Yao and X. Y. Guo, Multi-pulse Shilnikov chaotic dynamics for a non-autonomous buckled thin plate under parametric excitation, International Journal of Nonlinear Sciences and Numerical Simulation 9, p381-394, 2008.
    147. Y. X. Hao, L. H. Chen, W. Zhang and J. G. Lei, Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate, Journal of Sound and Vibration 312, p862-892, 2008.
    148. X. Y. Guo, W. Zhang and M. H. Yao, Multi-pulse orbits and chaotic motion of composite laminated plates, Proceedings of IMECE 2008 ASME 2008 International Mechanical Engineering Conferences and Exposition, Boston, Massachusetts, USA, October 31-November 6, 2008.
    149.郭翔鹰,复合材料层合板的非线性动力学研究,北京工业大学硕士论文, 2007.
    150. Y. S. Shih and P. T. Blotter, Non-linear vibration analysis of arbitrarily laminated thin rectangular plates on the elastic foundation, Journal of Sound and Vibration 167, p433-459, 1993.
    151. P. F. Pai and A. H. Nayfeh, A refined nonlinear model of composite plates with integrated piezoelectric actuators and sensors. International Journal of Solids and Structures 30, p1603-1630, , 1993
    152. A. Abe, Y. Kobayashi and G. Yamada. Patel, Two-mode response of simply supported rectangular laminated plates, Non-Linear Mechanics 33, p675-690, 1998.
    153. A. Abe, Y. Kobayashi and G. Yamada. Patel, Three-mode response of simply supported, rectangular laminated plates, International Journal Seriesc-Mechanical Systems Machine Elements and Manufacturing 41, p51-59, 1998.
    154. P. Ribeiro and M. Petyt, Geometrical non-linear, steady-state, forced, periodic vibration of plate, part I: model and convergence study, Journal of Sound and Vibration 226, p955–983, 1999.
    155. P. Ribeiro and M. Petyt, Non-linear free vibration of isotropic plates with internal resonance, International Journal of Non-Linear Mechanics 35, p263–278, 2000.
    156. W. Zhang, Global and chaotic dynamics for a parametrically excited thin plate, Journal of Sound and Vibration 239, p1013-1036, 2001.
    157. B. Harras, R. Benamar and R. G. White, Geometrically non-linear free vibration of fully clamped symmetrically laminated rectangular composite plates, Journal of Sound and Vibration 251, p579-619, 2002.
    158. A. Messina and K. P. Soldatos, A general vibration model of angle-ply laminated plates that accounts for the continuity of interlaminar stresses, International Journal of Solids and Structures 39, p617-635, 2002.
    159. R. Gilat and J. Aboudi, The lyapunov exponents as a quantitative criterion for the dynamic buckling of composite plates, International Journal of Solids and Structures 39, p467-481, 2002.
    160. M. Ishihara and N. Noda, Nonlinear dynamic behavior of a piezothermodelastic laminated plate with anisotropic material properties, Acta Mechanica 166, p103-106, 2003.
    161. M. Ishihara and N. Noda, Control of mechanical deformation of a laminate by piezoelectric actuator taking into account the transverse shear, Archive of Applied Mechanics 74, p16-28, 2004.
    162. N. Mallik and M. C. Ray, Exact solutions for the analysis of piezoelectric fiber reinforced composites as idstrubuted actuators for smart composite plates, International Journal of Mechanics and Materials in Design 2, p81-97, 2005.
    163. S. J. Lee and J. N. Reddy, Nonlinear finite element analysis of laminate composite shells with actusting layers, Finite Elements in Analysis and Design 43, p1-21, 2006.
    164. R. A. Arciniega and J. N. Reddy, Large deformation analysis of functionally graded shells, International Journal of Solids and Structures 9, p1-17, 2006.
    165. H. Santors J. N. Reddy, A finite element model for the analysis of 3D asisymmetric laminated shells with piezoelectric sensors and actuators, Composite Structures 75, p170-178, 2006.
    166. L. Q. Chen and C. J. Cheng, Conrrolling chaotic oscillations of viscoelastic plates by the linearization via output feedback, Applied Mathematica and Mechanics 20, p1324-1330, 2006.
    167. C. N. Della and D. W. D. Shu, Vibration of delaminated composite laminates: A review, Applied Mechanics Reviews 60, p1-20, 2007.
    168. W. Zhang, Z. G. Yao and M. H. Yao, Periodic and chaotic dynamics of composite laminated piezoelectric rectangular plate with one-to-two internal resonance, Science in China Series E: Technological Sciences 52, p731-742, 2009.
    169. W. Zhang, M. J. Gao, M. H. H. Yao and Z. G. Yao, Higher-dimensional chaotic dynamics of a composite laminated piezoelectric rectangular plate, Science in China Series G: Physics, Mechanics & Astronomy. (已录用)
    170.张伟,高美娟,姚明辉,姚志刚,压电复合材料层合矩形板的高维混沌动力学研究,中国科学G辑物理学力学天文学. (已录用)
    171. Z. G. Yao, W. Zhang and L. H. Chen, Research on chaotic oscillations of laminated composite piezoelectric rectangular plates with 1:2:3 internal resonances, Proceedings of the 5th International Conference on Nonlinear Mechanics, p720-725, 2007.
    172.姚志刚,压电复合材料结构的复杂非线性动力学与控制研究,北京工业大学博士论文, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700