感应耦合式电能传输系统的理论与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了感应耦合式无线电能传输系统(ICPT)基本[作原理,对系统的主要组成部分松耦合变压器与传统变压器进行比较,建立了松耦合变压器的互感等效模型,并对其电磁结构性能进行了分析。为了增大磁场强度,提高感应电压,根据变压器的工作原理,本文提出了将初级线圈替换为旋转磁铁与次级线圈相耦合的方法,通过理论分析和仿真研究,分析了该种耦合方式下接收线圈的大小对感应电压和传输功率的影响。为减小漏感的影响,本文分析了单边和双边补偿拓扑结构的耦合系数和次级品质因数变化对电压增益、电流增益和功率传输效率的影响,对不同补偿结构进行了对比,同时,利用PSpice仿真软件,对四种拓扑电路进行了仿真分析。由于双边补偿使系统阶数升高而发生频率分义现象,本文分析了不同补偿拓扑结构发生频率分义现象的条件,并通过仿真分析了使开关管工作在软开关状态的工作频率,为ICPT系统设计过程中免发生频率分叉现象以及减小开关损耗提供了理论依据。
This dissertation focuses on the basic working principle of Inductive Coupled Power Transfer (ICPT) system, comparing the loosely coupled transformer, which is the mainly component of the system, with the traditional transformer, building the mutual model of the loosely coupled transformer and analyzing the performance of the electromagnetic structure. In order to get a stronger magnetic field and a higher inductive voltage, a new coupling method between a rotating magnet and a receiving coil is presented according to the working principle of transformer. The influence of the size of the receiving coil to the inductive voltage and the power transfer ability is analyzed theoretically and by simulation as well. In order to reduce the influence of the leakage inductance, the influence of coupling coefficient and secondary quality factor to the voltage gain, current gain and power transfer efficiency of different compensation topology is analyzed. All the compensation circuit is simulated by PSpice software. The compensation in both primary and secondary side makes the exponent number of the system higher, which causes bifurcation phenomenon. Bifurcation criteria of all the compensation topology are presented and the frequencies at which the power switches can work at the soft-switching condition are simulated, which provide theoretical foundation for the ICPT system design in order to avoid bifurcation and reduce the switching loss.
引文
[1]H. Hertz, Dictionary of scientific biography, vol. Ⅵ[M]. New York:washburn,1944.
    [2]N. Tesla, Apparatus for transmitting electrical power[P]. US patent 1119732
    [3]W. C. Brown. The history of power transmission by radio waves[J]. IEEE Trans. on Microwave Theory and Techniques.1984, vol.9:1230-1242
    [4]O. H. Stielau, G. A. Covic. Design of loosely coupled inductive power transfer systems. IEEE Power System Technology, PowerCon 2000, vol.1:85-90
    [5]C. S. "Wang, O. H. Stielau, G. A. Covic. Load models and their application in the design of loosely coupled inductive power transfer system[C]. Power System Technology, PowerCon 2000,2:1053-1058
    [6]G. A. Covic, J. T. Boys, M. L. Kissin, et al. A three-phase inductive power transfer system for roadway-power transfer[J]. IEEE Trans. on Industrial Electronics,2007,54(6): 3370-3378
    [7]A. W. Green, J. T. Boys.10kHz inductively coupled power transfer-concept and control[A]. 1994 5th International Conference on Power Electronics and Variable-Speed Drives[C]. 1994.694-699
    [8]C. S. Wang, O. H. Stielau, G. A. Covic. Design considerations for a contactless electric vehicle battery charger[J]. IEEE Trans. on Industrial Electronics,2005,52(5):1308-1314
    [9]J. T. Boys, G. A. Covic, G. A. Elliott. Pick-up transformer for ICPT applications[J]. Electronics Letters,2002,38(21):1276-1278
    [10]G. A. Covic, G. Elliott, O. H. Stielau, et al. The design of a contact-less energy transfer system for a people mover system[J].2000 International Conference on Power System Technology,2000:79-84
    [11]C. S. Wang, G. A. Covic, O. H. Stielau. Investigating an LCL load resonant inverter for inductive power transfer applications[J]. IEEE Trans. on Power Electronics,2004,19(4): 995-1002
    [12]G. A. J. Elliott, J. T. Boys, A. W. Green. Magnetically coupled systems for power transfer to electric vehicles[C]. IEEE Power Electronics and Drive Systems 1995, vol.2:797-801.
