不同退火对Co基非晶玻璃包裹丝的GMI效应影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨磁阻抗(Giant Magneto-impedance,简称GMI)效应指的是铁磁材料的交流阻抗值随着外加磁场的变化会发生较大变化的现象。由于具有灵敏度高,响应快,能耗低等很多优点,所以在磁传感器和磁记录上有着非常广泛的应用前景。
     本文简要回顾了非晶玻璃包裹丝和巨磁阻抗效应的发展历史和研究现状,采用高频感应加热熔融快淬拉引法制备出了钴基非晶玻璃包裹丝,并研究了电流应力退火的条件对Co基非晶丝软磁性能的影响,也研究了空气退火对Co基非晶丝的软磁性能以及非对称性GMI效应的影响。
     论文的主要内容包括:
     1用感应加热熔融快淬拉引法制备出Co基非晶玻璃包裹丝,并对褪玻璃后的丝进行电流和电流应力退火。
     (1)钴基非晶玻璃包裹丝在褪掉玻璃后软磁性能会有所上升。
     (2)当电流密度和应力分别小于2.0×10~7A/m~2和90MPa时,随着电流密度和应力的增大,样品的软磁性能会有所改善,在2.0×10~7A/m~2和90MPa时达到最好,电流密度和应力继续加大,软磁性能又会下降。
     2在褪玻璃包裹的基础上对丝进行暴露在空气当中的火炉退火。
     (1)研究了暴露在空气中火炉退火的样品与温度和时间的关系。结果显示样品的GMI效应相对于磁场的敏感度随着温度的升高和时间的加长是先增强后减弱。在温度低于400℃和时间小于9h时,随着温度的上升和时间增长,样品的软磁性能慢慢变好,温度超过400℃、时间超过9h,软磁性能迅速下降。
     (2)GMI效应的非对称性和在空气中退火后样品的软磁性能改善的主要原因是丝表面的氧化层与纳米晶芯层之间的耦合相互作用。
The giant magneto-impedance (GMI) effect is a phenomenon that there will be a giant change of the impedance of a ferromagnetic material when it is subjected to an external magnetic field. There are a lot of prospective applications (for example, in magnetic recording heads and sensor elements) because of its many advantages (high-sensitivity、quick response and low power consumption, and so on).
     A summary of research on GMI effect is generally presented in this thesis. Amorphous Co-based microwires are prepared by Taylor-Ulitovsky method. Different annealing methods are used to improve their properties. We study the soft magnetic properties and the asymmetrical GMI effect on annealing conditions and the exchange coupling between oxidation surface and nanocrystalline core.
     The main content is listed below:
     1. Preparation of Amorphous Co-based glass-covered microwires and these materials are preformed by Joule current and stress Joule annealing.
     (1) The soft magnetic properties would be improved after removal of the glass cover.
     (2) The optimal density of the Joule current is 2.0×10~7 A/m~2 and the best stress is 90 MPa. The soft magnetic properties improve with the increase of the density of current and the intensity of the stress if the density and stress are less than 2.0×10~7 A/m~2 and 90 MPa, then decease when current and stress continue to increase.
     2. Amorphous Co-based microwires are annealed in open air after glass coating remove.
     (1) The relationship between giant magneto-impedance effect and the annealing temperature and time is investigated. The results show that the sensitivity of GMI effect to magnetic field firstly increases then decreases with the annealing temperature and time. The maximum of GMI sensitivity was obtained in the samples annealed at 400℃for 9 hours.
     (2) It is realized that the exchange coupling interaction is the main reason of the AGMI and the improvement of soft magnetic properties of the wires.
引文
[1]Mohri.K,Kovhzawa.T,Kawaskima.K,et al.,Magneto-inductive effect(MI effect),IEEE Tran.Magn.,1992,28:3150-3152.
    [2]Phan.M-H,Peng.H-X,Giant magnetoimpedance materials:Fundamentals and applications,Progress in Materials Science,2008,53(2):323-420.
    [3]Knobel.M,Pirtak.R,Giant magnetoimpedance:concepts and recent progress,J.Magn.Magn.Mater.,2002,242/245:33-40.
