基于电磁感应原理的水下非接触式电能传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下机电设备的电能传输是深海资源勘探中必须解决的问题。目前普遍采用接触式电能传输方法,然而为了适应恶劣的深海环境而设计的复杂密封结构使其接口会出现严重磨损并存在漏电隐患。非接触式电能传输技术(CLPT)由于其独特的优势,有望成为解决上述问题的有效手段。
     CLPT系统基于电磁耦合原理对机电设备输电,实现了电源和负载的电气隔离。与接触式方法相比,CLPT方法避免了电击、漏电等危险,而且不需要复杂的密封工艺。其关键技术在于,解决系统耦合系数低导致的传输能力受限制、海水导电性引起的系统能量损耗、深海高压与水流冲击引起的系统参数变化,以及电磁屏蔽、系统稳定性等问题。本文即针对上述问题进行系统讨论。
     建立非接触式电能传输系统的互感模型和励磁模型,分析系统传输特性,讨论不同的补偿结构对系统传输的影响,从而指导补偿方式的选择。建立电磁耦合系统在深海环境中的涡流场模型,并对耦合器参数、能量损失、电磁屏蔽等进行有限元分析,从而实现对频率及耦合器结构的优化。应用磁阻建模方法,建立耦合器磁路模型,分析在深海高压环境以及磁芯偏心条件下的励磁电感、耦合系数等参数的变化,为系统稳定性分析提供依据。
     基于上述分析,设计深海非接触式电能传输系统的电路、磁路结构,并制作原型样机。根据电磁耦合器的电气特性和样机的磁芯线圈结构,建立线圈功率损失模型,提出耦合器线圈匝数优化方法。并通过实验,分别对耦合器在海水导电环境下的传输能力、40MPa高压环境和耦合器对接偏心、电磁屏蔽情况下的功率传输进行测试。实验结果表明,结构优化后的电磁耦合器能够适应深海恶劣环境,充分发挥非接触式电能传输系统的优势,安全高效地为水下机电设备提供足够电能。
Power transmission for underwater mechanical and electrical equipments is evitable in deep-sea resource explorations. It generally relies on contact methods, which require complicated sealing in the hostile deep sea. However the connecter was always badly worn and was threaten by electrical leakage. The contactless power transmission technology is expected to resolve these problems because of its special advantages.
     Based on the electromagnetic induction, the CLPT system supply electrical energy for the equipments without any electrical connection between the power source and the loading. Comparing to the contact method, the contactless one has remarkable advantages, such as avoiding the danger of electrical shock and leakage without complicated sealing. Consequently, the key technologies of the CLPT system include the following:resolving the limited transferring power due to low coefficients, reducing the energy loss in seawater, maintaining the system's parameters which may be changed by the high pressure and stream in the deep sea, and some other problems such as the electromagnetic shielding and system's stability. These issues have been systematically considered in this thesis.
     The mutual model and magnetizing model have been established to analyze the system's transferring characters. And the influences of different compensations have been investigated to select a reasonable compensation structure for the system. In order to optimize the electromagnetic (EM) coupler's structure and the system's frequency, the eddy current field of the EM coupler in the seawater was modeled. Therefore the coupler's parameters, power losses and EM shielding were investigated by the finite element method (FEM). By using reluctance modeling method, the magnetic circuit of the coupler was modeled. Therefore, the parameters, such as magnetizing inductance and coupling coefficient, which can be changed by high pressure and stream in the deep sea, were explored to provide references for the system's stability analysis.
     As results of the above analysis, we designed the electric circuit and magnetic structures and the prototype the CLPT system for deep-sea applications. According to the electric characters and the physical structure of the EM coupler, power losses of the windings were modeled and the optimizing method for the winding turns was proposed. Finally, some experiments were implemented to verify the designed system, including the power transmissions in seawater and high pressure up to 40 MPa, and with misaligned cores and EM shielding. It demonstrated in the experiments that the optimized EM coupler is adaptable to the deep-sea environment, and the CLPT system is sufficient to supply electrical energy for underwater equipments with high efficiency.
引文
[1]http://www.rmzxb.com.cn/kj/kjqy/t20091210_291516.htm.
    [2]Painter H, Flynn J. Current and future wet-mate connector technology developments for scientific scabed observatory applications. in OCEANS 2006, Boston, MA,2006, pp. 881-886.
