反射电子能量损失能谱学中的Monte Carlo方法和其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近几十年随着纳米材料研究的兴起与发展,材料表面与其所处的环境相互作用所导致的表面性质越来越吸引研究者的目光。一大批专门表征材料表面的分析手段被发明,而对这些表面分析手段的进一步研究,逐渐成为物理领域中的一个重要分支-表面分析科学。在表面分析领域的种种表征手段中,表面电子能谱分析技术应用相当广泛。表面电子能谱分析技术的迅速发展和广泛利用,需要理论方面的研究支持。电子在固体表面的输运与散射过程是表面电子能谱分析技术的物理基础,因此对电子在材料表面附近的散射过程及相应的截面的准确描述是表面电子能谱理论研究的关键。通过仔细分析,电子在固体表面附近的散射过程可以简化为能量不发生任何损失的弹性散射以及能量发生损失的非弹性散射。电子与原子的弹性碰撞已经有了较为透彻的研究,而Mott的弹性散射截面是最为准确的描述。另一方面,Ritchie在1957年提出一个处理电子材料表面相互作用时的表面激发的理论模型,随后很多研究都计算了空间位置相关的非弹性散射截面。结合这两个截面,蒙特卡洛方法被广泛的应用在表面电子能谱的理论研究中。近年来实验样品制备方法越来越完善,表面电子能谱的实验测量也越来越精确,然而相应的理论研究并没有跟上实验发展的脚步。目前的研究中,还没有形成一套能够有效的研究真实样品表面形貌对表面电子能谱造成影响的定量分析方法。
     在上述的研究背景下,本博士论文工作主要围绕着以下两点展开:首先,我们研究了真实样品形貌、表面碳污染层以及非弹性散射截面中负值部分对表面电子能谱的影响,建立了理想表面与粗糙表面的材料表面激发参数数据库;其次,我们发展出了一套全新的反射电子能量损失谱的解谱方法,逆蒙特卡洛方法,可从实验能谱出发提取出相应材料的光学常数。最后我们通过离散偶极子近似研究了任意纳米结构的局域表面等离子体激发,并模拟出相应的电子能量损失谱。本文共包含以下五章:
     第一章介绍了表面电子能谱技术的基本原理与发展趋势,概述了电子与固体及表面的相互作用理论、蒙特卡洛模拟方法在表面电子能谱领域的应用。其次,概述了马尔可夫链蒙特卡洛方法和模拟退火法,阐明了研究目的和待完成的工作。
     第二章首先介绍了表面等离激元与体等离激元的定义与研究背景,而表面激发参数是用来描述一个电子经过材料表面时发生表面等离激元激发的概率,用于评估实验能谱中表面激发的贡献。通过比较半经典框架和量子框架下材料表面附近的非弹性散射截面值,我们讨论了半经典模型计算表面激发参数的准确性。结合各方法对所需计算量的考量,使用半经典模型建立了多种材料的表面激发参数数据库。另外,大多数的实际样品表面形貌并不是理想平面,而有一定的粗糙度,我们采用有限三角形网格法通过真实样品的原子力显微镜图像来构建出样品真实的表面形貌。基于这些构建出的粗糙表面,我们也建立了粗糙样品的表面激发参数数据库。
     第三章中研究了真实样品表面形貌对反射电子能量损失谱的影响。由于样品表面形貌很难在数学上给予一般性描述,因此很少有对此的计算研究。本文中,我们不讨论一般性的粗糙面的数学模型,而是直接使用有限三角形网格法来构建真实的全三维粗糙表面形貌,并在蒙特卡洛模拟中考虑了表面激发效应,从而能够定量的分析表面粗糙度与表面激发效应协同对反射电子能量损失谱造成的影响。对于薄膜样品,膜厚与衬底材料都会对反射电子能量损失谱造成影响。为此我们建立了电子与多层结构样品的相互作用模型,在此基础上计算了相应的依赖于深度的电子非弹性散射截面,利用蒙特卡洛方法对硅衬底上铁膜的反射电子能量损失谱进行了模拟,以该例分析了表面激发与界面激发。我们进一步研究了样品表面碳污染层对反射电子能量损失谱的影响,给出了避免碳污染层信号出现在能谱中的阈值入射电子能量。最后研究了在量子框架下理论计算非弹性微分散射截面时出现的负值问题,发展出一种对负值概率进行抽样的方法。对硅的计算结果表明,考虑了负微分截面后,模拟的反射电子能量损失谱更加符合实验结果。
     第四章介绍了我们最近发展出的一种用于分析反射电子能量损失谱的新型蒙特卡洛计算技术-逆蒙特卡洛方法,阐述了发展该方法的出发点和主要思想,详细地描述了如何通过逆蒙特卡洛方法从实验反射电子能量损失谱中提取出材料的光学常数。其他解谱方法大多使用反卷积数学手段来从实验能谱中提取出光学数据,其中为了数学方便都要采取极大的近似,而真实的能谱形成过程远比卷积复杂的多。因此,我们抛弃传统的反卷积手段,直接采用蒙特卡洛方法模拟的电子能谱,将其与实验能谱比较,结合模拟退火法来不断的调整作为蒙特卡洛模拟输入参数的材料光学常数。通过不断地迭代能谱模拟步骤,最终得到使模拟能谱与实验能谱一致的光学常数最佳拟合数据。逆蒙特卡洛方法最大的优点采用已经发展非常完善的蒙特卡洛方法来处理复杂的电子与固体相互作用,算得的数据更加准确。我们将该方法成功运用到银和二氧化硅材料的研究中,分析结果显示,该方法可以得到非常准确的光学数据。
     第五章中研究改进离散偶极子近似法,以使其能够模拟任意纳米结构的电子能量损失谱。事实上离散偶极子近似法在计算电磁场散射问题以及纳米颗粒等离激元激发问题中发挥了显著的作用,然而现有的采用离散偶极子近似方法来进行电磁特性分析的软件都只能计算外光场激发,并不能直接拓展到电子束激发情形。为了解决这一问题,我们发展出一套基于离散偶极子近似方法计算任意纳米机构材料的电子能量损失谱的程序。我们模拟了在单个银纳米颗粒附近不同入射位置下的电子能量损失谱,其计算结果与实验能谱非常吻合。虽然离散偶极子近似法早在很多年前就已经被应用到处理外加光场激发的情形,但正是我们这套方法提供了一个研究电子束诱导金属纳米颗粒局域表面等离激元激发的计算工具。
     第六章对前面的几章内容进行了系统的总结。
In recent decades with the raid development of the nano material science, the surface properties induced by the interaction of material with external environment in-creasingly attracts the attention of researchers. Many specialized surface analysis tools are developed, and further study of these surface analysis techniques gradually be-comes an important branch field of physics study, the surface analysis science. Among various characterization means in surface analysis science, electron spectroscopy tech-niques have been widely applied. Theoretical investigation is necessary to accommo-date the fast development and wide application of the electron spectroscopic analysis techniques. The transport and scattering processes of electrons in the vicinity of solid surface forms the physics basis for electron spectroscopy analysis techniques. Thus, it is crucial to describe correctly the electron scattering processes and the corresponding cross sections for the study of electron spectroscopy. By careful analysis, the transport process of electrons near solid surface can be simplified to a series of electron scattering events for elastic scattering without energy loss and inelastic scattering with amount of energy loss. Numerous researches have been done on the electron-atom elastic colli-sion, and Mott's elastic cross section is considered as the most accurate description. On the other hand, a theoretical modeling of the surface excitation effect in electron inelastic interaction with a surface has been built by Ritchie in1957. Many works have then been done to calculate the spatially varying differential inelastic scattering cross section. Combining these two sections, Monte Carlo method has been widely used in the theoretical study of electron spectroscopy. As the rapid development in sample preparation techniques and measurement accuracy, however, theoretical research has not kept up with the development of experiment. There has been no yet a quantita-tive analysis method for investigating the influence to the surface electron spectroscopy spectra by the surface topography of a realistic sample.
     This thesis thus concerns mainly the two aspects:first of all, we study the influence of surface topography of real sample, carbon surface contamination and the calculated negative inelastic cross section on electron spectroscopy spectrum, which enable us to build a database of surface excitation parameter for both ideal planar surface and rough surface. Second, a reverse Monte Carlo (RMC) method is developed to obtain the op-tical constants of solids from a measured reflection electron energy loss spectroscopy (REELS) spectrum. Finally, a discrete dipole approximation (DDA) method is em-ployed to study the localized surface plasmon excitation in arbitrary nano-structure and to simulate electron energy loss spectrum. The thesis consists of following five chap-ters.
     Chapter One introduces the basic principles and development of the surface elec-tron spectroscopy technique. A brief introduction to theories of electron interaction with solids and surfaces and application of Monte Carlo simulation method in sur-face electron spectroscopies is given. Then an overview of Markov chain Monte Carlo method and the simulated annealing method is presented. It has been pointed out the research aim and the urgent works that to be carried out.
     Chapter Two firstly introduces the definition of the surface plasmon and bulk plas-mon and research background. The excitation probability of surface plasmons is char-acterized by the surface excitation parameter (SEP) for an electron moving across a solid surface. It is used to estimate the contribution of surface plasmon excitation in a surface electron spectroscopy spectrum. By a comparison made on the calculated dif-ferential inverse inelastic mean free paths between semi-classical framework and quan-tum mechanical framework, we have discussed the accuracy of SEP calculation with a semi-classical model. Based on consideration of calculation efficiency, we have built a SEP database for many metals and cmpuounds based on the semi-classical model. In addition, most sample surface is not ideal smooth but with roughness; we have then used a finite element triangle mesh modeling of a realistic rough surface based on the surface topography profiles measured by atomic force microscopy. Then SEP database has also been built by using these rough surfaces.
