感应耦合电能传输系统能效特性的分析与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感应耦合电能传输(Inductively Coupled Power Transfer,以下简称ICPT)技术是一种基于法拉第电磁感应原理,解决向移动设备实现无线和灵活供电问题的新型电能传输技术,相比于传统的电能传输技术,该技术更加安全、可靠、灵活,具有广阔的应用前景。
     由于目前ICPT技术研究与应用开发尚不全面和不够深入,相关理论和实验研究还比较欠缺,尤其在如何提高系统的传输功率和效率特性(以下简称能效特性)方面还不够系统、全面,系统的能效品质还停留在一个比较低的水平上。虽然有相关文献对ICPT系统的传输功率和效率进行过一定的分析,但大多文献要么是基于功率传输特性对系统进行分析,要么是基于效率特性对系统进行分析,都没有将传输功率特性和效率特性联系起来,然后基于能效综合特性进行分析,从而使得在某些ICPT的设计过程中,虽然通过优化使得ICPT系统实现了功率最优化设计,但系统的效率偏低;或者虽然有些系统实现了效率最优设计,但系统没有工作在功率最优状态下,因此严重影响了系统的功率传输能力。因此这些优化设计都不够完整。由于没有从ICPT系统能效综合特性最优的角度进行有效的分析,使得目前ICPT系统能效特性还比较低、成本较高、产业化进程缓慢。因此,对ICPT系统能效综合特性的分析与优化研究尤为迫切。
     由于制约系统能效特性的参数众多,各个参数之间的选取存在强力粘连性,有的甚至相互矛盾,为系统能效特性的优化带来了很大的困难。因此,为了保证系统的最优化能效特性,需要综合考虑各个参数的选取对系统能效的影响,从而实现系统高功率、高效率的能量输出。
     论文以国家自然科学基金项目“高效多自由度非接触电能传输系统关键技术研究”(基金号:50777071)以及重庆市科技攻关项目“城市电气化交通新型供电模式研究与开发”(项目编号:CSTC2008AC3089)为依托,旨在针对ICPT系统的能效特性优化问题,从系统的等效耦合模型出发,对各种工作模式和拓扑结构下ICPT系统的能效特性进行全面和系统的分析,同时根据理论分析结果提出相应的能效优化方法,并将该方法应用到实际ICPT系统的分析与研究中。
     在研究过程中,作者主要作了以下工作:
     1.分析了国内外在ICPT系统能效特性方面的研究现状,针对目前对ICPT系统能效特性方面研究的缺陷和不足,阐明了本文的研究目的、内容和意义。
     2.从系统能效特性综合行为出发,对影响系统能效特性的各项因素进行综合分析,并基于能效特性给出了ICPT系统设计的一般性指导措施。
     3.从ICPT系统能效特性出发,针对ICPT系统四种基本谐振拓扑结构,分析了互感耦合参数对能效特性的影响,并优化互感以提高系统的功率传输能力。在此基础上,根据电压型ICPT系统最大传输功率和最大效率存在条件不能同时满足,其最大功率传输的存在条件是以大幅牺牲系统效率为代价这一矛盾,提出一种新的系统综合评价指标。通过在该指标下对系统的互感耦合参数进行优化,实现了ICPT系统能效综合特性的最优设计。最后,通过实验研究,证明了理论分析的正确性。
     4.从系统效率特性出发,针对ICPT系统各型谐振耦合拓扑结构效率计算方法不统一,通过对四种典型谐振耦合拓扑结构的ICPT系统进行分析,给出了适用于ICPT系统谐振耦合机构效率计算的一般性计算方法。在此基础上,以减少损耗为目标,通过对一种电流型ICPT系统进行数学建模,在不同设计要求下,对系统参数进行了优化设计。最后,通过实验研究,证明了理论分析的正确性。
     5.由于导轨式ICPT系统是一个分布式系统,原边导轨线圈只有一部分参与了磁路耦合,因此互感耦合值难以确定,从而造成能效特性优化困难。针对这种特定磁路机构的ICPT系统的能效优化问题,提出了一种计算导轨式ICPT系统传输功率和效率的新方法。同时根据实际系统的功率传输要求,给出了导轨式ICPT系统的一种优化设计方法,该方法通过优化系统原副边线圈匝数等参数,实现功率传输的优化控制,并最大限度的提高了系统的效率。最后,通过实验验证了理论分析的正确性。
     6. ICPT系统在多负载条件下,当负载切换时容易造成系统失谐以及系统功率和效率最优平衡点被破坏。针对这种特定工作模式的ICPT的能效优化问题,分析了在负载变化时,ICPT系统能够始终保持工作在最大功率或者最高效率下的条件;同时根据实际系统的功率传输和效率要求,提出了一种系统参数优化设计方法。该方法通过实时优化系统输入电压和互感耦合值,实现功率传输能力与效率的优化控制。最后,通过实验验证了理论分析的正确性。
     本文的创新性贡献在于:
     1.提出了具有一般性的ICPT系统的能效特性优化方法,并创新性地提出了一个新的适用于ICPT系统综合评价指标。通过在该指标下对系统参数进行优化,实现了ICPT系统能效特性的总体最优设计。
     2.针对ICPT系统各型谐振耦合拓扑结构效率计算方法不统一,通过分析给出了适用于ICPT系统谐振耦合机构效率计算的一般性公式,简化了ICPT系统在效率求解过程的复杂性。
     3.针对导轨式ICPT系统磁路耦合机构的分布性,互感耦合值难以计算,从而使得系统能效特性分析困难,给出一个适合导轨式ICPT系统能效特性分析的新方法。
     4.针对ICPT系统在多负载条件下由于负载切换,容易造成系统失谐以及系统功率和效率最优平衡点被破坏等问题,提出了一种系统参数优化设计和控制方法。实现了系统在负载切换过程中始终保持功率传输能力或者效率的实时最优。
Inductively coupled power transfer (ICPT) technology is a new power transmission technology based on Faraday's electromagnetic induction law, it has solved the problem on how to supply power to mobile devices wirelessly and flexibly. Compared with the traditional power transmission mode, it is more secure, reliable and flexible. In a word, it has an expansive application prospect.
     Due to the development of current research and application for ICPT technology is not comprehensive and not deep enough, the relevant theory and experimental research is still relatively lacking, especially on the aspect of how to improve the energy-efficiency(transmission power and efficiency) is still imperfect, the energy-efficiency still remains at a relatively low level. Although some literature have carried some analysis on the transmission power and efficiency of ICPT system, most of them are either based on power transmission characteristic of the system, or based on the efficiency characteristic of the system, while no literature has put the transmission power character and efficiency character together, and based on its energy-efficiency character to analyse. Although some design has achieved the power transmission optimmum in some ICPT system, the