高能e~+e~-/γγ对撞机上的重味物理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重味物理是检验与发展标准模型的重要领域,本文研究了高能e~+e~-/γγ对撞机上与重味物理相关的问题。
     e~+e~-湮灭过程中,末态多部分子系统的色结构是连接微扰QCD相与非微扰QCD相的界面,不同的色结构可能会导致不同的强子化结果,对末态多部分子系统色结构的研究有助于理解强子化机制。本文研究了e~+e~-→c(?)q(?)→h's过程中末态部分子系统c(?)q(?)的色连接及其强子化问题。当cq和(?)分别处于SU_c(3)的3~*和3态且不变质量较小可以形成diquark-antidiquark对时,本文用Pythia模拟了这种diquark对碎裂过程,研究了(?)等末态粒子的产生,给出了(?)的动量谱和(?)关联等。结果表明高能e~+e~-反应的强子化过程可能包含diquark对碎裂的贡献,得到的理论预言与现有实验数据并不矛盾。
     对双重重子过程的研究有助于进一步理解双重重子的产生机制和末态多部分子系统色结构的性质。本文研究了双光子对撞机上双重重子(?)、(?)等粒子的产生,计算了质心系能量为(?)=500 GeV时(?)、(?)的产生率,并研究了(?)的各种分布,如cosθ分布、能量分布等,发现来自色三重态和色六重态的diquark贡献对双重重子的产生都很重要,对于高能极化双光子对撞机,选择合适的初始粒子极化度可以提高双重重子的产生率。
     Top夸克是目前已知的最重的费米子,其寿命极短,性质不受强子化过程的影响,可看作是“自由”夸克,在寻找新物理方面起着重要的作用。如果unparticle存在,top夸克对的产生过程将会受到unparticle效应的影响,本文研究了双光子对撞机上unparticle对top夸克对产生过程的影响,结果表明unparticle引起的效应依赖于它的自旋和标度维数d_u,并且发现标量unparticle可能对光子对撞机上t(?)的产生有重要影响。由于unparticle的贡献,在t(?)不变质量和top的横向动量分布中出现一些值得关注的现象,可以作为研究unparticle特性的一个信号。
Heavy quark physics plays an important role in testing the Standard Model and searching for new physics. The thesis is concerned on the problems which relate with heavy quark phenomenology in e~+ e~-/γγcollision at high energy.
     In the annihilation of e~+e~-, the color connection of final parton system plays a crucial role to set the "surface" between the Perturbative Quantum Chromodynamics(PQCD) phase and the hadronization one. Different color connection may lead to different hadronization states. The investigation on color connection of final parton system is helpful for understanding the mechanism of hadronization. In this thesis, we investigate the color connection and diquark fragmentation in e~+e~-→c(?)q(?)→h's process. A special case is that two quarks in colour state 3~* attract each other and form a "diquark" when their invariant mass is small enough, and similarly two antiquarks form an antidiquark. For this decomposition, the diquark fragmentation is employed based on Pythia. We investigate the production of final state particles, e.g. (?) . The momentum spectrum of (?) and (?) (?) correlation are calculated. It is found that the predictions for (?) production including the diquark pair production will not conflict with the available data and a portion of diquark fragmentation events is favored in high energy e~+e~- reaction.
     The investigation of doubly heavy baryon production is helpful for understanding both the production mechanism and the color connection of final state partons. In this thesis, we investigate the production of doubly heavy baryon at photon collider, e.g. (?),(?). The cross sections of (?) and (?) are calculated at (?)=500GeV in the e~+e~- CMS. Additionally, taking (?) as an example, we give the predictions for the distributions of cosθ, x etc.. Here,θand x are defined in e~+e~- CMS, whereθis the angle between the moving direction of (?) and that of the beam, x = 2E/(?) and E the energy of (?). One can find that the contributions from the color sextet diquark and that from the color triplet one are important for the production of doubly heavy baryon. The production rate of (?) can be increased with appropriate choice of initial beam polarizations.
     Top quark is the heaviest fermion as far as we know. Its life is so short that it can not be affected by the hadronization, which makes it be a free quark. Therefore, top quark physics will play an important role in finding new physics beyond the Standard Model. If unparticle exists, the production of top quark pair will be affected by its effects. We investigated the unparticle effects on top quark pair production at photon collider in this thesis. It is found that the unparticle effects depend on the unparticle spin and its scale dimension d_u. Distributions of t(?) invariant mass and that for transverse momentum of top quark with respect to Standard Model and unparticle production are predicted. An odd valley with scalar unparticle contribution appears for some values of d_u, which is due to the big cancellation between the contribution from SM and that from unparticle. This character may be used to study the properties of scalar unparticle. Our investigations also show that scalar unparticle may play a significant role in t(?) production at photon collider if it exists.
