复合结构丝巨磁阻抗效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合高频感应加热熔融拉丝法和化学镀方法制备了两种芯层不同的复合结构丝,对其巨磁阻抗效应(Giant magneto-impedance Effect,简称GMI)进行了研究。结果表明三明治结构丝的巨磁阻抗效应存在层与层之间的电磁相互作用,涡流和趋肤效应是影响巨磁阻抗效应的重要原因。
     1、感应加热熔融拉丝法制备成份为Fe_(73.5)Cu_(1.0)Nb_(1.5)V_(2.0)Si_(13.5)B_(9.0)的玻璃包裹铁基非晶丝非晶丝在570℃氮气保护下退火,使其析出纳米晶粒,铁基微晶丝显示了优越的软磁特性和显著的巨磁阻抗效应。另外采用化学镀方法在BeCu和BeCu/绝缘层丝外施镀NiCoP,为了消除制备过程中产生的应力,样品经低温退火处理,并对两种复合结构丝退火前后的巨磁阻抗效应进行了研究。
     2、利用化学镀方法,制备成沉积不同厚度铜层的玻璃包裹铁基微晶复合结构丝,研究了铜层厚度(0μm,1μm,1.5μm,2μm)对巨磁阻抗效应的影响。结果表明铜层厚(≤1.5μm)的复合丝与未镀铜的磁阻抗相比,在低频下增大,高频下减小,这是因为在较低频率下,玻璃包裹丝外的铜层会产生涡流并作用到铁磁芯层,降低了磁阻抗变化的起始频率,随着频率的增加,磁化受到严重阻尼,因此磁阻抗变化减小。但铜层厚达到2μm,涡流急剧增大,上述的变化趋势消失。
     3、利用磁控溅射法在玻璃包裹丝外沉积铜层,研究了驱动电流流过不同层的GMI效应,结果表明,在同样频率下,沉积有铜层的铁基微晶丝磁阻抗比最大值所对应的外磁场右移,这是由于铜层内的涡流会减小有效驱动电流,从而使补偿磁场H_m增大。并且发现当驱动电流同时流入铜层和铁磁层时,在f=1MHz就有明显的磁阻抗效应,这主要是因为铜层电导率σ大,交变电流主要通过铜层,这使得在低频下,感抗效应对阻抗变化的贡献增大。
    
    华东师范大学硕士毕业论文(2004年)
    复合结构丝巨磁阻抗效应的研究
    4、制备了在BeCu丝(导电芯层)或BeC记绝缘层化学镀NiCoP(铁磁层)的复
    合结构丝,并对其巨磁阻抗效应进行了研究,结果表明,样品在较低频率下,
    具有很大的GMI效应,这主要是因为当驱动电流流过复合丝时,交变电流主要
    流过内层高导电金属,外部封闭磁层是感应磁场的主要通路,起始频率降低。
    此外,BeC川绝缘层加iCoP的磁阻抗效应灵敏度优越于BeCu加iCoP的,这是由
    于中间绝缘层的隔离,使涡流损耗减小。
In this thesis, the composite wires with two different core layer were prepared on the basis of glass-coated melt-spinning method in combination with electroless deposition and magnetron sputtering. The giant magneto-impedance effect (GMI) properties were investigated. The results show that the electromagnetic interaction occurs between the layer and the layer in sandwiched composite wires, the eddy effect and skin effect play an important role for arising the giant magneto-impedance,. 1 The amorphous microwires of nominal compositions Fe73.0Cu1.0Nb1.5V2.0Si13.5B9.0 were prepared by glass-coated melt-spinning method. Nanocrystalline microwire was obtained by annealing amorphous wires at 570 C for improve its soft magnetic properties. The Giant Magneto-impedance is more sharply in nanocrystalline microwire. In addition, BeCu/NiCoP and BeCu/Insulator/NiCoP composite wires were prepared by electroless plating of a NiCoP layer onto BeCu and insulated BeCu wires, the composite wires were annealed in order to eli
    minate the stress caused during the process of preparation, the GMI effect on the composite wires are studied. 2 Using electroless deposition, a thin layer of copper was deposited onto the glass-coated microwires, and the composite wires with ferromagnetic core were
    produced. The influence of copper thickness ( 0 m , 1 m , 1 .5 m , 2 m ) on GMI was investigated. Experiment results show that the GMI effect of the wire deposited with a copper layer ( 1 .5 m ) increases at low frequencies and decreases at high
    frequencies, because the eddy current was induced by the electromagnetic interactions in the Cu layer, and reacts to ferromagnetic core, as a result, the onset frequency of the MI ratio decrease. Further increasing frequency, the magnetization is damped strongly so the MI ratio decreases. However, the thickness of copper layer equals 2 m , the eddy current increases dramatically, the above-mentioned trend disappears.
    3 Copper layer was also deposited using magnetron sputtering onto the annealed
    