efficiency of the system is too low; or some system although has achieved the efficiency optimum design, but it does not work in the optimal power state, which seriously affects its power transmission capacity. Therefore, these optimal designs are not complete enough. In the absence of analysing the energy-efficiency character of ICPT system, which made the transmission power and efficiency of the current ICPT system are relatively low, high cost, slow process of industrialization. So, the analysis and optimization for energy-efficiency character of ICPT system is particularly urgent.
     Because there are too many parameters which can affect the energy-efficiency of ICPT system, and there are strong adhesions existing among these parameters, some selections of parameters are even contradictory, all of these have brought great difficulties to optimize the energy-efficiency character of ICPT system. So, the influence of the selection of the parameters to the energy-efficiency character must be considered, and the parameters must be optimized to achieve high power, high efficiency of energy output for ICPT system.
     The paper research is supported by the National Natural Science Foundation of the "Efficient and more freedom contactless power transfer system key technologies" (Fund No.: 50777071) and Chongqing Science and Technology research project "Urban rlectric transportation research and development of a new power mode" (Item No: CSTC2008AC3089 ). In order to optimize the energy-efficiency character of ICPT system, using the equivalent coupling model, this project has analysied the energy-effciency character of ICPT system with various work modes and topologies comprehensively and systematically. According to the analysis results, the corresponding energy-efficiency optimization methods were proposed.
     The main works of the paper include:
     1. Firstly, the paper has analysed the research status for energy-efficiency character of ICPT system. According to the defects and deficiencies of the current research, the purpose, content and meaning of this paper were proposed.
     2. Secondly, the various factors which can effect the energy-efficiency chatacter of ICPT system were analysed. And some general guidance methods for the ICPT system design on account of the energy-efficiency character were given.
     3. Thirdly, the relationship between the mutual inductance and energy-efficiency character of ICPT system with four typical topologies were analyzed, and the mutual inductance was optimized for achieving maximum power transfer for ICPT system. Furthermore, according to the contradiction that the maximum transmission power existence condition of voltage-fed ICPT is substantially at the cost of its efficiency, a novel evaluation index was presented. With this index, the mutual inductance was optimized, and a global optimization design for the energy-efficiency character of ICPT system was realized. Finally, simulation and experiment results verified the analysis and the optimization design method.
     4. Fourthly, due to the efficiency computing method for ICPT system with different resonant coupling topological structure is skimble-scamble, a general computing method for the efficiency of the ICPT system with different resonant coupling topologies was given through analyzing the ICPT system with four typical resonant coupling topologies. Then, in order to reduce the power loss, the parameters of a current source ICPT system with different design requriments were optimized through mathematical modeling. Finally, experiment result verified the analysis and the optimization design method.