     Chapter Three investigates the influence of a realistic sample surface topography to reflection electron energy loss spectroscopy (REELS) spectrum. Because it is hard to mathematically describe the surface topography in a general form, little computa-tional work has been done in this aspect. Instead of providing a general mathematical modeling of rough surface, here we directly use a finite element triangle mesh model-ing of a full3D rough surface. Furthermore, we have included surface excitation in the Monte Carlo simulation, enabling us to study simultaneously the surface roughness and surface excitation effects on REELS spectra. For thin film on substrate samples both the film thickness and substrate material will affect the REELS spectrum. Therefore, a theoretical model for studying the interaction of electrons with a multilayered structure material is established; the depth-dependent electron inelastic scattering cross sections are calculated. We have erformed a Monte Carlo simulation of REELS spectrum for Fe film on Si substrate as an example study of the influence of surface excitation and interface excitation. Furthermore, the influence of carbon surface contamination on REELS spectrum is also studied, leading to derive the threshold energy that the car-bon contamination signal can be detected to appear in an energy spectrum. Finally, we have considered the problem of negative value in the inelastic differential cross sec-tion calculated in quantum-mechanical framework and developed a negative probability sampling method. Calculation result for Si has shown that by taking into account of this negative differential cross section, the simulated RRELS spectrum agrees better with an experimental result.
     Chapter Four introduces our newly developed reverse Monte Carlo (RMC) method, a new type Monte Carlo technique for analysis of REELS spectrum. We describe in de-tail the idea for developing the technique and the RMC procedure to extract optical constants from a measured REELS spectrum. Most of other analysis methods rely on deconvolution of experimental spectrum in order to obtain optical constants, and ap-proximations have to be used for sake of mathematical convenience. The formation of a measured spectrum is much complex than the way of a simple convolution process. Therefore, instead of improving deconvolution formalism, we directly use the simu-lated RRELS spectrum to compare with an experimental spectrum. Combined with simulated annealing for improving oscillator parameters of optical constants, which is an input to Monte Carlo simulation, the difference on the REELS spectra between experiment and simulation is minimized by an iterative process. The best fitted data of optical constants are then obtained when the agreement is found. The key advan-tage of this RMC method is that the complicated electron-solid interaction process is approached by a well developed Monte Carlo simulation method, the obtained data should be better in accuracy. We have successfully applied the method to Ag and SiO2; the results show that very accurate optical data can obtained with the method.
     Chapter Five studies the modification to a discrete dipole approximation (DDA) in order to be used for the simulation of electron energy loss spectroscopy (EELS) spec-trum for arbitrary nano-structures. The DDA method has played a significant role in computation of electromagnetic wave scattering and plasmon excitation in nanoparti-cles. However, the existing DDA softwares for analysis of electromagnetic properties only deals with the optical excitation and can not be extended directly to excitation by an electron beam. For this reason, we have developed a code for calculation of EELS spectra for arbitrary nano-structure based on DDA method. We have simulated EELS spectra at different beam positions nearby a single Ag nanoparticle; an excellent agreement has been found between our simulated and experimental spectra. Although DDA has been employed long ago to optical excitation problems, but it is this method provides a computation tool for study of the surface plasmon excitation of metallic nanoparticles by an electron beam.
     Chapter Six summarizes the contents of previous chapters.
引文
[1]D. P. Woodruff and T. A. Delchar. Modern Techniques of Surface Science. Cambridge, Cambridge,1986.
    [2]D. Briggs and M. P. Seah. Practical Surface Analysis. John Wiley and Sons, Academic, Inc., 1983.
    [3]Gabor A Somorjai. Chemisty in Two Dimensions Surfaces. Uk, Cornell University Press, London,1981.
    [4]朱良漪.分析仪器手册.化学工业出版社,北京,1997.
    [5]黄惠忠.论表面分析及其在材料研究中的应用.科学技术文献出版社,北京,2002.
    [6]黄惠忠.纳米材料分析.化学工业出版社,北京,2003.
    [7]黄惠忠.表面化学分析.华东理工大学出版社,上海,2007.
    [8]丁泽军,吴自勤,孙霞,张人佶.微分析物理及其应用.中国科学技术大学出版社,合肥,2009.
    [9]M. P. Seah D. Briggs. Practical Surface Analysis, second ed. John Wiley, Chichester,1990.
    [10]K. Goto, N. Sakakibara, and Y. Sakai. A novel cylindrical mirror analyzer for absolute measurements of Auger electron standard spectra. Microbeam Anal,2:123-131,1993.
    [11]L. Kover, D. Varga, I. Cserny, J. Toth, and K. Tokesi. Some Applications of high-energy, high-resolution Auger electron spectroscopy using bremsstrahlung radiation. Surface and Interface Analysis,19(1-12):9-15,1992.
    [12]P. Staib and U. Dinklage. Recent developments on an improved retarding-field analyser. Journal of Physics E:Scientific Instruments,10(9):914,1977.
    [13]A. Fahlman R. Nordberg K. Hamrin J. Hedman G. Johansson T. Bergmark S-E. Karlsson I. Lindgren B. Lindberg K. Siegbahn, C. Nordling. Atomic, Molecular and Solid State Studied by Means of Electron Spectroscopy, Nova Acta Regiae Soc. Sci. Upsaliensis, Ser. IV, Vol.20. Almqvist and Wiksells, Uppsala,1967.
    [14]D. W. Turner and M. A. Jobory. Determination of ionization potentials by photoelectron energy measurement. The Journal of Chemical Physics,37(12):3007-3008,1962.
    [15]W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Mat-sumoto, and K. Domen. Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. The Journal of Physical Chemistry B,107(8):1798-1803,2003.
    [16]P. Auger, P. Ehrenfest, R. Maze, J. Daudin, and R. A. Freon. Extensive cosmic-ray showers. Reviews of Modern Physics, 11(3-4):288-291,1939.
    [17]D. W. Walker. Relativistic effects in low energy electron scattering from atoms. Advances in Physics,20(85):257-323,1971.
    [18]N. F. Mott. The scattering of fast electrons by atomic nuclei. Proceedings of the Royal Society of London. Series A,124(794):425-442,1929.
    [19]F. Calogero. Variable Phase Approach to Potential Scattering. Academic, New York,1967.
    [20]A. Jablonski. Elastic electron backscattering from gold. Physical Review B,43(10):7546, 1991.
    [21]P. Gombas. Die Statistische Theorie des Atoms und ihre Anwendungen. Springer, Wien, 1949.
    [22]P. Gombas. in Handbuch der Physik, edited by S. Flugge. Springer, Berlin,1956.
    [23]J.P. Desclaux. A multiconfiguration relativistic DIRAC-FOCK program. Computer Physics Communications,9:31-45,1975.
    [24]S. R. Lin, N. Sherman, and J. K. Percus. Elastic scattering of relativistic electrons by screened atomic nuclei. Nuclear Physics,45:492-504,1963.
    [25]P. J. Bunyan and J. L. Schonfelder. Polarization by mercury of 100 to 2000 eV electrons. Proceedings of the Physical Society,85(3):455,1965.
    [26]A. Jablonski and S. Tougaard. Database of relativistic elastic scattering cross-sections for calculations of photoelectron and Auger electron transport. Surface and Interface Analysis, 22(1-12):129-133,1994.
    [27]R. A. Bonham and T. G. Strand. Analytical expressions for potentials of neutral Thomas-Fermi-Dirac atoms and for the corresponding atomic scattering factors for X rays and elec-trons. The Journal of Chemical Physics,39(9):2200-2204,1963.
    [28]L. Lapidus and J. H. Seinfeld. Numerical Solution of Ordinary Differential Equations. Aca-demic, New York,1971.
    [29]A. Jablonski. Approximation of the Thomas-Fermi-Dirac potential for neutral atoms. Phys-ica A:Statistical Mechanics and its Applications,183(3):361-377,1992.
    [30]L. H. Thomas. Tables of statistical electron distributions for atoms with degree of ioniza-tion zero to four and of the corresponding electrostatic potentials. The Journal of Chemical Physics,22:1758,1954.
    [31]F. Salvat and R. Mayol. Elastic scattering of electrons and positrons by atoms. Schrodinger and Dirac partial wave analysis. Computer Physics Communications,74(3):358-374,1993.
    [32]J. B. Furness and I. E. McCarthy. Semiphenomenological optical model for electron scatter-ing on atoms. Journal of Physics B:Atomic and Molecular Physics,6(11):2280,1973.
    [33]A. Jablonski, F. Salvat, and C. J. Powell. Comparison of electron elastic-scattering cross sections calculated from two commonly used atomic potentials. Journal of Physical and Chemical Reference Data,33(2):409-452,2004.
    [34]S. Ichimura. PhD thesis, Osaka Univ.,1980.
    [35]R. Shimizu and Z. J. Ding. Monte Carlo modelling of electron-solid interactions. Reports on Progress in Physics,55(4):487,1999.
    [36]H. Bethe. Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Annalen der Physik,397(3):325-400,1930.
    [37]M. Gryzinski. Two-particle collisions. I. General relations for collisions in the laboratory system. Phys. Rev. A,138:305-321,1965.
    [38]J. Lindhard. On the properties of a gas of charged particles. Kgl. Danske Videnskab. SelskabMat.-fys.Medd.,28,1954.