    [3]Kojiya T, Sato F, Matsuki H et al. Construction of non-contacting power feeding system to underwater vehicle utilizing electro magnetic induction. in Oceans 2005-Europe, 2005, Vols 1 and 2, pp.709-712.
    [4]Kojiya T, Sato F, Matsuki H et al. Automatic power supply system to underwater vehicles utilizing non-contacting technology. in Oceans'04 Mts/Ieee Techno-Ocean'04, 2004, pp.2341-2345.
    [5]刘凤君编.现代高频开关电源技术及应用,北京:电子工业出版社,2008.
    [6]Ayano H, Nagase H, Inaba H. A highly efficient contactless electrical energy transmission system. Electrical Engineering in Japan,2004,148(1):66-74.
    [7]Shyu K K, Jwo K W, Chen Z Y et al. Inductive power supply system with fast full-duplex information rate device. in 2007 The International Conference on Computer as a Tool,2007, Vols 1-6, pp.1054-1058.
    [8]Low Z N, Chinga R A, Tseng R et al. Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System. IEEE Transactions on Industrial Electronics,2009,56(5):1801-1812.
    [9]Sallan J, Villa J L, Llombart A et al. Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge. IEEE Transactions on Industrial Electronics, 2009,56(6):2140-2149.
    [10]Heeres B J, Novotny D W, Divan D M. Contactless underwater power delivery. in Proceeding of IEEE 25th Annual Power Electronics Specialists Conference,1994, pp. 418-423.
    [11]Klontz K W, Divan D M, Novotny D W et al. Contactless power delivery system for mining applications. IEEE Transactions on Industry Applications,1995,31 (1):27-35.
    [12]Hirai J, Kim T W, Kawamura A. Wireless transmission of power and information and information for cableless linear motor drive. IEEE Transactions on Power Electronics, 2000,15(1):21-27.
    [13]Sergeant P, Van den Bossche A. Inductive coupler for contactless power transmission. IET Electric Power Applications,2008,2(1):1-7.
    [14]Landsman E E. Rotary transformer design. IEEE Transactions on Aerospace and Electronic Systems,1970,6(5):729-733.
    [15]Stuart T A, King R J, Shamseddin H. Rotary transformer design with fixed magnetizing and or leakage inductances. IEEE Transactions on Aerospace and Electronic Systems, 1986,22(5):565-572.
    [16]Kawamura A, Ishioka K, Hirai J. Wireless transmission of power and information through one high-frequency resonant AC link inverter for robot manipulator applications. IEEE Transactions on Industry Applications,1996,32(3):503-508.
    [17]Jufer M, Macabrey N, Perrottet M. Modeling and test of contactless inductive energy transmission. Mathematics and Computers in Simulation,1998,46(3-4):197-211.
    [18]Hui S Y R, Ho W W C. A new generation of universal contactless battery charging platform for portable consumer electronic equipment. IEEE Transactions on Power Electronics,2005,20(3):620-627.
    [19]陈鹰,杨灿军,陶春辉等.海底观测系统,北京:海洋出版社,2006.
    [20]杨旭,裴云庆,王兆安.开关电源技术,北京:机械工业出版社,2002.
    [21]武瑛.新型无接触供电系统的研究.中国科学院博士论文,北京:中国科学院,2005.
    [22]Clark P B, Power collector for inductvie power transfer, United States 5839554,1998.
    [23]Papastergiou K D. A power converter with a rotating secondary stage for an airborne radar system. Phd Thesis, Edinburgh:University of Edinburgh,2005.
    [24]Papastergiou K D, Macpherson D E, Fisher F. A 1kW phase-shifted full bridge converter incorporating contact-less transfer of energy. in 2005 IEEE 36th Power Electronic Specialists Conference (PESC),2005, Vols 1-3, pp.83-89.
    [25]Andren C F, Fadali M A, Gott V L et al. Skin tunnel transformer-a new system that permits both high efficiency transfer of power and telemetry of data through intact skin. IEEE Transactions on Biomedical Engineering,1968,15(4):278-280.
    [26]Schuder J C, Gold J H, Stephens.He. Inductively coupled rf system for transmission of 1 kW of power through skin. IEEE Transactions on Biomedical Engineering, 1971,18(4):265-273.
    [27]Matsuki H, Yamakata Y, Chubachi N et al. Transcutaneous DC-DC converter for totally implantable artificial heart using synchronous rectifier. IEEE Transactions on Magnetics, 1996,32(5):5118-5120.