     5. Then, due to the ICPT system in rail is a distributed system, only part of the primary rail involved in the magnetic coupling, the coupling factor is difficult to calculate, which made the optimization for its energy-efficiency character is difficult. For the ICPT system with this particular magnetic structure, a new method for calculating its energy-efficiency was proposed. In addition, a procedure of optimized design was given according to the need of the power requirement factually. This method has achieved the optimized control for transmission power by optimizing the numbers of the primary and the secondary coils, and increased the efficiency as much as possible at the same time. Finally, this theory was justified via an experiment.
     6. Finally, For the ICPT system with multi-load, the system can easily detuned and the optimal balance of transmission power and efficiency can easily be destroyed by load switching. For the energy-efficiency optimization of ICPT system with this particular mode, the condition for the ICPT system can always keep working at maximum power or maximum efficiency mode was analyzed when the load changes. In addition, a procedure of optimized design was given according to the need of the power and efficiency requirement factually. This method has achieved the optimized control of transmission power and efficiency by optimizing the input voltage and mutual inductance. Finally, this criterion was justified via an experiment.
     The innovative contributions of this paper are:
     1. A general power transmission optimization method for ICPT system was given, and a new comprehensive evaluation index which is applicable to ICPT system was proposed innovatively. With this index, the parameters were optimized, and a global optimization design for the energy-efficiency character of ICPT system was realized.
     2. Due to the efficiency computing method for ICPT system with different resonant coupling topological structure is skimble-scamble, a general efficiency computing method for the resonant coupling topologies of ICPT system was given, which has simplified the efficiency solution process of ICPT system.
     3. Due to the ICPT system in rail is a distributed system, the coupling factor is difficult to calculate, which made the optimization for its energy-efficiency is difficult, a new method for calculating the transmission power and efficiency of the ICPT system in rail was proposed.
     4. For the ICPT system with multi-load, the system can easily detuned and the optimal balance of power or efficiency can easily be destroyed by load switching, an optimized design and control method was proposed, which can keep the system always working at the maximum power or maximum efficiency mode.
引文
[1]王智慧.基于包络线调制的非接触电能传输模式研究[D].重庆:重庆大学, 2009.
    [2]周文琪.感应耦合电能传输系统的特性与设计研究[D].浙江:浙江大学, 2008.
    [3] Green A W, Boys J T. 10 kHz inductively coupled power transfer-concept and control[C]. 5th International Conference on Power Electronics and Variable-Speed Drives, 1994. 694-699.
    [4] Madawala U K, Thrimawithana D J, Nihal K. An ICPT-supercapacitor hybrid system for surge-free power transfer[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3287-3297.
    [5] Wang C S, Covic G A, Stielau O H. Investigating an LCL load resonant inverter for inductive power transfer applications[J]. IEEE Transactions on Power Electronics, 2004, 19(4): 995-1002.
    [6] Hsu J.U.W., Hu A.P., Swain, A. A Wireless Power Pickup Based on Directional Tuning Control of Magnetic Amplifier [J]. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2771-2781.
    [7] Hsu J U, Hu A P, Si P, et al. Power Flow Control of a 3-D Wireless Power Pick-up[C]. 2nd IEEE Conference on Industrial Electronics and Applications, 2007. 2172-2177.
    [8] Covic G A, Boys J T, Kissin M L, et al. A three-phase inductive power transfer system for roadway-powered vehicles[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3370-3378.
    [9] Wang C S, Stielau O H, Covic G A. Design considerations for a contactless electric vehicle battery charger[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1308-1314.
    [10] Boys J T, Covic G A, Elliott G A. Pick-up transformer for ICPT applications[J]. Electronics Letters, 2002, 38(21): 1276-1278.
    [11] Li L H, Hu A P, Gao J F, et al. Development of a Direct AC-AC Converter Based on a DSPACE Platform[C]. IEEE International Conference on Power System Technology, Chongqing, China: 2006, 1-6.
    [12] Elliott G., Raabe S, Covic G. A., Boys J.T. Multiphase Pickups for Large Lateral Tolerance Contactless Power-Transfer Systems [J]. IEEE Transactions on Industrial Electronics. 2010. 57(5):1590-1598.
    [13] Li H. L., Hu A. P., Covic G. A. A power flow control method on primary side for a CPT system [C]. International Power Electronics Conference 2010: 1050-1055
    [14] Xu Y X, Boys J T, Covic G A. Modeling and controller design of ICPT pick-ups[C].International Conference on Power System Technology, 2002, 1-4: 1602-1606.
    [15] Covic G A, James J E, Boys J T. Analysis of a series tuned ICPT pick-up using DC transformer modeling methods[C]. Proceedings of the 6th International Power Engineering Conference, 2003, 1-2: 305-310.