    [39]J. Neufeld and R. H. Ritchie. Density effect in ionization energy loss of charged particles. Physical Review,99(4):1125,1955.
    [40]D. R. Penn and et. al. Electron mean-free-path calculations using a model dielectric function. Physical Review B,35(2):482-486,1987.
    [41]Z. J. Ding and R. Shimizu. A Monte Carlo modeling of electron interaction with solids including cascade secondary electron production. Scanning,18(2):92-113,1996.
    [42]B. I. Lundqvist. Single-particle spectrum of the degenerate electron gas. Physik der konden-sierten Materie,7(2):117-123,1968.
    [43]X. Zhu and A. W. Overhauser. Plasmon-pole and paramagnon-pole model of an electron liquid. Physical Review B,33(2):925,1986.
    [44]Z.J. Ding. PhD thesis, Osaka Univ.,1990.
    [45]R. H. Ritchie and A. Howie. Electron excitation and the optical potential in electron mi-croscopy. Philosophical Magazine,36(2):463-481,1977.
    [46]E. D. Palik. Handbook of Optical Constants of Solids. FL:Academic, Orlando,1985.
    [47]B. Da, Y. Sun, S. F. Mao, and Z. J. Ding. Systematic calculation of the surface excitation parameters for 22 materials. Surface and Interface Analysis,2012.
    [48]C. M. Kwei, Y. F. Chen, C. J. Tung, and J. P. Wang. Electron inelastic mean free paths for plasmon excitations and interband transitions. Surface Science,293(3):202-210,1993.
    [49]N. Pauly and S. Tougaard. Determination of the surface excitation parameter for oxides: TiO2, SiO2, ZrO2 and Al2O3. Surface Science,602(11):1974-1978,2008.
    [50]S. Tanuma, C. J. Powell, and D. R. Penn. Calculations of electron inelastic mean free paths for 31 materials. Surface and Interface Analysis,11(11):577-589,1988.
    [51]R. H. Ritchie and A. L. Marusak. The surface plasmon dispersion relation for an electron gas. Surface Science,4(3):234-240,1966.
    [52]C. J. Powell and J. B. Swan. Origin of the characteristic electron energy losses in aluminum. Physical Review,115(4):869,1959.
    [53]C. J. Powell and J. B. Swan. Origin of the characteristic electron energy losses in magnesium. Physical Review,116(1):81,1959.
    [54]E. A. Stern and R. A. Ferrell. Surface plasma oscillations of a degenerate electron gas. Physical Review,120(1):130,1960.
    [55]R. H. Ritchie. On surface plasma oscillations in metal foils. Progr Theor Phys,29(4):607-609,1963.
    [56]R. H. Ritchie. On surface plasma oscillations in metal foils. Progr. Theoret. Phys.(Kyoto), 29,1963.
    [57]N. Takimoto. Plasmon excitation by charged particles outside a metal film. Physical Review, 146(1):366,1966.
    [58]D. M. Newns. Dielectric response of a semi-infinite degenerate electron gas. Physical Review B, 1(8):3304,1970.
    [59]B. Gumhalter and D. M. Newns. Excitation of surface plasmons by electrons in a parabolic beam. Surface Science,50(2):465-478,1975.
    [60]D. Chan and P. Richmond. Static and dynamic interactions with spatially dispersive media. Journal of Physics C:Solid State Physics,9(1):163,2001.
    [61]R. Nunez, P. M. Echenique, and R. H. Ritchie. The energy loss of energetic ions moving near a solid surface. Journal of Physics C:Solid State Physics,13(22):4229,2000.
    [62]P. M. Echenique, R. H. Ritchie, N. Barberan, and J. Inkson. Semiclassical image potential at a solid surface. Physical Review B,23(12):6486,1981.
    [63]C. C. Sung and R. H. Ritchie. The energy-loss spectra of fast charged particles passing through a thin metallic film. Journal of Physics C:Solid State Physics,14(17):2409,2000.
    [64]P. M. Echenique. Dispersion effects in the excitation of interfaces by fast-electron beams. Philosophical Magazine B,52(1):9-13,1985.
    [65]A. Gras-Marti, P. M. Echenique, and R. H. Ritchie. Surface contribution to the energy loss
    of slow ions. Surface Science,173(1):310-319,1986.
    [66]P. M. Echenique, J. Bausells, and A. Rivacoba. Energy-loss probability in electron mi-croscopy. Physical Review B,35:1521-1524,1987.
    [67]N. Zabala and P. M. Echenique. Energy loss of fast electrons moving near plane boundaries with dispersive media. Ultramicroscopy,32(4):327-335,1990.
    [68]J. L. Gervasoni and N. R. Arista. Energy loss and plasmon excitation during electron emission in the proximity of a solid surface. Surface Science,260(1):329-346,1992.
    [69]F. Yubero and S. Tougaard. Model for quantitative analysis of reflection-electron-energy-loss spectra. Physical Review B,46(4):2486,1992.
    [70]C. J. Tung, Y. F. Chen, C. M. Kwei, and T. L. Chou. Differential cross sections for plasmon excitations and reflected electron-energy-loss spectra. Physical Review B,49(23):16684, 1994.
    [71]Y. F. Chen. Effect of surface excitations in determining the inelastic mean free path by elastic peak electron spectroscopy. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,13(6):2665-2670,1995.
    [72]F. Yubero, B. Sanz, J. M. Ramskov, and S. Tougaard. Model for quantitative analysis of reflection-electron-energy-loss spectra:Angular dependence. Physical Review B,53(15): 9719,1996.
    [73]De Abajo F. J. G. Juaristi, J. I. and P. M. Echenique. Energy loss of MeV protons specularly reflected from metal surfaces. Physical Review B,53(20):13839,1996.
    [74]Y. F. Chen and Y. T. Chen. Background removal in surface electron spectroscopy:Influence of surface excitations. Physical Review B,53(8):4980,1996.
    [75]Y. F. Chen and C. M. Kwei. Electron differential inverse mean free path for surface electron spectroscopy. Surface Science,364(2):131-140,1996.
    [76]Yubero F. Simonsen, A. C. and S. Tougaard. Quantitative model of electron energy loss in XPS. Physical Review B,56(3):1612,1997.
    [77]Y. C. Li, Y. H. Tu, C. M. Kwei, and C. J. Tung. Influence of the direction of motion on the inelastic interaction between electrons and solid surfaces. Surface Science,589(1):67-76, 2005.
    [78]Z. J. Ding. Self-energy in surface electron spectroscopy:Ⅰ. Plasmons on a free-electron-material surface. Journal of Physics:Condensed Matter,10(8):1733,1999.
    [79]Z. J. Ding. Self-energy in surface electron spectroscopy:Ⅱ. Surface excitation on real metal surfaces. Journal of Physics:Condensed Matter,10(8):1753,1999.
    [80]D. Pines and D. Bohm. A collective description of electron interactions:Ⅱ. Collective vs individual particle aspects of the interactions. Physical Review,85(2):338,1952.
    [81]D. Bohm and D. Pines. A collective description of electron interactions. Ⅰ. Magnetic interac-tions. Physical Review,82(5):625,1951.
    [82]D. Bohm and D. Pines. A collective description of electron interactions:Ⅲ. Coulomb inter-actions in a degenerate electron gas. Physical Review,92(3):609,1953.
    [83]E. Fermi. The ionization loss of energy in gases and in condensed materials. Physical Review, 57(6):485,1940.
    [84]H. A. Kramers. The stopping power of a metal for alpha-particles. Physica,13(6):401-412, 1947.
    [85]J. Hubbard. The dielectric theory of electronic interactions in solids. Proceedings of the Physical Society. Section A,68(11):976,1955.
    [86]N. D. Lang and W. Kohn. Theory of metal surfaces:charge density and surface energy. Physical Review B,1(12):4555,1970.
    [87]A. Liebsch. Dynamical screening at simple-metal surfaces. Physical Review B,36(14):7378, 1987.
    [88]A. Zangwill and P. Soven. Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases. Physical Review A,21(5):1561,1980.
    [89]M. J. Stott and E. Zaremba. Linear-response theory within the density-functional formalism: Application to atomic polarizabilities. Physical Review A,21(1):12,1980.
    [90]V. M. Silkin, E. V. Chulkov, and P. M. Echenique. Band structure versus dynamical exchange-correlation effects in surface plasmon energy and damping:a first-principles calculation. Physical Review Letters,93(17):176801,2004.
    [91]V. M. Silkin and E. V. Chulkov. Energy and lifetime of surface plasmon from first-principles calculations. Vacuum,81(2):186-191,2006.
    [92]Z. Yuan and S. W. Gao. Linear response approach to collective electronic excitations of solids and surfaces. Computer Physics Communications,180(3):466-473,2009.
    [93]J. Yan, K. S. Thygesen, and K. W. Jacobsen. Nonlocal screening of plasmons in graphene by semiconducting and metallic substrates:first-principles calculations. Physical Review Letters,106(14):146803,2011.
    [94]F. Flores and F. Garcia-Moliner. Self-energy of a fast-moving charge near a surface. Journal of Physics C:Solid State Physics,12(5):907,1979.
    [95]F. Garcia-Moliner, F. Flores. Introduction to the Theory of Solid Surfaces. Cambridge University Press, Cambridge,1979.
    [96]F. Flores, F. Garcia-Moliner. Surface Excitations ed V M Agranovich and R Loudon. Else-vier, Amsterdam,1984.