引文
[1] Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Lett. B 436(1998) 33; Phys. Rev. Lett. 81, 1562 (1998).
    [2] Q. R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett. 89, 011301(2002). Phys. Rev. Lett. 89, 011302 (2002)
    [3] K. Eguchi et al. [KamLAND Collaboration], Phys. Rev. Lett. 90, 021802(2003).
    [4] M. H. Ahn et al. [K2K Collaboration], Phys. Rev. Lett. 90, 041801(2003).
    [5] G. Gustafson, J. H(?)kkinen, Z.Phys.C64,659 (1994).
    [6] Zong-Guo Si, Qun Wang, and Qu-Bing Xie, Phys.Lett.B401,107 (1997).
    [7] Q. Wang, G. Gustafson and Q. b. Xie, Phys. Rev. D 62, 054004 (2000).
    [8] C. Friberg, G. Gustafson and J. Hakkinen, Nucl. Phys. B 490, 289,1997.
    [9] Shi-Yuan Li, Feng-Lan Shao and Qu-Bing Xie, Phys. Rev. D 65, 077503,2002.
    [10] G. Altarelli, T. Sj(?)strand and F. Zwirner (eds.), PHYSICS AT LEP-2,CERN Yellow Report.
    [11] N. Gabyshev et al. [Belle Collaboration], Phys. Rev. D 66 (2002)091102.
    [12] M. Mattson et al. [SELEX Collaboration], Phys. Rev. Lett. 89 (2002) 112001.
    [13] M. A. Moinester et al. [SELEX Collaboration], Czech. J. Phys. 53 (2003) B201.
    [14] A. Ocherashvili et al. [SELEX Collaboration], Phys. Lett. B 628 (2005) 18.
    [15] M. GeU-Mann, Phys. Lett. 8, 214 (1964).
    [16] J. P. Ma and Z. G. Si, Phys. Lett. B 568 (2003) 135.
    [17] H. Georgi, Phys. Rev. Lett. 98, 221601 (2007); Phys. Lett. B 650, 275 (2007).
    [18] Li-Li Tian, Qu-Bing Xie, Zong-Guo Si, Phys.Rev.D49,4517 (1994). [19] Q. Wang, Q. B. Xie and Z. G. Si, Phys. Lett. B 388 (1996) 346. [20] Q. Wang and Q. B. Xie, Phys. Rev. D 52, 1469 (1995).
    [21] G. Gustafson, U. Pettersson and P. M. Zerwas, Phys. Lett. B 209 (1988) 90.
    [22] S. Y. Li, Z. G. Si, Q. B. Xie and Q. Wang, Phys. Lett. B 458 (1999) 370.
    [23] T. Sjostrand and V. A. Khoze, Phys. Rev. Lett. 72 (1994) 28;
    [24] B. Andersson, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 7 (1997) 1.
    [25] T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna and E. Norrbin, Comput. Phys. Commun. 135 (2001) 238.
    [26] G. Marchesini and B. R. Webber, Nucl. Phys. B 238 (1984) 1.
    [27] G. Corcella et al, JHEP 0101 (2001) 010.
    [28] Z. G. Si, Q. Wang and Q. B. Xie, Phys. Lett. B 401 (1997) 107.
    [29] G. Altarelli, T. Sjostrand and F. Zwirner, Physics at LEP2, CERN YELLOW report. T. Sjostrand and V. A. Khoze, Z. Phys. C 62 (1994) 281.
    [30] G. Gustafson and J. Hakkinen, Z. Phys. C 64 (1994) 659.
    [31] S. Eidelman et al. [Particle Data Group], Phys. Lett. B 592 (2004) 1.
    [32] C. H. Chang, C. F. Qiao, J. X. Wang and X. G. Wu, Phys. Rev. D 73 (2006) 094022.
    [33] D. Kang, J. W. Lee, J. Lee, T. Kim and P. Ko, Phys. Rev. D 71, 094019 (2005).
    [34] X. Artru and G. Mennessier, Nucl. Phys. B 70 (1974) 93.
    [35] B. Andersson, G. Gustafson and C. Peterson, Z. Phys. C 1 (1979) 105.
    [36] B. Andersson and G. Gustafson, Z. Phys. C 3 (1980) 223.
    [37] B. Andersson, G. Gustafson, G. Ingelman and T. Sjostrand, Phys. Rept. 97 (1983) 31.
    [38] B. Andersson, G. Gustafson and B. Soderberg, Z. Phys. C 20 (1983) 317.
    [39] T. Sjostrand, Nucl. Phys. B 248 (1984) 469.
    [40] N. K. Glendenning and T. Matsui, Phys. Rev. D 28 (1983) 2890.