    [13]H. L. Li, A. P. Hu, G. A. Covic, et al. Optimal coupling condition of IPT system for achieving maximum power transfer[J]. Electronics Letters,2009,45(1):76-77
    [14]G. A. Elliott, G. A. Covic, D. Kacprzaak, et al. A new concept:Asymmetrical pick-ups for inductively coupled power transfer monorail systems[J]. IEEE Trans. on Magnetics,2006, 42(10):3389-3391
    [15]D. Kacprzaak, G. A. Covic, J. T. Boys. An improved magnetic design for inductively coupled power transfer system pickups[A]. The 7th International Power Engineering Conference,2005. IPEC 2005[C].2005:1133-1136
    [16]M. Budhia, G. A. Covic, J. T. Boys. Design and optimization of magnetic structures for lumped inductive power transfer systems[J]. Energy Conversion Congress and Exposition, ICCE 2009[C].2009:2081-2088
    [17]A. P. Hu, G. A. Covic, J. T. Boys. Direct ZVS start-up of a current-fed resonant inverter[J]. IEEE Trans. on Power Electronics,2006,21(3):808-812
    [18]M. Kissin, Chang-Yu Huang, G. A. Covic, et al. Detection of the tuned point of a fixed-frequency LCL resonant power supply[J]. IEEE Trans. on Power Electronics,2009, 24(4):1140-1143
    [19]A. P. Hu, J. T. Boys, G. A. Covic. Frequency analysis and computation of a current-fed resonant coverter for ICPT power supplies[C]. IEEE Power System Technology, PowerCon 2000, vol.1:327-332
    [20]J. T. Boys, G. A. Covic, A. W. Green. Stability and control of inductively coupled power transfer systems[J]. IEEE Proceedings-Electric Power Applications,2000,147(1):37-43
    [21]C. S. Wang, G. A. Covic, O. H. Stielau. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems[J]. IEEE Trans. on Industrial Electronics,2004,51(1):148-157
    [22]J. T. Boys, A. P. Hu, G. A. Covic. Critical Q analysis of a current-fed resonant converter for ICPT applications[J]. Electronics Letters,2000,36(17):1440-1442
    [23]J. T. Boys, G. A. Covic, Y. Xu. DC analysis technique for inductive power transfer pick-ups[J]. IEEE Power Electronics Letters,2003,1(2):51-53
    [24]J. T. Boys, G. A. Elliott, G. A. Covic. An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups[J]. IEEE Trans. on Power Electronics,2007,22(1): 333-335
    [25]Chang-Yu Huang, J. T. Boys, G. A. Covic, et al. Practical considerations for designing IPT system for EV battery charging[J]. Vehicle Power and Propulsion Conference,2009: 402-407
    [26]N. A. Keeling, G. A. Covic, J. T. Boys. A unity-power-factor IPT pickup for high-power applications[J]. IEEE Trans. on Industrial Electronics,2010,57(2):744-751
    [27]I. A. Khan. Battery chargers for electric and hybrid vehicles[C]. IEEE Power Electronics in Transportation 1994:103-112
    [28]A. Esser. Contactless charging and communication for electric vehicles[J]. IEEE Industry Applications Magazine.1995,1(6):4-11.