    [97]Z. J. Ding and R. Shimizu. Monte Carlo simulation study of reflection-electron-energy-loss-spectroscopy spectrum. Physical Review B,61(20):14128,2000.
    [98]C. J. Tung and R. H. Ritchie. Electron slowing-down spectra in aluminum metal. Physical Review B,16(10):4302,1977.
    [99]M. S. Chung and T. E. Everhart. Role of plasmon decay in secondary electron emission in the nearly-free-electron metals. Application to aluminum. Physical Review B,15(10):4699, 1977.
    [100]T. Tsuda. Monte Carlo Method and Simulation. Baifukan, Tokyo,1969.
    [101]M.J. Berger. Methods in Computational Physics, ed. B. Alder, S. Fernback and M. Roten-berg, Academic, New York,1963.
    [102]A. Howie and R. M. Stern. The optical potential in electron diffraction. Zeitschrift Natur-forschung Teil A,27:382,1972.
    [103]C. J. Powell. Attenuation lengths of low-energy electrons in solids. Surface Science,44(1): 29-46,1974.
    [104]C. J. Powell. Calculations of electron inelastic mean free paths from experimental optical data. Surface and Interface Analysis,7(6):263-274,1985.
    [105]Z. J. Ding and R. Shimizu. Monte Carlo study of backscattering and secondary electron generation. Surface Science,197(3):539-554,1988.
    [106]B. Da, S. F. Mao, G. H. Zhang, X. P. Wang, and Z. J. Ding. Monte Carlo modeling of surface excitation in reflection electron energy loss spectroscopy spectrum for rough surfaces. Journal of Applied Physics,112(3):034310-034310,2012.
    [107]B. Da, S. F. Mao, G. H. Zhang, X. P. Wang, and Z. J. Ding. Influence of surface roughness on elastically backscattered electrons. Surface and Interface Analysis,44(3):647-652,2012.
    [108]丁泽军,吴自勤,孙霞,张人佶.微分析物理及其应用.中国科学技术大学出版社,合肥,2009.
    [109]W. A. Coleman. Mathematic verification of a certain Monte Carlo sampling technique and applications of the technique to radiation transport problems. Technical report, Oak Ridge National Lab., Tenn.,1968.
    [110]S. Tougaard. Quantitative analysis of the inelastic background in surface electron spec-troscopy. Surface and Interface Analysis,11 (9):453-472,1988.
    [111]Z. J. Ding, R. Shimizu, and K. Goto. Intrinsic Auger signal profiles derived by Monte Carlo analysis. Applied Surface Science,100:15-19,1996.
    [112]E. N. Sickafus. Linearized secondary-electron cascades from the surfaces of metals. I. Clean surfaces of homogeneous specimens. Physical Review B,16(4):1436,1977.
    [113]Z. J. Ding and Z. Q. Wu. A comparison of Monte Carlo simulations of electron scattering and X-ray production in solids. Journal of Physics D:Applied Physics,26(4):507,1993.
    [114]Z. J. Ding, R. Shimizu, and K. Obori. Monte Carlo simulation of x-ray spectra in elec-tron probe microanalysis:Comparison of continuum with experiment. Journal of Applied Physics,76(11):7180-7187,1994.
    [115]A. Jablonski. Analytical applications of elastic electron backscattering from surfaces. Progress in Surface Science,74(1):357-374,2003.
    [116]A. Jablonski, P. Mrozek, G. Gergely, M. Menhyard, and A. Sulyok. The inelastic mean free path of electrons in some semiconductor compounds and metals. Surface and Interface Analysis,6(6):291-294,1984.
    [117]A. Jablonski. Elastic backscattering of electrons from surfaces. Surface Science,151(1): 166-182,1985.
    [118]R. Oswald, E. Kasper, and K. H. Gaukler. A multiple scattering theory of elastic electron backscattering from amorphous surfaces. Journal of Electron Spectroscopy and Related Phe-nomena,61(3):251-274,1993.
    [119]A. Jablonski and C. J. Powell. The electron attenuation length revisited. Surface Science Reports,47(2):33-91,2002.
    [120]A. Jablonski. Elastic electron backscattering from gold. Physical Review B,43(10):7546, 1991.
    [121]A. Jablonski, H. S. Hansen, C. Jansson, and S. Tougaard. Elastic electron backscattering from surfaces with overlayers. Physical Review B,45(7):3694,1992.
    [122]A. Dubus, A. Jablonski, and S. Tougaard. Evaluation of theoretical models for elastic electron backscattering from surfaces. Progress in Surface Science,63(6):135-175,2000.
    [123]A. Jablonski. Determination of the IMFP from electron elastic backscattering probability. Surface and Interface Analysis,29(9):582-595,2000.
    [124]李会民. PhD thesis,中国科学技术大学,2005.
    [125]MPI:A Message-Passing Interface Standard. Univ. of Tennessee and Oak Ridge Nat. Lab., 1997.
    [126]MPI-2:Extensions to the Message-Passing Interface. Univ. of Tennessee,2001.
    [127]N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics,21:1087, 1953.
    [128]丁泽军.计算物理Ver.4(试用讲义).中国科学技术大学,合肥.
    [129]B. A. Berg. Introduction to multicanonical Monte Carlo simulations. Fields Inst. Commun, 26(1):1-24,2000.
    [130]B. A. Berg. The multicanonical ensemble:A new approach to computer simulations. Inter-national Journal of Modern Physics C,3(05):1083-1098,1992.
    [131]B. A. Berg. Multicanonical recursions. Journal of Statistical Physics,82(1):323-342,1996.
    [132]S. Kirkpatrick, D. G. Jr., and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671-680,1983.
    [133]P. J. M. Van Laarhoven and E. H. L. Aarts. Simulated annealing. Springer,1987.
    [134]A. Corana, M. Marchesi, C. Martini, and S. Ridella. Minimizing multimodal functions of continuous variables with the 'simulated annealing' algorithm Corrigenda for this article is available here. ACM Transactions on Mathematical Software (TOMS),13(3):262-280,1987.
    [135]H. Szu and R. Hartley. Fast simulated annealing. Physics Letters A,122(3):157-162,1987.
    [136]E. Marinari and G. Parisi. Simulated tempering:a new Monte Carlo scheme. EPL (Euro-physics Letters),19(6):451,1992.
    [137]U. H. E. Hansmann and Y. Okamoto. Monte Carlo simulations in generalized ensemble: Multicanonical algorithm versus simulated tempering. Physical Review E,54(5):5863-5865, 1996.
    [138]W. Kerler and P. Rehberg. Simulated-tempering procedure for spin-glass simulations. Phys-ical Review E,50:4220-4225,1994.
    [139]U. H. E. Hansmann. Parallel tempering algorithm for conformational studies of biological molecules. Chemical Physics Letters,281(1):140-150,1997.
    [140]D. J. Earl and M. W. Deem. Parallel tempering:Theory, applications, and new perspectives. Physical Chemistry Chemical Physics,7(23):3910-3916,2005.
    [141]S. Trebst, M. Troyer, and U. H. E. Hansmann. Optimized parallel tempering simulations of proteins. The Journal of chemical physics,124:174903,2006.
    [142]F. H. Stillinger and T. A. Weber. Nonlinear optimization simplified by hypersurface defor-mation. Journal of Statistical Physics,52(5-6):1429-1445,1988.
    [143]L. Piela, J. Kostrowicki, and H. A. Scheraga. On the multiple-minima problem in the con-formational analysis of molecules:deformation of the potential energy hypersurface by the diffusion equation method. The Journal of Physical Chemistry,93(8):3339-3346,1989.
    [144]M. Vasquez, G. Nemethy, and H. A. Scheraga. Conformational energy calculations on polypeptides and proteins. Chemical Reviews,94(8):2183-2239,1994.
    [145]F. H. Stillinger and D. K. Stillinger. Cluster optimization simplified by interaction modifica-tion. The Journal of Chemical Physics,93:6106,1990.
    [146]W. Wenzel and K. Hamacher. Stochastic tunneling approach for global minimization of complex potential energy landscapes. Physical Review Letters,82(15):3003-3007,1999.
    [147]G. M. Torrie and J. P. Valleau. Nonphysical sampling distributions in Monte Carlo free-energy estimation:Umbrella sampling. Journal of Computational Physics,23(2):187-199, 1977.
    [148]J. Lee. New Monte Carlo algorithm:entropic sampling. Physical Review Letters,71(2): 211-214,1993.
    [149]F. Wang and D. P. Landau. Efficient, multiple-range random walk algorithm to calculate the density of states. Physical Review Letters,86(10):2050-2053,2001.
    [150]C. A. Floudas and V. Visweswaran. A global optimization algorithm (GOP) for certain classes of nonconvex NLPs-Ⅰ. Theory. Computers & Chemical Engineering,14(12):1397-1417,1990.
    [151]C. J. Powelia and A. Jablonskib. Evaluation of calculated and measured electron inelastic mean free paths near solid surfaces. J. Phys. Chem. Ref. Data,28(1),1999.
    [152]F. Yubero, D. Fujita, B. Ramskov, and S. Tougaard. Experimental test of model for angular and energy dependence of reflection-electron-energy-loss spectra. Physical Review B,53 (15):9728,1996.
    [153]G. Chiarello, E. Colavita, M. De Crescenzi, and S. Nannarone. Reflection electron-energy-loss investigation of the electronic and structural properties of palladium. Physical Review B,29(9):4878,1984.