    
    
    glass-coated microwires. The GMI effect was investigated with ac driving current flowing through different layer. The result shows that the peak corresponding to the maximum of MI ratio moves towards higher field values with the thickness of copper layer, at the same frequency. The driving current Jo decreases due to the eddy current inside the copper, therefore the compensation field Hm increases, the MI ratio at
    1MHz is evident when the current flows through both ferromagnetic core and copper layer, the current will flow mainly through the copper layer with larger conductive , the contribution of inductive effect increases for GMI effect at low frequencies.
    4, The GMI effect of composite wires BeCu/NiCoP and BeCu/Insulator/NiCoP were investigated, the results show that the obvious GMI effect can be observed at lower frequencies. It is because the ac current flows through the inner conductive layer mainly, and the closed outer ferromagnetic layer becomes the main magnetic inductive loop, the onset frequency reduces. In addition, when the conductive layer and the ferromagnetic layer are separated by insulating layer in composite wires, the MI sensitivity of BeCu/insulator/NiCoP is superior to BeCu/NiCoP, owing to the eddy current loss decreases.
引文
[1] K.Mohri, T. Kohzawa, K. Kawashima et al. IEEE Trans Magn., 28(1992) 3150
    [2] L.D.Landau and E.M.Liftshitz,Electrodynamics of Continuous Media (Pergamon,Oxford, 1960)
    [3] K.Bushida, M.Noka, L. V. Panina et al. J Magn Soc Jpn.,1994
    [4] K.Kawashima, T.Kohzawa, H.Yoshida et al. IEEE Trans Magn.,29(1993)3168
    [5] M.V(?)quez, A.P.Zhukov, .Aragoneses,et al. IEEE Trans Magn.,34(1998) 724
    [6] H.Chiriac, T.A.Ovari, C.Marinescu, IEEE Trans Magn., 33(1997)3352
    [7] M.Knobl, M.L.S(?)nchez,P.Marin, et al.IEEE Trans Magn., 31(1995)4009
    [8] A.Zhukov, M.Vazquez, J.Valazquez, et al. J.Magn.Magn.Mater., 170(1998)323
    [9] M.Knoble, M.L.S(?)nchez, C.G(?)mez-Polo, et al. J.Appl.Phys., 79(1996)1646
    [10] J.Gonzalez, A.Zhukov, V.Zhukova, et al. IEEE Trans Magn., 36(2000)3015
    [11] R.B.da Silva, A.M.H.de Andrade, A.M. Severino,et al. Physica B.,320(2002) 156
    [12] Chen G;Yang X L,Zeng L,et al.J.Appl.Phys., 87(2000)5263
    [13] Xiao Shu-Qin,Liu De-Zhen, Liu Yi-Hua,et al.Chin.Phys.Lett., 16(1999)452
    [14] D. P. Makhnovskiy,L. V. Panina, Sensors and Actuators., 81 (2000)91
    [15] Xiao shu qin,Liu yi-hua, Dai you-yong,et al. J. Appl. Phys., 85(1999)4127
    [16] Sinnecker J P, Knobel M and Pirota K R, J. Appl. Phys., 87(2000)4825
    [17] Sinnecker J P, L. A. Souzade Oliveira, J. Magn. Magn. Mater, 242-245 (2002) 238
    [18] Komatsu K, Masuda S, Takemura Y, et al. IEEE.Trans.Magn., 33(1997)3361
    [19] 董承远,陈世朴,J Magn Mater Devices., 33(4)(2001) 14
    [20] Masakatsu Senda,Osamu Ishii,Yasuhiro Koshimoto,et al, IEEE Trans Magn, 30 (1994) 4611
    [21] Morikawa T, Nishibe Y, Yamadera H, et al. IEEE Trans Magn, 33(1997) 4367
    [22] 刘德镇,萧淑琴,周少雄等,金属学报,36(5)(2000)
    [23] 周勇,禹金强,赵小林等,真空科学与技术,21(5)(2001)
    [24] 钟智勇,张怀武,刘颖力等,真空科学与技术,20(2000)200
    