    [29]J. G. Hayes. Battery charging systems for electrical vehicles. Electric Vehicles-A Technology Roadmap for the Future (Digest No.1998/262), IEEE Colloquium on,1998: 4/1-4/8
    [30]H. Sakamoto, K. Harada. A novel high-power converter for noncontact charging with magnetic coupling[J]. IEEE Trans. on Magnetics,1994,30(6):4755-4757
    [31]H. Sakamoto, S. Washimiya. Magnetic coupled power and data transferring system with a detachable transformer[J]. IEEE Trans. on Magnetics,1996,32(5):4983-4985
    [32]H. Sakamoto, K. Harada, S. Washimiya, et al. Large air-gap coupler for inductive charger[for electric vehicles][J]. IEEE Trans. on Magnetics,1999,35(5):3526-3528
    [33]Y. Matsuda, H. Sakamoto. Non-contact magnetic coupled power and data transferring system for an electric vehicle[J]. Journal of Magnetism and Magnetic Materials,2007, 310(2):2853-2855
    [34]H. Sakamoto, K. Harada, Y. Matsuda,et al. Hybrid magnetic component for high-performance power system[J]. Journal of Magnetism and Magnetic Materials,2004, 272-76:2276-2278
    [35]H. Sakamoto, K. Harada, H. Abe, et al. A magnetic coupled charger with no-load protection[J]. IEEE Trans. on Magnetics,1998,34(4):2057-2059
    [36]F. Sato, S. Adachi, H. Matsuki, et al. The optimum design of open magnetic circuit meander coil for contactless power station system[A].1999, IEEE International Magnetics Conference[C].1999. R9.
    [37]F. Sato, H. Matsuki, S. Kikuchi, et al. A new meander type contactless power transmission system-active excitation with a characteristics of coil shape[J]. IEEE Trans. on Magnetic, 1998,34 (4):2069-2071
    [38]F. Sato, J. Murakami, T. Suzuki, et al. Contactless energy transmission to mobile loads by CLPS test driving of an EV with starter batteries[J]. IEEE Trans. on Magnetics,1997,33(5): 4203-4205
    [39]K. W. Klontz, D. M. Divan, D. W. Novotny, et al. Contactless power delivery system for mining applications[J]. IEEE Trans. on Industry Applications,1995,31(1):27-35
    [40]李宏.感应电能传输-电力电子及电气自动化的新领域[J].电气传动,2001,2:62-64
    [41]武瑛.新型无接触供电系统的研究[D].中国科学院电工所博士学位论文,2004
    [42]武瑛,严陆光,徐善刚等.新型无接触电能传输系统的性能分析[J].电工电能新技术,2003,22(4):10-13
    [43]武瑛,严陆光,徐善刚.新型无接触电能传输系统的稳定性[J].中国电机工程学报,2004,24(5):63-66
    [44]武瑛,严陆光,徐善刚.运动设备无接触供电系统耦合特性的研究[J].电工电能新技术,2005,24(3):5-8
    [45]戴欣,孙跃.单轨行车新型供电方式及相关技术分析[J].重庆大学学报,2003,26(1):50-53
    [46]孙跃,杜雪飞,戴欣等.非接触式移动电源新技术[J].电气自动化,2003,25(5):11-13
    [47]张敏,周雒维.松耦合感应电能传输系统的分析[J].重庆大学学报(自然科学版).2006,29(7):33-37
    [48]孙跃,王智慧,戴欣等.非接触电能传输系统的频率稳定性研究[J].电工技术学报.2005,20(11):56-59
    [49]孙跃,朱军峰,王智慧等.CPT系统输出稳压控制技术[J].重庆工学院学报(自然科学).2008,22(3):1-4
    [50]孙跃,王智慧,苏玉刚等.电流型CPT系统传输功率调节方法[J].重庆大学学报.2009,32(12):1386-1391.