    [154]Y. Ohno. Kramers-Kronig analysis of reflection electron-energy-loss spectra measured with a cylindrical mirror analyzer. Physical Review B,39(12):8209,1989.
    [155]J. C. Ingram, K. W. Nebesny, and J. E. Pemberton. Optical constants of the noble metals determined by reflection electron energy loss spectroscopy. Applied Surface Science,44(4): 293-300,1990.
    [156]F. Yubero, J.M. Sanz, E. Elizalde, and L. Galon. Kramers-Kronig analysis of reflection electron energy loss spectra (REELS) of Zr and ZrO2. Surface Science,237(4):173-180, 1990.
    [157]C. M. Kwei, C. Y. Wang, and C. J. Tung. Surface excitation parameters of low-energy electrons crossing solid surfaces. Surface and interface analysis,26(9):682-688,1998.
    [158]W. S. M. Werner, W. Smekal, C. Tomastik, and H. Stori. Surface excitation probability of medium energy electrons in metals and semiconductors. Surface Science,486(3):L461-L466,2001.
    [159]W. S. M. Werner, C. Tomastik, T. Cabela, G. Richter, and H. Stori. Electron inelastic mean free path measured by elastic peak electron spectroscopy for 24 solids between 50 and 3400 ev. Surface Science,470(1):L123-L128,2000.
    [160]Y. F. Chen. Surface effects on angular distributions in X-ray-photoelectron spectroscopy. Surface Science,519(1):115-124,2002.
    [161]C. M. Kwei, Y. C. Li, and C. J. Tung. Angular and energy dependences of the surface excitation parameter for electrons crossing a solid surface. Surface Science,600(18):3690-3694,2006.
    [162]C. M. Kwei, Chen Su, P., Y. F., and C. J. Tung. Monte carlo calculations of the reflection electron energy loss spectra in gold. Journal of Physics D:Applied Physics,30(1):13,1999.
    [163]N. Pauly and S. Tougaard. Theoretical determination of the surface excitation parameter for Ti, Fe, Cu, Pd, Ag, and Au. Surface Science,601(23):5611-5615,2007.
    [164]Z. J. Ding, H. M. Li, Q. R. Pu, Z. M. Zhang, and R. Shimizu. Reflection electron energy loss spectrum of surface plasmon excitation of Ag:A Monte Carlo study. Physical Review B,66 (8):085411,2002.
    [165]Ding Z. J. Salma, K., H. M. Li, and Z. M. Zhang. Surface excitation probabilities in surface electron spectroscopies. Surface Science,600(7):1526-1539,2006.
    [166]S. Tougaard and I. Chorkendorff. Differential inelastic electron scattering cross sections from experimental reflection electron-energy-loss spectra:Application to background removal in electron spectroscopy. Physical Review B,35(13):6570,1987.
    [167]S. Tougaard and J. Kraaer. Inelastic-electron-scattering cross sections for Si, Cu, Ag, Au, Ti, Fe, and Pd. Physical Review B,43(2):1651,1991.
    [168]F. Yubero, J. M. Sanz, J. F. Trigo, E. Elizalde, and S. Tougaard. Quantitative analysis of REELS spectra of ZrO2:Determination of the dielectric loss function and inelastic mean free paths. Surface and Interface Analysis,22(1-12):124-128,1994.
    [169]D. Chan and P. Richmond. Static and dynamic interactions with spatially dispersive media. Journal of Physics C:Solid State Physics,9(1):163,2001.
    [170]P. M. Echenique and J. B. Pendry. Absorption profile at surfaces. Journal of Physics C:Solid State Physics,8(18):2936,2001.
    [171]C.M. Kwei, Y. C. Li, and C. J. Tung. Angular and energy dependences of the surface excitation parameter for electrons crossing a solid surface. Surface Science,600(18):3690-3694,2006.
    [172]C. M. Kwei, S. J. Hwang, Y. C. Li, and C. J. Tung. Energy losses of charged particles moving parallel to the surface of an overlayer system. Journal of Applied Physics,93(11):9130-9136, 2003.
    [173]W. S. M. Werner, W. Smekal, C. Tomastik, and H. St ri. Surface excitation probability of medium energy electrons in metals and semiconductors. Surface Science,486(3):L461-L466,2001.
    [174]K. Salma, Z. J. Ding, H. M. Li, and Z. M. Zhang. Surface excitation probabilities in surface electron spectroscopies. Surface Science,600(7):1526-1539,2006.
    [175]Y. F. Chen. Surface effects on angular distributions in X-ray-photoelectron spectroscopy. Surface Science,519(1):115-124,2002.
    [176]G. Gergely, M. Menyhard, S. Gurban, J. Toth, and D. Varga. Experimental measurements of the surface excitation parameters of Cu, Au, Ni, Ag, Ge and Pd based on Si and other reference standard materials. Surface and Interface Analysis,36(8):1098-1101,2004.
    [177]W. S. M. Werner. Obtaining quantitative information on surface excitations from reflection electron energy-loss spectroscopy (REELS). Surface and Interface Analysis,35(4):347-353, 2003.
    [178]C. J. Tung, Y. F. Chen, C. M. Kwei, and T. L. Chou. Differential cross sections for plasmon excitations and reflected electron-energy-loss spectra. Physical Review B,49(23):16684, 1994.
    [179]W. S. M. Werner, L. Kover, S. Egri, J. Toth, and D. Varga. Measurement of the surface excitation probability of medium energy electrons reflected from Si, Ni, Ge and Ag surfaces. Surface Science,585(1):85-94,2005.
    [180]A. Jablonski and J. Zemek. Angle-resolved elastic peak electron spectroscopy:Role of surface excitations. Surface Science,601(16):3409-3420,2007.
    [181]G. Gergely, S. Gurban, M. Menyhard, A. Jablonski, J. Zemek, and K. Goto. Experimental determination of the electron elastic backscattering probability and the surface excitation parameter for Si, Ni, Cu and Ag at 0.5 and 1 keV energies. Surface and Interface Analysis, 43(11):1365-1370,2011.
    [182]T. Nagatomi, S. Tanuma, and K. Goto. Absolutely determined inelastic mean free paths for 300-3000 ev electrons in 10 elemental solids. Surface and Interface Analysis,42(10-11): 1537-1540,2010.
    [183]N. Pauly and S. Tougaard. Calculation of the angular distribution of the surface excitation parameter for Ti, Fe, Cu, Pd, Ag, and Au. Surface and Interface Analysis,40(3-4):731-733, 2008.
    [184]N. Pauly and S. Tougaard. Surface excitation parameter for 12 semiconductors and deter-mination of a general predictive formula. Surface and Interface Analysis,41(9):735-740, 2009.
    [185]G. Gergely. Elastic backscattering of electrons:determination of physical parameters of elec-tron transport processes by elastic peak electron spectroscopy. Progress in Surface Science, 71(1):31-88,2002.
    [186]A. Jablonski and C. J. Powell. Relationships between electron inelastic mean free paths, effective attenuation lengths, and mean escape depths. Journal of Electron Spectroscopy and Related Phenomena,100(1):137-160,1999.
    [187]S. Tanuma, T. Shiratori, T. Kimura, K. Goto, S. Ichimura, and C. J. Powell. Experimental determination of electron inelastic mean free paths in 13 elemental solids in the 50 to 5000 ev energy range by elastic-peak electron spectroscopy. Surface and Interface Analysis,37 (11):833-845,2005.
    [188]W. De la Cruz and F. Yubero. Electron inelastic mean free paths:influence of the modelling energy-loss function. Surface and Interface Analysis,39(5):460-463,2007.
    [189]K. Olejnik, J. Zemek, and W. S. M. Werner. Angular-resolved photoelectron spectroscopy of corrugated surfaces. Surface Science,595(1):212-222,2005.
    [190]J. Zemek, P. Jiricek, B. Lesiak, and A. Jablonski. Surface excitations in electron backscatter- ing from silicon surfaces. Surface Science,562(1):92-100,2004.
    [191]R. F. Egerton. Electron Energy-Loss Spectroscopy in the Electron Microscope. New York, PlenumPress,1996.
    [192]W. S. M. Werner, W. Smekal, H. Stori, and C. Eisenmenger-Sittner. Angular dependence of the surface excitation probability for medium energy electrons backscattered from Al and Si surfaces. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,19(5): 2388-2393,2001.
    [193]T. R. Thomas. Rough Surfaces. Longman, London,1982.
    [194]D. J. Whitehouse. Handbook of Surface Metrology. Bristol, Institute of Physics,1994.
    [195]T. E. Madey A. W. Czanderna and C. J. Powell. Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis. Plenum, New York,1998.
    [196]A. Jablonski, K. Olejnik, and J. Zemek. Elastic electron backscattering from flat and rough Si surfaces. Journal of Electron Spectroscopy and Related Phenomena,152(1):100-106,2006.
    [197]S. Chelda, C. Robert-Goumet, B. Gruzza, L. Bideux, and G. Monier. Effect of surface rough-ness on EPES and AREPES measurements:Flat and crenels silicon surfaces. Surface Sci-ence,602(12):2114-2120,2008.
    [198]W. Dolinski, S. Mroz, and M. Zagorski. Determination of the inelastic mean free path of electrons in silver and copper by measurement and calculation of the elastic scattering coef-ficient. Surface Science,200(2):361-367,1988.
    [199]P. Jiricek, J. Zemek, P. Lejcek, B. Lesiak, A. Jablonski, and M. Cernansky. Stability of the inelastic mean free paths determined by elastic peak electron spectroscopy in nickel and silicon. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,20(2): 447-455,2002.