    [28]Carta R, Jourand P, Hermans B et al. Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications. Sensors and Actuators a-Physical,2009,156(1):79-87.
    [29]Jung K H, Kim Y H, Kim J et al. Wireless power transmission for implantable devices using inductive component of closed magnetic circuit. Electronics Letters, 2009,45(1):21-28.
    [30]Xin W H, Yan G Z, Wang W X. Study of a wireless power transmission system for an active capsule endoscope. International Journal of Medical Robotics and Computer Assisted Surgery,2010,6(1):113-122.
    [31]Roszyk L, Barnas L, Hand held battery operated device and charging means therefor, U.S. Patent 3840795,1974.
    [32]Abe H, Sakamoto H, Harada K. A noncontact charger using a resonant converter with parallel capacitor of the secondary coil. IEEE Transactions on Industry Applications, 2000,36(2):444-451.
    [33]Kim C G, Seo D H, You J S et al. Design of a contactless battery charger for cellular phone. IEEE Transactions on Industrial Electronics,2001,48(6):1238-1247.
    [34]Van der Pijl F F A, Ferreira J A, Bauer P et al. Design of an inductive contactless power system for multiple users. in Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting,2006, pp.1876-1883.
    [35]Fernandez C, Garcia O, Prieto R et al. Overview of different alternatives for the contact-less transmission of energy. in Proceedings of the 2002 28th Annual Conference of the Ieee Industrial Electronics Society, Vols 1-4,2002, pp.1318-1323.
    [36]Hu A P, Boys J T, Covic G A. Frequency analysis and computation of a current-fed resonant converter for ICPT power supplies. Proceedings of 2000 International Conference on Power System Technology,2000, Vols Ⅰ-Ⅲ,, pp.327-332.
    [37]Ryu M, Cha H, Park Y et al. Analysis of the contactless power transfer system using modelling and analysis of the contactless transformer. in Thirty-First Annual Conference of the IEEE Industrial Electronics Society,2005,Vols 1-3, pp.1036-1042.
    [38]Wang C S, Stielau O H, Covic G A. Design considerations for a contactless electric vehicle battery charger. IEEE Transactions on Industrial Electronics, 2005,52(5):1308-1314.
    [39]Kissin M L G, Boys J T, Covic G A. Interphase Mutual Inductance in Polyphase Inductive Power Transfer Systems. IEEE Transactions on Industrial Electronics, 2009,56(7):2393-2400.
    [40]Villa J L, Sallan J, Llombart A et al. Design of a high frequency Inductively Coupled Power Transfer system for electric vehicle battery charge. Applied Energy, 2009,86(3):355-363.
    [41]邱俊翔.非接触式感应馈电技术应用与镍镉电池充电之研究.成功大学硕士论文,台北:成功大学,2007.
    [42]Green A W, Boys J T.10 kHz inductively coupled power transfer-concept and control. in Fifth International Conference on 'Power Electronics and Variable-Speed Drives' (Conf. Publ. No.399)|Fifth International Conference on 'Power Electronics and Variable-Speed Drives',1994, pp.694-9|xix+715.
    [43]Boys J T, Elliott G A J, Covic G A. An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups. IEEE Transactions on Power Electronics, 2007,22(1):333-335.
    [44]Wang C S, Covic G A, Stielau O H. Investigating an LCL load resonant inverter for inductive power transfer applications. IEEE Transactions on Power Electronics, 2004,19(4):995-1002.
    [45]李宏.感应电能传输——电力电子及电气自动化新领域.电气传动,2001(2):62-64.
    [46]http://www.cqupec.cn/ReadNews.asp?rid=696.
    [47]孙跃,王智慧,戴欣等.非接触电能传输系统的频率稳定性研究.电工技术学报,2005,20(11):56-59.
    [48]苏玉刚,王智慧,孙跃等.非接触供电移相控制系统建模研究.电工技术学报,2008,23(7):92-97.
    [49]Tang C S, Sun Y, Su Y G et al. Determining Multiple Steady-State ZCS Operating Points of a Switch-Mode Contactless Power Transfer System. IEEE Transactions on Power Electronics,2009,24(1-2):416-425.
    [50]马皓,周雯琪.电流型松耦合电能传输系统的建模分析.电工技术学报,2005,20(10):66-71.