    [51]张峰,王慧贞,秦海鸿等.松耦合全桥谐振变换器的原理分析与实现[J].电力电子技术.2007,41(2):16-18
    [52]张峰,王慧贞,姜田贵.电压型松耦合全桥谐振变换器原理分析与实现[J].电力电子技术.2007,41(4):28-30
    [53]张峰,王慧贞.非接触感应能量传输系统中松耦合变压器的研究[J].电源技术应用.2007,10(4):54-58
    [54]姜田贵,张峰,王慧贞.松耦合感应能量传输系统中补偿网络的分析[J].电力电子技术.2007,41(8):4244
    [55]Wen. H. Ko, Sheau P. Liang, Cliff D. F. Fung. Design of a radio-frequency powered coils for implant instruments[J]. Medical and Biological Engineering and Computing.1977, 11(15):634-640
    [56]N. de N. Donaldson, T. A. Perkins. Analysis of resonant coupled coils in the design of radio frequency transcutaneous links[J]. Medical and Biological Engineering and Computing. 1983,9(21):612-627
    [57]Erwin S. Hochmair. System optimization for improved accuracy in transcutaneous signal and power transmission[J]. IEEE Trans. on Biomedical Engineering.1984,2:177-186
    [58]M. Soma, D. C. Galbraith, R. L. White. Radio-frequency coils in implantable devices: misalignment analysis and design procedure[J]. IEEE Trans. on Biomedical Engineering. 1987,4:276-282
    [59]D. C. Galbraith, M. Soma, R. L. White. A wide-band efficient inductive transdermal power and data link with coupling insensitive gain[J]. IEEE Trans. on Biomedical Engineering. 1987,4:265-275
    [60]C. M. Zierhofer, E. S. Hochmair. High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link[J]. IEEE Trans. on Biomedical Engineering,1990,37(7):716-722
    [61]P. R. Troyk, M. A. K. Schwan. Closed-loop class E transcutaneous power and data link for microimplants[J]. IEEE Trans. on Biomedical Engineering,39(6):589-599
    [62]P. Si, A. P. Hu, J. W. Hsu, et al. Wireless power supply for implantable biomedical device based on primary input voltage regulation[C]. in Proc.2nd IEEE Conf. Industrial Electronics and Applications.2007:235-239
    [63]R. R. Harrison. Designing efficient inductive power links for implantable devices[C]. IEEE International Symposium on Circuit and Systems,2007. ISCAS 2007:2080-2083
    [64]M. P. Theodoridis, S. V. Mollov. Distant energy transfer for artificial human implants[J]. IEEE Trans. on Biomedical Engineering.2005,52(11):1931-1938
    [65]M. Kiani, M. Ghovanloo. An RFID-based closed-loop wireless power transmission system for biomedical applications[J]. IEEE Trans. on Circuits and Systems Ⅱ:Express Briefs. 2010,57(4):260-264
    [66]Ping Si, A. P. Hu, S. Malpas, D. Budgett. A frequency control method for regulating wireless power to implantable devices[J]. IEEE Trans. on Biomedical Circuits and Systems. 2008,2(1):22-29
    [67]C. Fernandez, O. Garcia, R. Prieto, J. A. Cobos, S. Gabriels, G. Vander Borght. Design issues of a coreless transformer for a contactless application[C]. Proc. APEC'02,2002: 339-345
    [68]陈马丁,苑继承,朱新亚等.体外感应供电神经肌肉刺激器的研制.第四军医大学学报,2001,22(18):1725-1726
    [69]韦晓娟,刘静,周一欣.人体动能驱动的可植入式电磁感应供电方法研究.科技导报,2009,27(6):65-71
    [70]赵毅,唐治德,张艳,黄立华.基于植入电子器件体导电能量传递模型的研究.计算机仿真,2009,26(1):339-342
    [71]H. Abe, H. Sakamoto, K. Harada. A noncontact charger using a resonant converter with parallel capacitor of the secondary coil[J]. IEEE Trans. on Industry Application.2000, 36(2):444-451
    [72]Y. Jang, M. M. Jovanovic. A contactless electrical energy transmission system for portable-telephone battery chargers. IEEE Trans. on Industrial Electronics,2003,50(3): 520-527
    [73]S. Y. R. Hui, W. C. H. Wing. A new generation of universal contactless battery charging platform for portable consumer electronic equipment[J]. IEEE Trans. on Power Electronics, 2005,20(3):620-627
    [74]X. Liu, S. Y. R. Hui. Optimal design of a hybrid winding structure for planar contactless battery charging platform[J]. IEEE Trans. on Power Electronics,2008,23(1):455-463
    [75]S. Y. R. Hui, C. Tang. Planar printed circuit-board transformers with effective electromagnetic interference shielding[P]. U.S. patent:US6888438B2,2005-5-3
    [76]S. Y. R. Hui, S. C. Tang. Coreless printed-circuit-board (PCB) transformers and operating techniques therefore[P]. U.S. patent:US20050156699A1,2005-7-21.