    [16] Boys J T, Covic G A, Yongxiang X. DC analysis technique for inductive power transfer pick-ups[J]. IEEE Power Electronics Letters, 2003, 1(2): 5153.
    [17] Hu A P, Boys J T, Covic G A. Frequency analysis and computation of a current-fed resonant converter for ICPT power supplies[C]. International Conference on Power System Technology, 2000, 327-332.
    [18] Hu A P, Hussmann S. A phase controlled variable inductor designed for frequency stabilization of current fed resonant converter power supplies[C]. Proceedings of the 6th International Power Engineering Conference, 2003. 175-180.
    [19] Hu A P, Covic G A, Boys J T. Direct ZVS start-up of a current-fed resonant inverter[J]. IEEE Transactions on Power Electronics, 2006, 21(3): 809-812.
    [20] Boys J T, Covic G A, James J E. Switching frequencies in inductively coupled power transfer systems[J]. Proceedings of the 6th International Power Engineering Conference, 2003, 1-2: 686-691.
    [21] Hu A P, Hussmann S. Improved power flow control for contactless moving sensor applications[J]. IEEE Power Electronics Letters, 2004, 2(4): 135-138.
    [22] James J, Boys J, Covic G. A variable inductor based tuning method for ICPT pickups[C]. The 7th International Power Engineering Conference, 2005, 1142-1146.
    [23] Madawala U K, Stichbury J, Walker S. Contactless power transfer with two-way communication[C]. 30th Annual Conference of IEEE Industrial Electronics Society, 2004. 3071-3075.
    [24] Si P, Hu A P, Hsu J W, et al. Wireless Power Supply for Implantable Biomedical Device Based on Primary Input Voltage Regulation[C]. 2nd IEEE Conference on Industrial Electronics and Applications, 2007, 235-239.
    [25] Si P, Hu A P, Malpas S, et al. A Frequency Control Method for Regulating Wireless Power to Implantable Devices[J]. IEEE Transactions on Biomedical Circuits and Systems, 2008, 2(1): 22-29.
    [26] Boys J T, Hu A P, Covic G A. Critical Q analysis of a current-fed resonant converter for ICPT applications[J]. Electronics Letters, 2000, 36(17): 1440-1442.
    [27] Covic G A, Elliott G, Stielau O H, et al. The design of a contact-less energy transfer system - for a people mover system[J]. International Conference on Power System Technology, 2000.79~84.
    [28] Wang C S, Covic G A, Stielau O H. General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems[C]. The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001. 1049-1054.
    [29] Boys J T, Covic G A, Green A W. Stability and control of inductively coupled power transfer systems[J]. IEEE Proceedings on Electric Power Applications, 2000, 147(1): 37-43.
    [30] Sekitani T, Takamiya M, Noguchi Y, et al. A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches[J]. Nature Materials, 2007, 6(6): 413-417.
    [31] Sakamoto H, Washimiya S. Magnetic coupled power and data transferring system with a detachable transformer[J]. IEEE Transactions on Magnetics, 1996, 32(5): 4983-4985.
    [32] Matsuda Y, Sakamoto H. Non-contact magnetic coupled power and data transferring system for an electric vehicle[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 2853-2855.
    [33] Sugimori K, Sakamoto H, Harada K. A one-converter contactless charger for electric vehicles[J]. Electrical Engineering in Japan, 2000, 132(2): 73-81.
    [34] Sakamoto H, Harada K, Abe H, et al. A magnetic coupled charger with no-load protection[J]. IEEE Transactions on Magnetics, 1998, 34(4): 2057-2059.
    [35] Yoshioka D, Sakamoto H, Ishihara Y, et al. Power feeding and data-transmission system using magnetic coupling for an ocean observation mooring buoy[J]. IEEE Transactions on Magnetics, 2007, 43(6): 2663-2665.
    [36] Sakamoto H, Harada K. A novel high-power converter for noncontact charging with magnetic coupling[J]. IEEE Transactions on Magnetics, 1994, 30(6): 4755-4757.
    [37] Sakamoto H, Harada K, Matsuda Y, et al. Hybrid magnetic component for high-performance power system[J]. Journal of Magnetism and Magnetic Materials, 2004, 272-76: 2276-2278.
    [38] Murakami J, Sato F, Watanabe T, et al. Consideration on Cordless Power Station-contactless power transmission system[J]. IEEE Transactions on Magnetics, 1996, 32(5): 5037-5039.
    [39] Kojiya T, Sato F, Matsuki H, et al. Automatic power supply system to underwater vehicles utilizing non-contacting technology[C]. MTTS/IEEE TECHNO-OCEAN, 2004. 2341-2345.