    [41] H. P. Pavel and D. M. Brink, Z. Phys. C 51 (1991) 119.
    [42] T. Sjostrand, S. Mrenna and P. Skands, JHEP 0605 (2006) 026.
    [43] R. Seuster et al. [Belle Collaboration], Phys. Rev. D 73 (2006) 032002.
    [44] S. B. Athar et al. [CLEO Collaboration], Phys. Rev. D 70 (2004) 112002.
    [45] A. F. Falk, M. E. Luke, M. J. Savage and M. B. Wise, Phys. Rev. D 49, 555 (1994).
    [46] V. V. Kiselev, A. K. Likhoded and M. V. Shevlyagin, Phys. Lett. B 332, 411 (1994).
    [47] A. V. Berezhnoi, V. V. Kiselev and A. K. Likhoded, Phys. Atom. Nucl. 59, 870 (1996) [Yad. Fiz. 59, 909 (1996)].
    [48] A. V. Berezhnoi, V. V. Kiselev, A. K. Likhoded and A. I. Onishchenko, Phys. Rev. D 57 (1998) 4385.
    [49] S. P. Baranov, Phys. Rev. D 54 (1996) 3228.
    [50] A. V. Berezhnoy and A. K. Likhoded, Phys. Atom. Nucl. 67, 757 (2004) [Yad. Fiz. 67, 778 (2004)].
    [51] V. V. Kiselev and A. K. Likhoded, arXiv:hep-ph/0208231.
    [52] G. T. Bodwin, E. Braaten and G. P. Lepage, Phys. Rev. D 51, 1125 (1995) [Erratum-ibid. D 55, 5853 (1997)].
    [53] G. P. Lepage, L. Magnea, C. Nakhleh, U. Magnea and K. Hornbostel, Phys. Rev. D 46, 4052 (1992).
    [54] C. H. Chang, J. P. Ma, C. F. Qiao and X. G. Wu, J. Phys. G 34 (2007) 845.
    [55] E. Bagan, H. G. Dosch, P. Gosdzinsky, S. Narison and J. M. Richard, Z. Phys. C 64 (1994) 57.
    [56] N. Phinney, ICFA Beam Dyn. Newslett. 42, 7 (2007); J. Brau, Y. Okada and N. Walker, arXiv.0712.1950 [physics.acc-ph]; T. Behnke et al., arXiv:0712.2356 [physics.ins-det].
    [57] I. F. Ginzburg, G. L. Kotkin, S. L. Panfil, V. G. Serbo and V. I. Telnov, Nucl. Instrum. Meth. A 219, 5 (1984).
    [58] E. Accomando et al. [ECFA/DESY LC Physics Working Group], Phys. Rept. 299 (1998) 1.
    [59] B. Badelek et al. [ECFA/DESY Photon Collider Working Group], Int. J. Mod. Phys. A 19 (2004) 5097.
    [60] S. Dittmaier, M. Kramer, Y. Liao, M. Spira and P. M. Zerwas, Phys. Lett. B 441, 383 (1998).
    [61] W. Bernreuther, M. Fuecker and Z. G. Si, Phys. Rev. D 74, 113005 (2006).
    [62] A. Brandenburg, Z. G. Si and P. Uwer, Phys. Lett. B 539, 235 (2002).
    [63] W. Beenakker, S. Dittmaier, M. Kramer, B. Plumper, M. Spira and P. M. Zerwas, Phys. Rev. Lett. 87, 201805 (2001).
    [64] W. Bernreuther, A. Brandenburg, Z. G. Si and P. Uwer, Phys. Rev. Lett. 87, 242002 (2001).
    [65] Q. H. Cao, J. Wudka and C. P. Yuan, Phys. Lett. B 658, 50 (2007).
    [66] C. R. Chen, F. Larios and C. P. Yuan, Phys. Lett. B 631, 126 (2005) [AIP Conf. Proc. 792, 591 (2005)].
    [67] W. Bernreuther, A. Brandenburg, Z. G. Si and P. Uwer, Nucl. Phys. B 690, 81 (2004).
    [68] W. Bernreuther, M. Fuecker and Z. G. Si, Phys. Lett. B 633, 54 (2006).
    [69] D. Choudhury and D. K. Ghosh, Int. J. Mod. Phys. A 23, 2579 (2008)
    [70] A. T. Alan and N. K. Pak, Europhys. Lett. 84, 11001 (2008)
    [71] T. Banks and A. Zaks, Nucl. Phys. B 196, 189 (1982).