    [51]周雯琪,马皓,何湘宁.基于动态方程的电流源感应耦合电能传输电路的频率分析.中国电机工程学报,2008,28(3):119-124.
    [52]徐晔,马皓.串联补偿电压型非接触电能传输变换器的研究.电力电子技术,2008,42(3):4-5,11.
    [53]陈敏,周邓燕,徐德鸿.注入高次谐波电流的磁悬浮列车非接触供电方法.中国电机工程学报,2005,25(6):104-108.
    [54]武瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析.中国电机工程学报,2004,24(5):63-66.
    [55]韩腾,卓放,闫军凯等.非接触电能传输系统频率分叉现象研究.电工电能新技术,2005,24(2):44-47,76.
    [56]韩腾,卓放,闫军凯等.可分离变压器实现的非接触电能传输系统研究.电力电子技术,2004,38(5):28-29,82.
    [57]张峰,王慧贞,姜田贵.电压型松耦合全桥谐振变换器原理分析与实现.电力电子技术,2007,41(4):28-30.
    [58]姜田贵,张峰,王慧贞.松耦合感应电能传输系统中补偿网络的分析.电力电子技术,2007,41(8):42-44.
    [59]毛赛君.非接触感应电能传输系统关键技术研究.南京航空航天大学硕士论文,南京:南京航空航天大学,2006.
    [60]Silay K M, Dehollain C, Declercq M et al. Improvement of power efficiency of inductive links for implantable devices. Proceeding of Conference on PhD Research in Microelectronics and Electronics, Istanbul, Turkey,2008, pp.229-232.
    [61]Miura H, Arai S, Kakubari Y et al. Improvement of the transcutaneous energy transmission system utilizing ferrite cored coils for artificial hearts. IEEE Transactions on Magnetics,2006:3578-3580.
    [62]Catrysse M, Hermans B, Puers R. An inductive power system with integrated bi-directional data-transmission. Sensors and Actuators A:Physical,2003):221-229.
    [63]Kim S, Harrison R R, Solzbacher F. Influence of System Integration and Packaging on Its Inductive Power Link for an Integrated Wireless Neural Interface. IEEE Transactions on Biomedical Engineering,2009,56(12):2927-2936.
    [64]Matsuki H, Shiiki M, Murakami K et al. Investigation of coil geometry for transcutaneous energy transmission for artificial-heart. IEEE Transactions on Magnetics, 1992,28(5):2406-2408.
    [65]Simard G, Sawan M, Massicotte D. Novel coils topology intended for biomedical implants with multiple carrier inductive link. in 2009 IEEE International Symposium on Circuits and Systems-ISCAS 2009,2009, pp.537-40.
    [66]Morais R, Frias C M, Silva N M et al. An activation circuit for battery-powered biomedical implantable systems. Sensors and Actuators a-Physical, 2009,156(1):229-236.
    [67]Matsuki H, Yamaguchi M, Watanabe T et al. Implantable transformer for an artificial-heart utilizing amorphous magnetic fibers. Journal of Applied Physics, 1988,64(10):5859-5861.
    [68]Zierhofer C M, Hochmair E S. Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Transactions on Biomedical Engineering, 1996,43(7):708-714.
    [69]Carta R, Tortora G, Thone J et al. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosensors & Bioelectronics, 2009,25(4):845-851.
    [70]Sato F, Nomoto T, Kano G et al. A new contactless power-signal transmission device for implanted functional electrical stimulation. IEEE Transactions on Magnetics, 2004):2964-2966.
    [71]Yang Z, Liu W T, Basham E. Inductor modeling in wireless links for implantable electronics. IEEE Transactions on Magnetics,2007,43):3851-3860.
    [72]Ping S, Hu A P, Malpas S et al. A frequency control method for regulating wireless power to implantable devices. IEEE Transactions on Biomedical Circuits and Systems, 2008:22-29.
    [73]Tang T B, Smith S, Flynn B W et al. Implementation of wireless power transfer and communications for an implantable ocular drug delivery system. IET Nanobiotechnology,2008,2(3):72-79.
    [74]Jang Y T, Jovanovic M M. A contactless electrical energy transmission system for portable-telephone battery chargers. IEEE Transactions on Industrial Electronics, 2003,50(3):520-527.
    [75]Choi B, Nho J, Cha H Y et al. Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device. IEEE Transactions on Industrial Electronics,2004,51 (1):140-147.