    [40] Sato F, Adachi S, Matsuki H, et al. The optimum design of open magnetic circuit meander coil for contactless power station system[C]. IEEE International Magnetics Conference, 1999, GR09-GR09.
    [41] Miura H, Arai S, Kakubari Y, et al. Improvement of the Transcutaneous Energy Transmission System Utilizing Ferrite Cored Coils for Artificial Hearts[J]. IEEE Transactions on Magnetics,2006, 42(10): 3578-3580.
    [42] Sato F, Murakami J, Suzuki T, et al. Contactless energy transmission to mobile loads by CLPS-test driving of an EV with starter batteries[J]. IEEE Transactions on Magnetics, 1997, 33(5): 4203-4205.
    [43] Hatanaka K, Sato F, Matsuki H, et al. Characteristics of the desk with cord-free power supply[C]. IEEE International Magnetics Conference, 2002, EV6.
    [44] Obata Y, Sato F, Matsuki H, et al. Considerations on contactless power transmission in the sea[J]. Journal of the Magnetics Society of Japan, 2001, 25: 1007-1010.
    [45] Sato F, Matsuki H, Kikuchi S, et al. A new meander type contactless power transmission system-active excitation with a characteristics of coil shape[J]. IEEE Transactions on Magnetics, 1998, 34(4): 2069-2071.
    [46] Hatanaka K, Sato F, Matsuki H, et al. Power transmission of a desk with a cord-free power supply[J]. IEEE Transactions on Magnetics, 2002, 38(5): 3329-3331.
    [47] Sato F, Nomoto T, Kano G, et al. A new contactless power-signal transmission device for implanted functional electrical stimulation (FES)[J]. IEEE Transactions on Magnetics, 2004, 40(4): 2964-2966.
    [48] AndréKurs, Aristeidis Karalis, Robert Moffatt,et. al. Wireless Power Transfer via Strongly Coupled Magnetic Resonances[J]. Science, 2007, 317, 83-86
    [49] Aristeidis Karalis , J.D. Joannopoulos, Marin Soljacic,et. al. Efficient wireless non-radiative mid-range energy transfer [J]. Annals of Physics, 2007, 34-48.
    [50] Rafif E. Hamam, Aristeidis Karalis. Coupled-mode theory for general free-space resonant scattering of waves [J]. The American physical society, 2007, 1-5.
    [51] G. Scheible, B. Smailus, M. Klaus, K. Garrels, and L. Heinemann. System for wirelessly supplying a large number of actuators of a machine with electrical power[P]. US patent. 6,597,076, issued in July 2003.
    [52] J. de Boeij, E. Lomonova, J.L. Duarte, A.J.A, Vandenput. Contactless power supply for moving sensors and actuators in high-precision mechatronic systems with long-stroke power transfer capability in x–y plane[J]. Sensors and Actuators, 2008, 148:319-328.
    [53] Ayano H, Nagase H, Inaba H. A highly efficient contactless electrical energy transmission system[J]. Electrical Engineering in Japan, 2004, 148(1): 66-74.
    [54] Ayano H, Yamamoto K, Hino N, et al. Highly efficient contactless electrical energy transmission system[C]. Proceedings of the 28th Annual Conference of the IEEE Industrial Electronics Society, 2002, 2: 1364-1369.
    [55] Choi B, Nho J, Cha H, et al. Design and implementation of low-profile contactless batterycharger using planar printed circuit board windings as energy transfer device[J]. IEEE Transactions on Industrial Electronics, 2004, 51(1): 140-147.
    [56] Hirai J, Tae-Woong K, Kawamura A. Wireless transmission of power and information and information for cableless linear motor drive[J]. IEEE Transactions on Power Electronics, 2000, 15(1): 21-27.
    [57] Song B M, Kratz R, Gurol S. Contactless inductive power pickup system for Maglev applications[C]. 37th IAS Annual Meeting Conference Record of the Industry Applications Conference, 2002. 1586-1591.
    [58] Jang Y, Jovanovic M M. A contactless electrical energy transmission system for portable-telephone battery chargers[J]. IEEE Transactions on Industrial Electronics, 2003, 50(3): 520-527.
    [59] Hirai J, Tae-Woong K, Kawamura A. Integral motor with driver and wireless transmission of power and information for autonomous subspindle drive[J]. IEEE Transactions on Power Electronics, 2000, 15(1): 13-20.
    [60] Nishimura M, Kawamura A, Kuroda G, et al. High efficient contact-less power transmission system for the high speed trains[C]. IEEE 36th Power Electronics Specialists Conference, 2005. 547-553.
    [61]苏玉刚,王智慧,孙跃等.非接触供电移相控制系统建模研究[J].电工技术学报, 2008, 23(7): 92-97.