    [72] Y. Liao and J. Y. Liu, Phys. Rev. Lett. 99, 191804 (2007); C. H. Chen and C. Q. Geng, Phys. Rev. D 76 (2007) 036007; T. M. Aliev, A. S. Cornell and N. Gaur, Phys. Lett. B 657 (2007) 77; R. Mohanta and A. K. Giri, Phys. Rev. D 76 (2007) 075015; G. J. Ding and M. L. Yan, Phys. Rev. D 76, 075005 (2007); C. D. Lu, W. Wang and Y. M. Wang, Phys. Rev. D 76, 077701 (2007); H. Davoudiasl, Phys. Rev. Lett. 99, 141301 (2007);
    [73] X. Q. Li and Z. T. Wei, Phys. Lett. B 651, 380 (2007); O. Cakir and K. O. Ozansoy, arXiv:0712.3814 [hep-ph]; A. Lenz, Phys. Rev. D 76 (2007) 065006; T. Kikuchi and N. Okada, arXiv:0711.1506 [hep-ph]; A. T. Alan, arXiv:0711.3272 [hep-ph]; A. T. Alan, N. K. Pak and A. Senol, arXiv:0710.4239 [hep-ph]; Y. Liao, arXiv:0708.3327 [hep-ph]; S. L. Chen, X. G. He, X. P. Hu and Y. Liao, arXiv:0710.5129 [hep-ph].
    [74] N. G. Deshpande, X. G. He and J. Jiang, Phys. Lett. B 656, 91 (2007); S. L. Chen, X. G. He and H. C. Tsai, JHEP 0711, 010 (2007); S. L. Chen and X. G. He, Phys. Rev. D 76, 091702 (2007); A. Kobakhidze, Phys. Rev. D 76, 097701 (2007); G. J. Ding and M. L. Yan; arXiv:0706.0325 [hep-ph]. S. L. Chen, X. G. He and H. C. Tsai, JHEP 0711, 010 (2007); S. L. Chen, X. G. He, X. Q. Li, H. C. Tsai and Z. T. Wei, arXiv:0710.3663 [hep-ph].
    [75] P. Mathews and V. Ravindran, Phys. Lett. B 657, 198 (2007) H. Zhang, C. S. Li and Z. Li, Phys. Rev. D 76, 116003 (2007); H. Zhang, C. S. Li and Z. Li, Phys. Rev. D 76 (2007) 116003. G. j. Ding and M. L. Yan, arXiv:0709.3435 [hep-ph]; Y. Liao, Phys. Rev. D 76, 056006 (2007); Y. f. Wu and D. X. Zhang, arXiv:0712.3923 [hep-ph]; G. J. Ding and M. L. Yan, Phys. Rev. D 77, 014005 (2008); M. Luo and G. Zhu, Phys. Lett. B 659 (2008) 341.
    [76] X. Q. Li, Y. Liu and Z. T. Wei, Eur. Phys. J. C 56, 97 (2008); C. S. Huang and X. H. Wu, Phys. Rev. D 77, 075014 (2008); M. x. Luo, W. Wu and G. h. Zhu, Phys. Lett. B 659, 349 (2008). X. G. He and S. Pakvasa, Phys. Lett. B 662, 259 (2008); S. Zhou, Phys. Lett. B 659, 336 (2008);
    [77] R. Mohanta and A. K. Giri, Phys. Lett. B 660, 376 (2008); K. Huitu and S. K. Rai, Phys. Rev. D 77, 035015 (2008); T. Kikuchi, N. Okada and M. Takeuchi, Phys. Rev. D 77, 094012 (2008); T. Kikuchi and N. Okada, Phys. Lett. B 661, 360 (2008);
    [78] K. Cheung, W. Y. Keung and T. C. Yuan, Phys. Rev. D 76 (2007) 055003. K. Cheung, W. Y. Keung and T. C. Yuan, Phys. Rev. Lett. 99, 051803 (2007)
    [79] A. Brandenburg and Z. G. Si, Phys. Lett. B 615, 68 (2005).
    [80] E. V. Shuryak, Phys. Lett. B 93, 134 (1980); Nucl. Phys. B 198, 83 (1982).
    [81] S. Nussinov and W. Wetzel, Phys. Rev. D 36, 130 (1987).
    [82] N. Isgur and M. B. Wise, Phys. Lett. B 232, 113 (1989); Phys. Lett. B 237, 527 (1990).
    [83] H. Georgi, Phys. Lett. B 240, 447 (1990).
    [84] E. Eichten and F. Feinberg, Phys. Rev. D 23, 2724 (1981);
    [85] H. D. Politzer and M. B. Wise, Phys. Lett. B 206, 681 (1988).
    [86] E. Eichten and B. R. Hill, Phys. Lett. B 243, 427 (1990).
    [87] A. F. Falk, B. Grinstein and M. E. Luke, Nucl. Phys. B 357, 185 (1991). T. Mannel, W. Roberts and Z. Ryzak, Nucl. Phys. B 368, 204 (1992).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700