    [4]刘龙平,复合结构丝的巨磁阻抗效应研究,2006年博士学位论文
    [5]Yang.X.L,Yang.J.X,Chen.G,et al,Magneto-impedance effect in field and stress annealed Fe-based nanocrystalline alloys,J.Magn.Magn.Mater.,1997,175:285-289
    [6]董承远,陈世朴,横向巨磁阻抗效应中磁导率张量的理论研究,磁性材料及器件,2002,22(5):333-337.
    [7]Zhao.Z.J,Bendjaballah F.,Yang.X.L,et al,Longitudinally driven magneto-impedance effect in annealed Fe-based nanocrystalline powder materials,J.Magn.Magn.Mater.,2002,246:62-66.
    [8]Vázquez.M,García-Beneytez.J.M,García.J.M,et al,Giant magneto-impedance in heterogeneous microwires,J.Appl.Phys.,2000,88:6501-6505.
    [9]Panina.L.V,Mohri.K,Magneto-impedance in multilayer films,Sens.Actuators.,2000,A 81:71-77.
    [10]Taylor.G.F,A method of drawing metallic filaments and a discussion of their properties and uses,Phys.Rev.,1924,23:655-660.
    [11]Panina.L.V,Asymmetrical giant magneto-impedance(AGMI)in amorphous wires,J.Magn.Magn.Mater.,2002,249:278-287.
    [12]Panina.L.V,Mohri.K,Bushida.K and Noda.M,Giant magneto-impedance and magneto-inductive effects in amorphous alloys,J.Appl.Phys.,1994,76:6198-6203.
    [13]Beach.R.S and Berkowitz.A.E,Sensitive field-andfrequency-dependent impedance spectra of amorphous FeCoSiB wire and ribbon,J.Appl.Phys.,1994,76:6209-6213.
    [14]Panina.L.V and Mohri.K,Effect of magnetic structure on giant magneto-impedance in Co-rich amorphous alloys,J.Magn.Magn.Mater.,1996,157/158:137-140.
    [15]Kim.C.G,Jang.K.J,Kim.D.Y and Yoon.S.S,Analysis of asymmetric giant magnetoimpedance in field-annealed Co-based amorphous ribbon,Appl.Phys.Lett.,1999,75:2114-2116.
    [16]Chiriac.H,Ovari.T.A,Amorphous glass-covered magnetic wires:preparation,properties,application,Progress in Materials Science,1996,40:333-407.
    [17]Li.X.P,Zhao.Z.J,Sect.H.L,et al.,Effect of magnetic field on the magnetic properties of electroplated NiFe/Cu composite wires,J.Appl.Phys.,2003,94:6655-6658.
    [18]宛德福,马兴隆,磁性物理学,北京:电子工业出版社,1999.
    [19]Ghanaatshoar.M,Tehranchi.M.M,Mohseni.S.M,Parhizkari.M,Roozmeh.S.E,Gharehbagh.A.J,Magnetoimpedance effect in current annealed Co-based amorphous wires,J.Magn.Magn.Mater.,2006,304:706-708.
    [20]Kim.C.G;Yoon.S.S,Jang.K.J,Kim.C.O,Validity of the Stoner-Wohlfarth model in hysteretic giant magnetoimpedance of annealed amorphous materials,Appl.Phys.Lett.,2001,78:778-780.
    [21]Chert.D-X,Pascual.L,Hemando.A,Comment on Analysis of asymmetric giant magnetoimpedance in field-annealed Co-based amorphous ribbon,Appl.Phys.Lett.,2000,77:1727-1729.
    [22]Byon.K.S,Yu.S.C,Kim.C.G,Yoon.S.S,Asymmetric characteristics of magneto impedance in amorphous Fe_(77.5)Si_(7.5)B_(15)wire,J.Magn.Magn.Mater.,2001,226/230:718-720.
    [23]Byon.K.S,Yu.S.C,Kim.C.G;Vazquez.M,Bias-current effect on giant magnetoirmpedance in Co-based amorphous microwires,Journal of Non-crystalline solids,2001,287:339-343.
    [24]Kim.C.G,Kim.C.O,Yoon.S.S,Stobiecki.T,Powroznik.W,Role of surface crystalline phases in magnetoimpedance in Co-based amorphous ribbons,J.Magn.Magn.Mater.,2002,242/245:467-469.
    [25]杨燮龙,李香箐,阮梅春,蒋可玉,软磁纳米微晶界面交换耦合作用的研究,金属功能材料,1995,4/5:156-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700