    [62]孙跃,陈国东,戴欣等.非接触电能传输系统恒流控制策略[J].重庆大学学报(自然科学版), 2008, 31(7): 766-769.
    [63] Wang Z H, Sun Y, Su Y G, et al. Study on soft-switched inversion topology of contactless power transfer system[C]. 7th World Congress on Intelligent Control and Automation, Chongqing, China, 2008, 3136-3139.
    [64]戴欣,黄席樾,孙跃.自治分段线性振荡系统的离散映射数值建模与稳定性分析[J].自动化学报, 2007, 33(1): 72-77.
    [65] Tang C S, Sun Y, Su Y G, et al. Determining multiple steady-state ZCS operating points of a switch-mode contactless power transfer system[J]. IEEE Transactions on Power Electronics, 2009, 24(1-2): 416-425.
    [66]戴欣,孙跃.单轨行车新型供电方式及相关技术分析[J].重庆大学学报(自然科学版), 2003, 26(1): 50-53.
    [67]孙跃,董军,戴欣,王智慧,王小霞.双向开关AC/ AC变换器预测控制策略[J].重庆工学院学报(自然科学). 2009, 23(3): 121-125
    [68] Su Y G, Tang C S, Wu S P, et al. Research of LCL resonant inverter in wirelesspower transfersystem[C]. International Conference on Power System Technology, Chongqing, China, 2006, 794-799.
    [69] Su Y G, Deng B, Tang C S, et al. Study on phase shift control method in contactless power transfer system[J]. Dynamics of Continuous Discrete and Impulsive Systems - Series B - Applications & Algorithms, 2006, 13E: 3281-3284.
    [70] Sun Y, Hu A P, Dai X, et al. Discrete time mapping modeling and bifurcation phenomenon study of a ZVS converter[C]. International Conference on Power System Technology, 2004. 1015-1018.
    [71]孙跃,卓勇,苏玉刚等.非接触电能传输系统拾取机构方向性分析[J].重庆大学学报(自然科学版), 2007, 30(04): 87-90.
    [72]戴欣,黄席樾.电流型准谐振软开关变换器离散映射建模及分叉现象分析[J].计算机仿真, 2005, 23(7): 287-290.
    [73]孙跃,戴欣,苏玉刚等.广义状态空间平均法在CMPS系统建模中的应用[J].电力电子技术, 2004, 38(3): 86-88.
    [74]孙跃,李良,戴欣等.电流型全桥软开关变换器离散映射建模与仿真[J].电工技术学报, 2005, 20(6): 20-24.
    [75]孙跃,王智慧,戴欣等.非接触电能传输系统频率稳定性研究[J].电工技术学报, 2005, 20(11): 56-59.
    [76]戴欣,黄席樾,孙跃.电流型全桥软开关变换器的频率跃变现象分析[J].电工技术学报, 2006, 21(6): 78-82.
    [77]孙跃,王智慧.电流型CPT系统传输功率调节方法[J].重庆大学学报(自然科学版). 2009, 32(12): 1386-1391.
    [78] Dai X, Huang X. Y. Study on dynamic accurate modelling and nonlinear phenomena of a push-pull soft switched converter[C]. 1st IEEE Conference on Industrial Electronics and Applications. Singapore: 2006. 1-4.
    [79]周锦锋,孙跃,苏玉刚,戴欣,翟渊.感应耦合电能与信号同步传输技术[J].重庆工学院学报(自然科学). 2009, 23(4): 193-97
    [80] Dai X, Huang X. Y, Sun Y. A generalized mapping modeling method for piecewise smooth autonomous vibration system[C]. International Conference on Sensing, Computing and Control. Chongqing, China, 2006.
    [81]孙跃,李朝伟,戴欣,王小飞.涡流式电暖鞋温度控制[J].重庆工学院学报(自然科学). 2009, 23(1): 80-84
    [82] Liu X, Hui S Y R. Simulation Study and Experimental Verification of a Universal Contactless Battery Charging Platform With Localized Charging Features[J]. IEEE Transactions on PowerElectronics, 2007, 22(6): 2202-2210.
    [83] Liu X, Hui S Y R. An Analysis of a Double-layer Electromagnetic Shield for a Universal Contactless Battery Charging Platform[C]. 36th IEEE Power Electronics Specialists Conference, 2005, 1767-1772.
    [84] Su Y P, Xun L, Hui S Y R. Mutual inductance calculation of movable planar coils on parallel surfaces[C]. IEEE Power Electronics Specialists Conference, 2008. 3475-3481.
    [85] Tang S C, Hui S Y R, Chung H. Characterization of coreless printed circuit board (PCB) transformers[C]. 30th Annual IEEE Power Electronics Specialists Conference, 1999. 746-752.