    [77]S. Y. R. Hui. Rechargeable battery circuit and structure for compatibility with a planar inductive charging platform[P]. U.S. patent:US20070029965A1,2007-2-8.
    [78]S. Y. R. Hui. Inductive battery charger system with primary transformer winding formed in a multi-layer structure[P]. U.S. patent:US20070090790A1,2007-4-26.
    [79]周雯琪.感应耦合电能传输系统的特性与设计研究[D].浙江大学博士学位论文,2008
    [80]马皓,周雯琪.电流型松散耦合电能传输系统的建模分析[J].电工技术学报,2005,20(10):66-71
    [81]周雯琪,马皓,何湘宁.基于动态方程的电流源感应耦合电能传输电路的频率分析[J].中国电机工程学报,2008,28(3):119-124
    [82]周雯琪,马皓,何湘宁.感应耦合电能传输系统不同补偿拓扑的研究[J].电工技术学报,2009,24(1):133-139
    [83]A. Esser, H. C. Skudelny. A new approach to power supplies for robots[J]. IEEE Trans. on Industry Applications.1991,27(5):872-875
    [84]T. Bieler, M. Perrottet, V. Nguyen, et al. Contactless power and information transmission[J]. IEEE Trans. On Industry Applications.2002,38(5):1266-1272
    [85]A. Kurs, A. karalis, R. Moffatt, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science 2007,317(5834):83-86
    [86]A. Karalis, J. D. Joannopooulos, M. Soljacic. Efficient wireless non-radiative mid-range energy transfer[J]. Annals of Physics,2008,323(1):34-48
    [87]J.de Boeij, E.Lomonova, J.L. Duarte, et al. Contactless power supply for moving sensors and actuators in high-precision mechatronic systems with long-stroke power transfer capability in x-y plane[J]. Sensors and Actuators A:Physical,148(2008):319-328
    [88]Junji Hirai, Tae-Woong, Atsuo Kawamura. Studay on intelligent battery charging using inductive transmission of power and information[J]. IEEE Trans. on Power electronics, 2000,15(2):335-345
    [89]秦海鸿,朱德明,严仰光.电动汽车充电器电路拓扑的设计考虑[J].电源技术应用,2004,7(2):97-104
    [90]唐春森.非接触电能传输系统软开关工作点研究及应用[D].重庆大学博士学位论文,2009
    [91]陈荣.动态功率因数补偿研究[J].机械制造与自动化,2002(6):66-69
    [92]M. T. Thompson, Inductance Calculation Techniques---Part Ⅱ:Approximations and Handbook Methods[M], Power Control and Intelligent Motion, December 1999:
    [93]Thomas H. Lee. The design of CMOS radio-frequency integrated circuits[M]. Cambridge university press,1998
    [94]Robert W. Erickson. Fundamentals of power electronics[M]. New York:Springer,2001
    [95]郑培璿.电力电子分析与IsSpice模拟[M].北京:科学出版社,2007
    [96]叶斌.电力电子应用技术[M].北京:清华大学出版社,2006.5
    [97]赵凯华,陈熙谋.新概念物理教程.电磁学[M].北京:高等教育出版社,2006,12
    [98]齐跃峰,刘燕燕,毕卫红.电子线路CAD[M].西安:西安电子科技大学出版社,2008.9
    [99]陈东OrCAD电路设计[M].北京:国防工业出版社,2004.1
    [100]康晓明.电路分析导论[M].北京:国防工业出版社,2008.6
    [101]戚新波,刘宏飞,郑先锋等MATLAB与PSpice应用技术[M].北京:电子工业出版社,2006.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700