    [76]Liu X, Hui S Y R. Optimal design of a hybrid winding structure for planar contactless battery charging platform. IEEE Transactions on Power Electronics, 2008,23(1):455-463.
    [77]Su Y P, Liu X, Hui S Y R. Mutual Inductance Calculation of Movable Planar Coils on Parallel Surfaces. IEEE Transactions on Power Electronics,2009,24(3-4):1115-1123.
    [78]Su Y P, Liu X, Hui S Y R. Extended theory on the inductance calculation of planar spiral windings including the effect of double-layer electromagnetic shield. IEEE Transactions on Power Electronics,2008,23(4):2052-2061.
    [79]Liu X, Chan P W, Hui S Y R et al. Finite element simulation of a universal contactless battery charging platform. Austin, TX,2005, pp.1927-1932.
    [80]Liu X, Hui S Y R. Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features. IEEE Transactions on Power Electronics,2007,22(6):2202-2210.
    [81]Liu C, Hu A P, Nair N K C et al. Coupling Study of a Rotary Capacitive Power Transfer System. in 2009 IEEE International Conference On Industrial Technology, Churchill, Australia,2009, pp.791-796.
    [82]Valtchev S, Borges B, Brandisky K et al. Resonant Contactless Energy Transfer With Improved Efficiency. IEEE Transactions on Power Electronics,2009,24(3-4):685-699.
    [83]Takehiro I, Hiroyuki O, Hori Y. Basic experimental study on helical antennas of wireless power transfer for Electric Vehicles by using magnetic resonant couplings. in Vehicle Power and Propulsion Conference,2009.
    [84]Keeling N A, Boys J T, Covic G A et al. Unity Power Factor Inductive Power Transfer Pick-up for High Power Applications. Orlando, FL,2008, pp.988-993.
    [85]Wang C S, Covic G A, Stielau O H. General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems. in 27th Annual Conference of the Ieee Industrial Electronics Society,2001,Vols 1-3, pp.1049-1054.
    [86]Hirai J, Kim T W, Kawamura A. Integral motor with driver and wireless transmission of power and information for autonomous subspindle drive. IEEE Transactions on Power Electronics,2000,15(1):13-20.
    [87]Hirai J, Kim T W, Kawamura A. Study on intelligent battery charging using inductive transmission of power and information. IEEE Transactions on Power Electronics, 2000,15(2):335-345.
    [88]http://www.uniservices.co.nz/pageloader.aspx?page=52d 1 dOdO.
    [89]http://www.mesa-systemtechnik.de/.
    [90]Kutkut N H, Klontz K W, Ieee. Design considerations for power converters supplying the SAE 5-1773 electric vehicle inductive coupler,1997.
    [91]刘志宇,都东,齐国光.感应充电技术的发展与应用.电力电子技术,2004,38(3):92-94.
    [92]Kutkut N H, Wiegman H L N, Divan D M et al. Charge equalization for an electric vehicle battery system. IEEE Transactions on Aerospace and Electronic Systems, 1998,34(1):235-246.
    [93]Van Den Steen L. Inductive couplers in underwater power distribution networks-improving their applicationality. Underwater Technology,1986,12(3.
    [94]Bradley A M, Feezor M D, Singh H et al. Power systems for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering,2001,26(4):526-538.
    [95]Feezor M D, Sorrell F Y, Blankinship P R. An interface system for autonomous undersea vehicles. IEEE Journal of Oceanic Engineering,2001,26(4):522-525.
    [96]McGinnis T, Henze C P, Conroy K. Inductive power system for autonomous underwater vehicles. in 2007 Oceans,2007, Vols 1-5, pp.736-740.
    [97]Yoshioka D, Sakamoto H, Ishihara Y et al. Power feeding and data-transmission system using magnetic coupling for an ocean observation mooring buoy. IEEE Transactions on Magnetics,2007,43(6):2663-2665.
    [98]http://www.mesasystemsco.com/product.php?p=56
    [99]http://www.mesasystemsco.com/product.php?p=58
    [100]Hemche N, Jaafari A. Wireless Transmission of Power Using a PCB Transformer with Mobile Secondary. in 2008 Ieee Mediterranean Electrotechnical Conference,2008,Vols 1 and 2, pp.608-613.
    [101]Ayano H, Nagase H, Inaba H. Highly efficient contactless electrical energy transmission system. Transactions of the Institute of Electrical Engineers of Japan, Part D, 2003,123-D(3):263-70.