    [86] Liu X, Hui S Y R. Equivalent Circuit Modeling of a Multilayer Planar Winding Array Structure for Use in a Universal Contactless Battery Charging Platform[J]. IEEE Transactions on Power Electronics, 2007, 22(1): 21-29.
    [87] Chan P C F, Lee C K, Hui S Y R. Stray capacitance calculation of coreless planar transformers including fringing effects[J]. Electronics Letters, 2007, 43(23).
    [88] Hui S Y R, Ho W C. A new generation of universal contactless battery charging platform for portable consumer electronic equipment[J]. IEEE Transactions on Power Electronics, 2005, 20(3): 620-627.
    [89] Liu X, Chan P W, Hui S Y R. Finite element simulation of a universal contactless battery charging platform[C]. 20th Annual IEEE Applied Power Electronics Conference and Exposition, 2005. 1927-1932.
    [90] Liu X, Hui S Y R. Optimal Design of a Hybrid Winding Structure for Planar Contactless Battery Charging Platform[J]. IEEE Transactions on Power Electronics, 2008, 23(1): 455-463.
    [91] Tang S C, Hui S Y R, Chung H. Coreless printed circuit board (PCB) transformers with high power density and high efficiency[J]. Electronics Letters, 2000, 36(11): 943-944.
    [92]武瑛,严陆光,徐善刚.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报, 2004, 24(5): 63-66.
    [93]武瑛,严陆光,徐善纲.运动设备无接触供电系统耦合特性的研究[J].电工电能新技术, 2005, 24(3): 5-8.
    [94]武瑛;严陆光;黄常纲;徐善纲.新型无接触电能传输系统的性能分析[J].电工电能新技术, 2003, 22(4): 10-13.
    [95]周雯琪,马皓,何湘宁.感应耦合电能传输系统不同补偿拓扑的研究[J].电工技术学报, 2009, 24(1): 133-139.
    [96]马皓,孙轩.原副边串联补偿的电压型耦合电能传输系统设计[J].中国电机工程学报. 2010. 30(5): 48-52.
    [97]周雯琪,马皓,何湘宁.基于动态方程的电流源感应祸合电能传输电路的频率分析[J].中国电机工程学报. 2008,28(3):119-124.
    [98]马皓,周雯琪.电流型松散耦合电能传输系统的建模分析[J].电工技术学报, 2005, 20(10): 66-71.
    [99] Wenqi Zhou, Hao Ma, Design considerations of compensation topologies in ICPT systems[C]. IEEE APEC, 2007:985-990.
    [100] Wenqi Zhou, Hao Ma, Steady-state analysis of the inductively coupled power transfer system[C]. IEEE IECON, 2006: 3602-3607.
    [101] Wenqi Zhou, Hao Ma, Dynamic analysis of a current source ICPT ystem[C]. IEEE IPEMC, 2006: 1312-1317
    [102]韩腾,卓放,闫军凯等.非接触电能传输系统频率分叉现象研究[J].电工电能新技术, 2005, 24(2): 45-47, 76.
    [103]盛松涛,杜贵平,张波.感应耦合式无接触电能传输系统设计[J].通信电源技术. 2007, 24(5):33-36.
    [104]刘建,王慧贞.基于UC3861控制的松耦合谐振变换器[J].电力电子技术, 2008, 42(1): 84-86.
    [105]张峰,王慧贞,秦海鸿等.松耦合全桥谐振变换器的原理分析与实现[J].电力电子技术, 2007, 41(02): 16-18.
    [106]毛赛君.非接触感应电能传输系统关键技术研究[D].南京航空航天大学, 2006.
    [107]徐磊.并联谐振型非接触通用供电平台设计与实现[D].郑州大学, 2006.
    [108]马三清.并联谐振型ICPT系统分析与设计[D].郑州大学, 2006.
    [109]董慧芬.感应电能传输技术的研究[D].天津:河北工业大学, 2002.
    [110]李时杰.串联谐振逆变器在无接触电能传输技术中的研究与应用[D].天津:河北工业大学, 2003.
    [111]刘志宇,都东.感应充电技术的发展与应用[J].电力电子技术, 2004, 38(3): 92-94.
    [112]刘志宇.感应充电实验系统研究[D].北京:清华大学, 2004.
    [113] Wang C S, Covic G A, Stielau O H. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems[J]. IEEE Transactions on Industrial Electronics, 2004, 51(1): 148-157.
    [114] Elliott G A, Covic G A, Kacprzak D, et al. A new concept: Asymmetrical pick-ups for inductively coupled power transfer monorail systems[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3389-3391.
    [115] D.Kacprzak, J.K.Sykulski. Magnetic design considerations to improve nonlinear characteristics of inductively coupled power transfer systems[C]. IEEE International Magnetics Coference, 2006. 965– 972.