    [200]J. Zemek, P. Jiricek, A. Jablonski, and B. Lesiak. Elastic electron backscattering from silicon surfaces:effect of surface roughness. Surface and Interface Analysis,34(1):215-219,2002.
    [201]S. Tanuma, S. Ichimura, and K. Goto. Estimation of surface excitation correction factor for 200-5000 eV in Ni from absolute elastic scattering electron spectroscopy. Surface and Interface Analysis,30(1):212-216,2000.
    [202]A. Jablonski and J. Zemek. Angle-resolved elastic peak electron spectroscopy:Role of surface excitations. Surface Science,601 (16):3409-3420,2007.
    [203]J. Zemek, P. Jiricek, B. Lesiak, and A. Jablonski. Surface excitations in electron backscatter-ing from silicon surfaces. Surface Science,562(1):92-100,2004.
    [204]C. Robert, L. Bideux, B. Gruzza, E. Vazsonyi, and G. Gergely. Elastic reflection of electrons by porous silicon layered (PSL) surfaces:effects of porosity. Applied Surface Science,115 (2):111-115,1997.
    [205]B. Lesiak, A. Kosinski, R. Nowakowski, L. Kover, J. Toth, D. Varga, I. Cserny, A. Sulyok, and G. Gergely. Morphology, surface roughness, electron inelastic and quasielastic scattering in elastic peak electron spectroscopy of polymers. Surface and Interface Analysis,39(10): 798-804,2007.
    [206]C. S. Fadley, R. J. Baird, W. Siekhaus, T. Novakov, and S. A. L. Bergstrom. Surface analysis and angular distributions in X-ray photoelectron spectroscopy. Journal of Electron Spec-troscopy and Related Phenomena,4(2):93-137,1974.
    [207]B. Strawbridge, R. K. Singh, C. Beach, S. Mahajan, and N. Newman. Effect of surface topography on reflection electron energy loss plasmon spectra of group Ⅲ metals. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,24(5):1776-1781,2006.
    [208]B. Strawbridge, N. Cernetic, J. Chapley, R. K. Singh, S. Mahajan, and N. Newman. Influence of surface topography on in situ reflection electron energy loss spectroscopy plasmon spectra of AIN, GaN, and InN semiconductors. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,29(4):041602-041602,2011.
    [209]C. J. Powell. Characteristic energy losses of 8-keV electrons in liquid Al, Bi, In, Ga, Hg, and Au. Physical Review,175(3):972,1968.
    [210]B. Da, S.F. Mao, and Z. J. Ding. Validity of the semi-classical approach for calculation of the surface excitation parameter. Journal of Physics:Condensed Matter,23(39):395003,2011.
    [211]A. Zenkevich, R. Mantovan, M. Fanciulli, M. Minnekaev, Y. Matveyev, Y. Lebedinskii, S. Thiess, and W. Drube. Fe/BaTiO3 interface:Band alignment and chemical properties. Ap-plied Physics Letters,99(18):182905-182905,2011.
    [212]H. Jin, S. K. Oh, Y. J. Cho, H. J. Kang, and S. Tougaard. Electronic properties of ultrathin (HfO)(SiO) dielectrics on Si (100). Journal of Applied Physics,102:053709,2007.
    [213]H. Jin, S. K. Oh, H. J. Kang, and S. Tougaard. Electronic properties of ultrathin HfO2, Al2O3, and Hf-Al-O dielectric films on Si (100) studied by quantitative analysis of reflection electron energy loss spectra. Journal of Applied Physics,100(8):083713-083713,2006.
    [214]H. Jin, S. K. Oh, Y. J. Cho, H. J. Kang, and S. Tougaard. Electronic properties of ultrathin (HfO)(SiO) dielectrics on Si (100). Journal of Applied Physics,102:053709,2007.
    [215]B. A. Orlowski, B. J. Kowalski, K. Fronc, R. Zuberek, S. Mickevicius, F. Mirabella, and J. Ghijsen. Study of Fe/Si multilayers by photoemission spectroscopy. Journal of Alloys and Compounds,362(1):202-205,2004.
    [216]R. W. E. Van de Kruijs, M. T. Rekveldt, H. Fredrikze, J. T. Kohlhepp, J. K. Ha, and W. J. M. de Jonge. Magnetic interlayer exchange coupling in epitaxial Fe/Si/Fe (001) studied by polarized neutron reflectometry. Physical Review B,65(6):064440,2002.
    [217]A. S. Parshin, G. A. Aleksandrova, S. N. Varnakov, and S. G. Ovchinnikov. Analysis of Fe-Si layered structures by reflected electron energy loss spectroscopy and inelastic scattering cross-section. Journal of Structural Chemistry,50(3):429-433,2009.
    [218]P. Prieto, S. Hofmann, E. Elizalde, and J. M. Sanz. Variation of the electron inelastic mean free path during depth profiling of the Fe/Si interface as determined by quantitative REELS. Surface and Interface Analysis,36(10):1392-1401,2004.
    [219]C. M. Kwei, S. Y. Chiou, and Y. C. Li. Electron inelastic interactions with overlayer systems. Journal of Applied Physics,85(12):8247-8254,1999.
    [220]Y. C. Li, Y. H. Tu, C. M. Kwei, and C. J. Tung. Retardation effect on energy losses of electrons moving parallel to solid surfaces. Journal of Applied Physics,100(10):103703-103703,2006.
    [221]F. Yubero, J. M. Sanz, B. Ramskov, and S. Tougaard. Model for quantitative analysis of reflection-electron-energy-loss spectra:Angular dependence. Physical Review B,53(15): 9719,1996.
    [222]Y. F. Chen and C. M. Kwei. Electron differential inverse mean free path for surface electron spectroscopy. Surface Science,364(2):131-140,1996.
    [223]C. M. Kwei, C. Y Wang, and C. J. Tung. Surface excitation parameters of low-energy electrons crossing solid surfaces. Surface and Interface Analysis,26(9):682-688,1998.
    [224]Z. J. Ding and R. Shimizu. Inelastic collisions of kV electrons in solids. Surface Science, 222(2):313-331,1989.
    [225]D. Tahir, E. K. Lee, S. K. Oh, H. J. Kang, S. Heo, J. G. Chung, J. C. Lee, and S. Tougaard. Dielectric and optical properties of Zr silicate thin films grown on Si (100) by atomic layer deposition. Journal of Applied Physics,106(8):084108-084108,2009.
    [226]T. K. Gupta. Application of zinc oxide varistors. Journal of the American Ceramic Society, 73(7):1817-1840,2005.
    [227]V. Ravikumar, R. P. Rodrigues, and V. P. Dravid. An investigation of acceptor-doped grain boundaries in. Journal of Physics D:Applied Physics,29(7):1799,1999.
    [228]N. D. Browning, E. M. James, K. Kishida, I. Arslan, J. P. Buban, J. A. Zaborac, S. J. Penny-cook, Y. Xin, and G. Duscher. Scanning transmission electron microscopy:an experimental tool for atomic scale interface science. Reviews on Advanced Materials Science(Russia),1 (1):1-26,2000.
    [229]D. A. Crandles, B. Nicholas, C. Dreher, C. C. Homes, A. W. McConnell, B. P. Clayman, W. H. Gong, and J. E. Greedan. Optical properties of highly reduced SrTiO3-x. Physical Review B,59:12842-12846,1999.
    [230]M. Leonhardt, J. Jamnik, and J. Maier. In Situ Monitoring and Quantitative Analysis of Oxygen Diffusion Through Schottky-Barriers in SrTiO3 Bicrystals. Electrochemical and Solid-state Letters,2(7):333-335,1999.
    [231]K. Van Benthem, C. Elsasser, and R. H. French. Bulk electronic structure of SrTiO3 Experi-ment and theory. Journal of Applied Physics,90(12):6156-6164,2001.
    [232]S. P. Kowalczyk, F. R. McFeely, L. Ley, V. T. Gritsyna, and D. A. Shirley. The electronic structure of SrTiO3 and some simple related oxides (MgO, A12O3, SrO, TiO2). Solid State Communications,23(3):161-169,1977.
    [233]N. Shanthi and D. D. Sarma. Electronic structure of electron doped SrTiO3:SrTiO3-δ and Sr1-xLaxTiO3. Physical Review B,57(4):2153,1998.
    [234]G. Cappellini, S. Bouette-Russo, B. Amadon, C. Noguera, and F. Finocchi. Structural prop-erties and quasiparticle energies of cubic SrO, MgO and SrTiO3. Journal of Physics:Con-densed Matter,12(15):3671,2000.
    [235]F. Paumier, V. Fouquet, M. J. Guittet, M. Gautier-Soyer, R. H. French, G. Tan, Y. M. Chi-ang, M. Tang, A. Ramos, and S. Y. Chung. Reflection electron energy loss spectroscopy of nanometric oxide layers and of their interfaces with a substrate. Materials Science and Engineering:A,422(1):29-40,2006.
    [236]V. Fouquet-Parry, F. Paumier, M. J. Guittet, and M. Gautier-Soyer. Dielectric properties of pure and Nb-doped SrTiO3 surfaces:a reflection electron energy loss spectroscopy study. In Journal of Physics:Conference Series, volume 94, page 012010. IOP Publishing,2008.
    [237]J. Fink, T. Muller-Heinzerling, J. Pfluger, B. Scheerer, B. Dischler, P. Koidl, A. Bubenzer, and R. E. Sah. Investigation of hydrocarbon-plasma-generated carbon films by electron-energy-loss spectroscopy. Physical Review B,30(8):4713,1984.