    
    [25] Hika.K, Panina L V,Mohri k. IEEE Trans Magn, 32(1996)4594
    [26] Shu-qin Xiao,Yi-hua Liu,You-yong Dai,et al.J.Appl.Phys.,85(1999)4127
    [27] Antonav A,Gadetsky S,Granovsky A, yatokcv A, et al. Physica A, 241 (1997)414
    [28] Morikawa T, Nishibe Y, Yamadera H, et al. IEEE Trans Magn, 32(1996) 4965
    [29] L. P. Liu, Z. J. Zhao and X. L. Yang, to be submitted
    [30] G. V. Kurlyandskaya, J.M.Barandiaran,J.L.Munoz,J.Appl.Phys.,87(2000)4822
    [31] J. P. Sinnecker, M.Knoble,K.R.Pirota, J.Appl.Phys.,87(2000) 4825
    [32] J. P. Sirmecker, L.A.Souza,J.Magn.Magn.Mater,242-245(2002) 238
    [33] Jifan Hu,Hongwei Qin,Ling Zhang, et al.Materials Science and Engineering B, 106(2004) 202
    [34] A,Zhukov, M.Va zquez,J.Velaquez,A, Hernando., J MMM, 170(1997) 323
    [35] F.E.Atalay, J Magn Magn Mater, in press
    [36] Minoru Takajo,Jiro Yamasaki,Floud B,IEEE Trans. Magn. 35 (1999) 3904
    [37] A,Zhukov, M.Vazquez,J.Velaquez,A,Hemando.,V.Larin. J.Magn.Magn.Mater.,170 (1997) 323
    [38] S.S.Yoon,C.G.Kim,k.J.Jang,Y.H.Lec, IEEE Trans.Magn.36(2000) 2872
    [39] F.L.A.Machado, S.M.Rezende, J.Appl.Phys.79(1996) 6558
    [40] O.V.Nielsen,J.R.Petersen,B.Hemando,J.Gutierrez,F.Primdhal,An.Fis.(Spain) B 85(1990) 271
    [41] J.M.Blanco,A.Zhudov,J.Gowzalez, J.Appl.Phys.87(2000) 4813
    [42] K.Kawashima,I.Ogasawara,S.Ueno,et al. IEEE.Trans.Magn.35 (1999)3610
    [43] W.S.Cho,H.Lee,C.-O.kim, Thin Solid Films 375(2000) 51
    [44] L.Kraus,M.Knobel,S.N.kane,H.Chiniac,J.Appl.phys.85(1999) 5435
    [45] J.M.Blanco, A.Zhukov, A.F.Cobeno, A.P.Chen, J.Gonzalez, IEEE.Trans.Magn.36 (2000) 2879
    [46] D.Garcia, G.V.Kurlyandskaya,M.Vazuez, J Magn Magn Mater, 203(1999)208
    [47] R.S.Beach,N.Smith,C.L.Platt,Appl.Phys.Lett.68(1996) 2753
    [48] R. H. Yu, G.Landry, Y.F.Li,S.Basu,J.Appl.Phys.,87(2000) 4807
    [49] L.Panina, K.Mori,and T.Uchiyama,Physica A, 241 (1997)429
    
    
    [50] 宋元伟,赵斌,比承绪。玻璃与陶瓷,7(5)47
    [51] 张颖,郭永卫,玻璃,6(1)1
    [52] 姜晓霞,沈伟.化学镀理论及实践.北京:国防工业出版社,2000
    [53] Panina LV, Mohri K, Sensors and Actrators, 81(2000)71
    [54] 杨燮龙,杨介信,陈国等,科学通报,2(1997)257
    [55] G. Herzer, IEEE Trans. Magn, 26 (1990) 1397
    [56] L. V. Panina, K. Mohri, T. Uchiyama and M. Noda, IEEE Trans. Magn., 31 (1995) 1249
    [57] D. X. Chen, J. L. Mu(?)oz, A. Hemando and M. V(?)zquez, Phys. Rev. B57 (1998) 10699
    [58] 袁望治,王新征,科学通报,(已接受)
    [59] G.S.Cargil,Ⅲ,R.J.Gambino,J.J.Cuomo,IEEE.Trans.Magn.MAG-10, (1974)803
    [60] G.Dieta, H.Bestgen,J.Hungenberg,J.Magn.Magn.Mater.9, (1978)208
    [61] P.Aragoneses,A.P.Zhukov,J.Gonzalez,et al.,Sensor and Actuators, 81 (2000) 86
    [62] H.Chiriac,A.Ovari,Process in Materials Science, 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700