    [116] D.Kacprzak. A novel s-pickup for high power inductive power transfer systems[C]. IEEE International Magnetics Coference, 2006. 204.
    [117] D.Kacprzak, Sykulski.J. K. Finite element assisted study of magnetic configurations of flat pickups for inductively coupled power transfer systems[C]. XVII International Conference on Electrical Machines,2006. 1-5.
    [118] Spackman.D., D.Kacprzak, Sykulski. J. K. Magnetic interference in multi-pickup monorail inductively coupled power transfer systems[J]. Journal of the Japan Society of Applied Electromagnetic and Mechanics, 15 (3): 238-241.
    [119] John T. Boys, Grant A. J. Elliott. An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups [J]. IEEE transactions on power electronics, 2007, 22 (1): 333-335.
    [120] Li H L, Hu A P, Covic G A, et al. Optimal coupling condition of IPT system for achieving maximum power transfer[J]. Electronics Letters, 2009, 45(1): 76-77.
    [121] Chen. H, Hu. A. P, et al. Power loss analysis of a TET system for high power implantable devices[C]. IEEE Conference on Industrial Electronics and Applications, 2007. 240-245.
    [122] Eun-Soo Kim, Hwan-Kook Song, Joo-Hun Kim, et al. Efficiency characteristics of a half-bridge series resonant converter for the contact-less power supply[C]. Twenty-Third Annual IEEE Power Electronics Conference and Exposition, 2008. 1555 -1561
    [123] Jesús Sallán, Juan L. Villa, Andrés Llombart, JoséFco. Sanz. Optimal design of ICPT systems applied to electric vehicle battery charge[J]. IEEE Transactions On Industrial Electronics,2009, 56(6): 2140-2149.
    [124] Acero, J. Burdio, J.M, Barragan, L.A. Artigas, J.I. Alonso, R. An electromagnetic-based model for calculating the efficiency in domestic induction heating appliances[C]. 37th IEEE Power Electronics Specialists Conference, 2006. 1-6.
    [125] Ho, W.C., Pong, M.H. Power loss and efficiency analysis of quasi-resonant converters[C] Proceedings of the Industrial Electronics, Control, and Instrumentation, 1993: 842-847.
    [126] Takaki, K., Kanesawa, K., Mukaigawa, S., Fujiwara, T., Go, T.. Energy efficiency of corona discharge reactor driven by inductive energy storage system pulsed power generator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4):834–845.
    [127]韩腾,卓放,闫军凯,王兆安.非接触电能传输系统效率研究[C].中国电工技术协会电力电子学会第九届年会论文集. 2004. 1-4.
    [128]傅文珍,张波,丘东元,等.自谐振线圈耦合式电能无线传输的最大效率分析与设计[J].中国电机工程学报, 2009, 29(18): 21-26.
    [129]张宗明,孙跃,苏玉刚,夏晨阳.非接触电能传输系统互感耦合的仿真研究[J].磁性材料及器件, 2008, 23(7): 92-97.
    [130]唐春森.非接触电能传输系统软开关工作点研究及应用[D].重庆:重庆大学, 2009.
    [131] Zhang, Wei, Chen, Qianhong, Wong, S.C., e.at. A novel transformer for contactless energy transmission systems[C]. IEEE Energy Conversion Congress and Exposition, 2009. 3218-3224.
    [132]武瑛.新型无接触供电系统的研究[D].北京:中国科学院电工研究所, 2004.
    [133] Hu A P. Selected resonant converters for IPT power supplies[D]. Auckland: The University of Auckland, 2001.
    [134]卓勇.生物体内置电装置的外部供电模式研究[D].重庆:重庆大学, 2007.
    [135]苏玉刚,陈渝光电力电子技术[M]重庆,重庆大学出版社, 2005.
    [136]李政.车载逆变电源及其效率研究[D].国防科学技术大学, 2004.
    [137] Gurhan Alper Kendir, et al. An efficient inductive power link design for retinal prosthesis[C] Proceedings of the 2004 International Symposium on Circuits and Systems, 2004. 4: IV-41-44.
    [138]李良.非接触电能传输系统建模与拾取技术研究[D].重庆:重庆大学, 2006.
    [139]明正峰,倪光正,钟彦儒.软开关技术三相PWM逆变器及效率的分析研究[J].电工技术学报, 2003, 18(4): 30-34.
    [140] G.Villar, E. Alarcón, F. Guinjoan, A. Poveda. Efficiency-oriented switching frequency tuning for a buck switching power converter[C]. IEEE International Symposium on Circuits and Systems, 2005. 2473– 2476.
    [141]王聪软开关功率变换器及其应用[M].科学出版社, 2000.
    [142]赵修科.开关电源中的磁性元器件[M].南京航空航天大学自动化学院, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700