    [238]P. A. M. Dirac. Discussion of the infinite distribution of electrons in the theory of the positron. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 30, pages 150-163. Cambridge Univ Press,1934.
    [239]Werner Heisenberg. Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. In Original Scientific Papers Wissenschaftliche Originalarbeiten, pages 478-504. Springer,1985.
    [240]M. O. S. M. Hillery, R. F. Oconnell, M. O. Scully, and E. P. Wigner. Distribution functions in physics:fundamentals. Physics Reports,106(3):121-167,1984.
    [241]P. A. M. Dirac and P. A. M. Dirac. Bakerian lecture. The physical interpretation of quan-tum mechanics. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,180(980):1-40,1942.
    [242]R. P. Feynman. Quantum Implications:Essays in Honour of David Bohm London. U. S. GPO, New York,1987.
    [243]D. Lowe. Machine Learning Workshop 2004. Sheffield, England,2004.
    [244]D. Sokolovski and J. N. L. Connor. Negative probability and the distributions of dwell, transmission, and reflection times for quantum tunneling. Physical Review A,44(3):1500, 1991.
    [245]S. Youssef. Quantum mechanics as complex probability theory. arXiv preprint hep-th/93O7019,1993.
    [246]S. Youssef. Is complex probability theory consistent with Bell's theorem? Physics Letters A, 204(3):181-187,1995.
    [247]M. O. Scully, H. Walther, and W. Schleich. Feynman's approach to negative probability in quantum mechanics. Physical Review A,49(3):1562,1994.
    [248]A. Khrennikov. p-adic probability interpretation of Bell's inequality. Physics Letters A,200 (3):219-223,1995.
    [249]A. Khrennikov. On the physical interpretation of negative probabilities in Prugovecki's em-pirical theory of measurement. Canadian Journal of Physics,75(5):291-298,1997.
    [250]Y. D. Han, W. Y. Hwang, and I. G. Koh. Explicit solutions for negative-probability measures for all entangled states. Physics Letters A,221(5):283-286,1996.
    [251]T. Curtright and C. Zachos. Negative probability and uncertainty relations. Modern Physics Letters A,16(37):2381-2385,2001.
    [252]D. Sokolovski. Weak values 'negative probability' and the uncertainty principle. Physical Review A,76(4):042125,2007.
    [253]A. Bednorz and W. Belzig. On the problem of negative probabilities in time-resolved full counting statistics. In Journal of Physics:Conference Series, volume 150, page 022005. IOP Publishing,2009.
    [254]H. F. Hofmann. How to simulate a universal quantum computer using negative probabilities. Journal of Physics A:Mathematical and Theoretical,42(27):275304,2009.
    [255]M.B. Emmett. MORSE-CGA, A Monte Carlo Radiation Transport Code With Array Geom-etry Capability. ORNL-6174, America:ORNL,1985.
    [256]D. Li, Xie Z. S., and J. M. Zhang. MCMG:A 3-D multigroup P3 Monte Carlo code and its benchmarks. Journal of Nuclear Science and Technology,37(7):608-614,2000.
    [257]H. Jin, H. Yoshikawa, S. Tanuma, and S. Tougaard. Energy loss function for Si determined from reflection electron energy loss spectra with factor analysis method. Surface and Inter-face Analysis,42(6-7):1076-1081,2010.
    [258]Mark Burgin. Interpretations of Negative Probabilities. arXiv preprint arXiv:1008.1287, 2010.
    [259]Z. J. Ding, K. Salma, H. M. Li, Z. M. Zhang, K. Tokesi, D. Varga, J. Toth, K. Goto, and R. Shimizu. Monte Carlo simulation study of electron interaction with solids and surfaces. Surface and Interface Analysis,38(4):657-663,2006.
    [260]Z. I. Ding and R. Shimizu. Inelastic collisions of kV electrons in solids. Surface Science, 222(2):313-331,1989.
    [261]J. D. Bourke and C. T. Chantler. Measurements of electron inelastic mean free paths in materials. Physical Review Letters,104(20):206601,2010.
    [262]S. Tanuma, C. J. Powell, and D. R. Penn. Calculations of electorn inelastic mean free paths, n. Data for 27 elements over the 50-2000 eV range. Surface and Interface Analysis,17(13): 911-926,2004.
    [263]S. Tanuma, C. J. Powell, and D. R. Penn. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range. Surface and Interface Analysis, 21(3):165-176,2004.
    [264]S. Tanuma, C. J. Powell, and D. R. Penn. Calculations of Electron Inelastic Mean Free Paths (IMFPs). Surf. Interface Anal,25:25-35,1997.
    [265]C. J. Powell. Analysis of optical-and inelastic-electron-scattering data. Ⅰ. Parametric Calcu-lations. JOSA,59(6):738-743,1969.
    [266]C. J. Powell. Analysis of optical-and inelastic-electron-scattering data. Ⅱ. Application to Al. JOSA,60(1):78-93,1970.
    [267]C. J. Powell. Analysis of optical-and inelastic-electron-scattering data. Ⅲ. Reflectance data for beryllium, germanium, antimony, and bismuth. JOSA,60(2):214-220,1970.
    [268]S. Tougaard and I. Chorkendorff. Differential inelastic electron scattering cross sections from experimental reflection electron-energy-loss spectra:Application to background removal in electron spectroscopy. Physical Review B,35(13):6570,1987.
    [269]B. Dacison. Neutron Transport Theory. Oxford University Press, Oxford,1955.
    [270]W. S. M. Werner. Partial intensity analysis (PIA) for quantitative electron spectroscopy. Surface and Interface Analysis,23(11):737-752,1995.
    [271]M. Vicanek. Electron transport processes in reflection electron energy loss spectroscopy (REELS) and X-ray photoelectron spectroscopy (XPS). Surface Science,440(1):1-40,1999.
    [272]W. S. M. Werner and M. Hayek. Influence of the elastic scattering cross-section on angle-resolved reflection electron energy loss spectra of polycrystalline Al, Ni, Pt and Au. Surface and Interface Analysis,22(1-12):79-83,1994.
    [273]Y. F. Chen. Derivation of inelastic-electron-scattering cross sections from quantitative anal-ysis of reflection-electron-energy-loss spectra. Physical Review B,58(12):8087,1998.
    [274]H. Yoshikawa, R. Shimizu, and Z. J. Ding. Energy loss functions derived by Monte Carlo simulation from the Au 4f XPS spectrum. Surface Science,261(1):403-411,1992.
    [275]F. Yubero, S. Tougaard, E. Elizalde, and J. M. Sanz. Dielectric loss function of Si and SiO2 from quantitative analysis of REELS spectra. Surface and Interface Analysis,20(8):719-726, 1993.
    [276]W. Bekhti and M. Ghamnia. Optical properties of SiO2 determined by reflection electron energy loss spectroscopy. Catalysis Today,89(3):303-306,2004.
    [277]H. Jin, H. Shinotsuka, H. Yoshikawa, H. Iwai, S. Tanuma, and S. Tougaard. Measurement of optical constants of Si and SiO2 from reflection electron energy loss spectra using factor analysis method. Journal of Applied Physics,107:083709,2010.
    [278]H. Yoshikawa, T. Tsukamoto, R. Shimizu, and V. Crist. Monte Carlo analysis of XPS and REELS spectra obtained at different take-off angles. Surface and Interface Analysis,18(11): 757-764,1992.
    [279]H. Yoshikawa, Y. Irokawa, and R. Shimizu. Measurements of reflected electron energy loss spectrometry and X-ray photoelectron spectroscopy spectra for derivations of the energy loss function and source function for Au 4f photoelectrons. Journal of Vacuum Science& Technology A:Vacuum, Surfaces, and Films,13(4):1984-1989,1995.
    [280]L. Landau. On the energy loss of fast particles by ionization. J. Phys. (Moscow),8(4): 204-204,1944.
    [281]T. Nagotomi, Z. J. Ding, and R. Shimizu. Derivation of new energy-loss functions as applied to analysis of Si 2p XPS spectra. Surface Science,359(1-3):163-173,1996.
    [282]T. Nagatomi, R. Shimizu, and R. H. Ritchie. Effective energy-loss functions for oxygen-adsorbed amorphous silicon surfaces. Journal of Applied Physics,85(8):4231-4237,1999.
    [283]T. Nagatomi, R. Shimizu, and R. H. Ritchie. Energy loss functions for electron energy loss spectroscopy. Surface Science,419(2):158-173,1999.
    [284]Z. M. Zhang, T. Koshikawa, T. Iyasu, R. Shimizu, K. Goto, and A. Tanaka. Monte-Carlo simulation of X-ray photoelectron emission from silver. Surface and Interface Analysis,35 (10):818-823,2003.
    [285]Z. J. Ding, T. Nagatomi, R. Shimizu, and K. Goto. Monte Carlo simulation of background in AES:a comparison with experiment. Surface Science,336(3):397-403,1995.
    [286]Z. J. Ding, H. M. Li, K. Goto, Y. Z. Jiang, and R. Shimizu. Energy spectra of backscat-tered electrons in Auger electron spectroscopy:comparison of Monte Carlo simulations with experiment. Journal of Applied Physics,96(8):4598-4606,2004.
    [287]W. S. M. Werner. Differential probability for surface and volume electronic excitations in Fe, Pd and Pt. Surface Science,588(1):26-40,2005.