    [102]Hirai J, Kim T W, Kawamura A. Practical study on wireless transmission of power and information for autonomous decentralized manufacturing system. IEEE Transactions on Industrial Electronics,1999,46(2):349-359.
    [103]Boys J T, Covic G A, Green A W. Stability and control of inductively coupled power transfer systems. IEE Proceedings-Electric Power Applications,2000,147(1):37-43.
    [104]Papastergiou K D, Macpherson D E. An airborne radar power supply with contactless transfer of energy-Part Ⅰ:Rotating transformer. IEEE Transactions on Industrial Electronics,2007,54):2874-2884.
    [105]Papastergiou K D, Macpherson D E. An airborne radar power supply with contactless transfer of energy. Part Ⅱ:Converter design. IEEE Transactions on Industrial Electronics, 2007,54:2885-2893.
    [106]Liu X. Electrial and electromagnetic modeling, analysis and design of planar contactless battery charging platform. PhD Theis, Hong Kong:City University of Hong Kong,2007.
    [107]Loaec J, Globus A, Lefloch M et al. Effect of hydrostatic-pressure on magnetization mechanisms in Ni-Zn ferrite. IEEE Transactions on Magnetics,1975,11(5):1320-1322.
    [108]Loaec J, Lefloch M, Johannin P. Effect of hydrostatic-pressure on susceptibility frequency-spectrum of polycrystalline Mn-Zn and Ni-Zn ferrites. IEEE Transactions on Magnetics,1978,14(5):915-917.
    [109]Lefloc M, Loaec J, Pascard H et al. Effect of pressure on soft magnetic-materials. IEEE Transactions on Magnetics,1981,17(6):3129-3134.
    [110]Wang J, Witulski A F, Vollin J L et al. Derivation, calculation and measurement of parameters for a multi-winding transformer electrical model. in APEC'99:Fourth Annual IEEE Conference on Applied Power Electronics Conference and Exposition Dallas, Tx, 1999, pp.220-226.
    [111]Dallago E, Sassone G, Venchi G. High-frequency power transformer model for circuit simulation. IEEE Transactions on Power Electronics,1997,12(4):664-670.
    [112]Hayt W H, A B J. Engineering Electromagnetics (Sixth Edition), New York:Mcgraw Hill,2001.
    [113]Stielau O H, Covic G A. Design of loosely coupled inductive power transfer systems. in 2000 International Conference on Power System Technology, Vols I-Iii, Proceedings, 2000, pp.85-90.
    [114]韩腾,卓放,闫军凯等.非接触式电能传输系统频率分叉现象研究.电工电能新技术,2005,24(2):44-48.
    [115]Wang C S, Covic G A, Stielau O H. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Transactions on Industrial Electronics,2004,51(1):148-157.
    [116]Hurley W G, Duffy M C, O'Reilly S et al. Impedance formulas for planar magnetic structures with spiral windings. IEEE Transactions on Industrial Electronics, 1999,46(2):271-278.
    [117]Hurley W G, Gath E, Breslin J G. Optimizing the AC resistance of multilayer transformer windings with arbitrary current waveforms. IEEE Transactions on Power Electronics,2000,15(2):369-376.
    [118]Hurley W G, Wolfle W H, Breslin J G. Optimized transformer design:Inclusive of high-frequency effects. IEEE Transactions on Power Electronics,1998,13(4):651-659.
    [119]Schulz R B, Plantz V C, Brush D R. Shielding theory and practice. IEEE Transactions on Electromagnetic Compatibility,1988,30(3):187-201.
    [120]Trenkler Y, McBride L E. Shielding improvement by multi-layer design. in 1990 IEEE international symposium on electromagnetic compatibility,1990, pp.1-4.
    [121]Tang S C, Hu S Y, Chung H S H. Evaluation of the shielding effects on printed circuit-board transformers using ferrite plates and copper sheets. IEEE Transactions on Power Electronics,2002,17(6):1080-1088.
    [122]Zhang N, Wang Z L, Fang X. Piezoimpedane and pressure sensors with NiZn ferrite device. Sensors and Actuators a-Physical,2008,147(2):504-507.
    [123]汪缉光,刘秀成.电路原理(第二版),北京:清华大学出版社,2007.
    [124]Li H L, Hu A P, Covic G A et al. Optimal coupling condition of IPT system for achieving maximum power transfer. Electronics Letters,2009,45(1):76-U25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700