    [288]W. S. M. Werner. Electron transport in solids for quantitative surface analysis. Surface and Interface Analysis,31(3):141-176,2001.
    [289]W. S. M. Werner, M. R. Went, and M. Vos. Surface plasmon excitation at a Au surface by 150-40,000 eV electrons. Surface Science,601(17):L109-L113,2007.
    [290]W. S. M. Werner, K. Glantschnig, and C. Ambrosch-Draxl. Optical Constants and Inelas- tic Electron-Scattering Data for 17 Elemental Metals. Journal of Physical and Chemical Reference Data,38:1013,2009.
    [291]W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika,57(1):97-109,1970.
    [292]S. Kirkpatrick, M. P. Vecchi, and et. al. Optimization by simmulated annealing. Science,220 (4598):671-680,1983.
    [293]V. Cerny. Thermodynamical approach to the traveling salesman problem:An efficient simu-lation algorithm. Journal of Optimization Theory and Applications,45(1):41-51,1985.
    [294]D. O. MacCallum, A. Romig, D. C. Joy, and et. al. Calculations of Mott scattering cross section. Journal of Applied Physics,68(7):3066-3072,1990.
    [295]A. Jablonski, F. Salvat, and C. J. Powell. Comparison of electron elastic-scattering cross sections calculated from two commonly used atomic potentials. Journal of Physical and Chemical Reference Data,33(2):409-452,2004.
    [296]G. Chiarello, E. Colavita, M. De Crescenzi, and S. Nannarone. Reflection electron-energy-loss investigation of the electronic and structural properties of palladium. Physical Review B,29(9):4878,1984.
    [297]E. Colavita, M. De Crescenzi, L. Papagno, R. Scarmozzino, L. S. Caputi, R. Rosei, and E. Tosatti. Single-particle and collective excitations in ferromagnetic iron from electron-energy-loss spectroscopy. Physical Review B,25(4):2490,1982.
    [298]Z. J. Ding. Inelastic scattering of electrons at real metal surfaces. Physical Review B,55(15): 9999,1997.
    [299]J. C. Ashley. Interaction of low-energy electrons with condensed matter:Stopping powers and inelastic mean free paths from optical data. Journal of Electron Spectroscopy and Related Phenomena,46(1):199-214,1988.
    [300]D. P. Landau and K. Binder. A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge,2000.
    [301]T. H. DiStefano and D. E. Eastman. The band edge of amorphous SiO2 by photoinjection and photoconductivity measurements. Solid State Communications,9(24):2259-2261,1971.
    [302]F. Aryasetiawan and O. Gunnarsson. The GW method. Reports on Progress in Physics,61 (3):237,1999.
    [303]L. E. Ramos, J. Furthmuller, and F. Bechstedt. Quasiparticle band structures and optical spectra of β-cristobalite SiO2. Physical Review B,69(8):085102,2004.
    [304]A. Barranco, F. Yubero, J. P. Espinos, P. Groning, and A. R. Gonzalez-Elipe. Electronic state characterization of SiO2 thin films prepared by evaporation. Journal of Applied Physics,97: 113714,2005.
    [305]J. Park, S. Heo, J. Chung, H. Kim, H. Lee, K. Kim, and G. S. Park. Bandgap measurement of thin dielectric films using monochromated STEM-EELS. Ultramicroscopy,109(9):1183-1188,2009.
    [306]J. Q. Hu, Q. Chen, Z. X. Xie, G. B. Han, R. H. Wang, B. Ren, Y. Zhang, Z. L. Yang, and Z. Q. Tian. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Advanced Functional Materials,14(2):183-189,2004.
    [307]A. D. Boardman. Electromagnetic Surface Modes. Wiley, New York,1982.
    [308]U. Kreibig and et al. Optical Properties of Metal Clusters. Springer, Berlin,1995.
    [309]G. Mie. Contributions to the optics of turbid media, particularly of colloidal metal solutions. Contributions to the optics of turbid media, particularly of colloidal metal solutions Transl. into ENGLISH from Ann. Phys.(Leipzig), v.25, no.3,1908 p 377-445,1:377-445,1976.
    [310]P. C. Waterman. Symmetry, unitarity, and geometry in electromagnetic scattering. Physical Review D,3(4):825,1971.
    [311]L. Novotny, D. W. Pohl, and B. Hecht. Light confinement in scanning near-field optical microscopy. Ultramicroscopy,61(1):1-9,1995.
    [312]E. Moreno, D. Erni, C. Hafner, and R. Vahldieck. Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures. JOSA A,19(1):101-111,2002.
    [313]C. L. Haynes, A. D. McFarland, L. L. Zhao, Richard P. Van D., G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall. Nanoparticle optics:the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. The Journal of Physical Chemistry B,107 (30):7337-7342,2003.
    [314]S. Kawata, A. Ono, and P. Verma. Subwavelength colour imaging with a metallic nanolens. Nature Photonics,2(7):438-442,2008.
    [315]F. Hao and P. Nordlander. Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chemical Physics Letters,446(1):115-118,2007.
    [316]N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlan-der, and S. A. Maier. Fano resonances in individual coherent plasmonic nanocavities. Nano Letters,9(4):1663-1667,2009.
    [317]F. J. G. De Abajo and A. Howie. Retarded field calculation of electron energy loss in inho-mogeneous dielectrics. Physical Review B,65(11):115418,2002.
    [318]E. M. Purcell and C. R. Pennypacker. Scattering and absorption of light by nonspherical dielectric grains. The Astrophysical Journal,186:705-714,1973.
    [319]B. T. Draine. The discrete-dipole approximation and its application to interstellar graphite grains. The Astrophysical Journal,333:848-872,1988.
    [320]B. T. Draine and J. Goodman. Beyond Clausius-Mossotti-Wave propagation on a polarizable point lattice and the discrete dipole approximation. The Astrophysical Journal,405:685-697, 1993.
    [321]B. T. Draine and P. J. Flatau. Discrete-dipole approximation for scattering calculations. JOSA A,11(4):1491-1499,1994.
    [322]B. T. Draine and P. J. Flatau. User Guide for the Discrete Dipole Approximation Code DDSCAT7.2. arXiv preprint arXiv:1202.3424,2012.
    [323]L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma. En-gineering light absorption in semiconductor nanowire devices. Nature Materials,8(8):643-647,2009.
    [324]J. Nelayah, M. Kodak, O. Stephan, F. J. G. De Abajo, M. Tence, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex. Mapping surface plasmons on a single metallic nanoparticle. Nature Physics,3(5):348-353,2007.
    [325]P. E. Batson. Surface plasmon coupling in clusters of small spheres. Physical Review Letters, 49(13):936-940,1982.
    [326]D. Ugarte, C. Colliex, and P. Trebbia. Surface-and interface-plasmon modes on small semi-conducting spheres. Physical Review B,45(8):4332,1992.
    [327]N. Geuquet and L. Henrard. EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation. Ultramicroscopy,110(8):1075-1080,2010.
    [328]K. L. Shuford, M. A. Ratner, and G. C. Schatz. Multipolar excitation in triangular nanoprisms. The Journal of Chemical Physics,123:114713,2005.
    [329]M. Gell-Mann and F. E. Low. Quantum electrodynamics at small distances. Physical Review, 95(5):1300,1954.
    [330]P. M. Echenique, A. Howie, and D. J. Wheatley. Excitation of dielectric spheres by external electron beams. Philosophical Magazine B,56(3):335-349,1987.
    [331]A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers:influence of beam damage and mapping of dark modes. ACS nano, 3(10):3015-3022,2009.
    [332]A. Pulisciano, S. J.Park, and R. E. Palmer. Surface plasmon excitation of Au and Ag in scanning probe energy loss spectroscopy. Applied Physics Letters,93(21):213109-213109, 2008.
    [333]S. R. Barman, C. Biswas, and K. Horn. Electronic excitations on silver surfaces. Physical Review B,69(4):045413,2004.
    [334]F. Ouyang, P. E. Batson, and M. Isaacson. Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Physical Review B,46(23):15421,1992.
    [335]J. Harris and R. O. Jones. Dynamical corrections to the image potential. Journal of Physics C:Solid State Physics,6(24):3585,2001.
    [336]J. Harris and R. O. Jones. Image force for a moving charge. Journal of Physics C:Solid State Physics, 1(20):3751,2001.
    [337]H. Jin, H. Shinotsuka, H. Yoshikawa, H. Iwai, S. Tanuma, and S. Tougaard. Measurement of optical constants of Si and SiO2 from reflection electron energy loss spectra using factor analysis method. Journal of Applied Physics,107:083709,2010.
    [338]M. H. Reilly. Temperature dependence of the short wavelength transmittance limit of vacuum ultraviolet window materials:I. theoretical, including interpretations for UV spectra of SiO2, GeO2, and A12O3. Journal of Physics and Chemistry of Solids,31(5):1041-1056,1970.
    [339]K. L. Yip and W. B. Fowler. Electronic structure of SiO2. Ⅱ. Calculations and results. Phys-ical Review B,10(4):1400,1974.
    [340]S. T. Pantelides. Valence bands and density of states for-cristobalite form of SiO2. Physics Letters A,54(5):401-402,1975.
    [341]P. M. Schneider and W. B. Fowler. Band structure and optical properties of silicon dioxide. Physical Review Letters,36(8):425-428,1976.
    [342]C. E. Moore, in:Atomic Energy Levels, U. S. National Bureau of Standards, National Stan-dard Reference Data Systems 35. U. S. GPO, Washington, D. C.,1971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700