光促表面催化CO_2和C_2H_4直接合成丙烯酸Cu/ZnO-TiO_2催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO2和C2H4直接合成丙烯酸,是重要的原子经济型反应之一。本论文将光促表面反应技术应用于这一反应体系,设计并用混合溶胶凝胶法制备了Cu/ZnO-TiO2系列固体材料,采用DTA-TG、TPR、XRD、TEM、BET、IR、UV-Vis和光促表面反应等技术系统地考察了固体材料的制备工艺、化学组成和表面构造对其吸光能力、化学吸附性质和光促表面催化反应性能的影响规律。
    用溶胶凝胶法制得的Cu/ZnO-TiO2系列固体材料是由晶粒粒径10nm左右的锐钛矿型TiO2以及少量ZnTiO3 和ZnO组成的化学混合物,Cu以金属状态高度分散于固体材料表面,固体材料的比表面积大于80m2/g,其表面存在金属位Cu,Lewis酸位Zn2+和Ti4+,Lewis碱位Zn-O-、Zn-O-Ti和Ti-O-Ti键中的桥氧。
    n-p复合型ZnO-TiO2半导体材料在250-400nm紫外光区域内具有优异的吸光性能,其吸收率可达85%以上;负载金属Cu后其对可见光的吸收明显增加,同时紫外光的吸收限发生较大蓝移。CO2在固体材料表面金属位Cu及Lewis酸位的协同作用下可形成双齿吸附态、剪式吸附态以及高活性的卧式吸附态;C2H4以端位H和C吸附在在表面金属位Cu和Lewis碱位Zn-O-上,形成非解离双点吸附态;表面金属Cu位是CO2和C2H4的共同吸附位,导致二者之间存在一定的竞争吸附;
    光促表面催化反应实验结果表明,固体材料中ZnO的含量对其光催化反应性能有较大影响,组成为1%Cu/20%ZnO-TiO2的固体材料性能最优,反应产物为丙烯酸、乙醛和CO;反应温度、空速及反应物组成对该固体材料反应性能有一定影响,在主波长365nm、光强为10mw/cm2的紫外灯照射下及温度100℃、空速200 h-1和CO2:C2H4=1:1的操作条件下,取得了CO2转化率为1.25%,C2H4转化率为1.23%,生成丙烯酸的选择性超过90%的优良成果;
    根据以上实验结果,探讨了光促CO2与C2H4合成丙烯酸表面催化反应的机理、Cu/ZnO-TiO2固体材料中各组分的作用、以及光促表面反应过程中“光-表面-热”的协同效应。
Direct synthesis of crylic acid from CO2 with C2H4 is important one of the atom-economic reaction, and the technology of photo stimulated surface catalytic reaction (PSSCR) has been used to this reaction system at first time. In this work, a series of Cu/ZnO-TiO2 solid materials were prepared by sol-gel method, and their preparation conditions, chemical composition and surface structure, chemisorption properties, absorptivity of UV light and photoreaction behaviors were investigated by techniques of DTA-TG, TPR, TEM, BET, XRD, IR, UV-vis and PSSCR-GC.
    The Cu/ZnO-TiO2 solid materials are composed of anatase TiO2, ZnTiO3 and ZnO with particle sizes around 10nm and surface area over 80m2/g, and metallic Cu clusters are dispersed in a high degree on the surface of solid materials. Three kinds of active sites of Lewis acid sites Zn2+ and Ti4+, Lewis base sites surface O- and bridge-O2- and metallic sites Cu appeared on the surface of these solid materials.
    The ZnO-TiO2 n-p coupled semiconductors can absorb UV light of 250-400 nm effectively with the absorptance over 85%. The absorbance of visible light obviously increase and UV absorbance limit shift to shorter wavelength region after Cu supported on ZnO-TiO2. CO2 can be chemisorbed on the Cu and Lewis acid sites of material surface to form bidentate, bridge and shearing adsorption states, while C2H4 can be chemisorbed on the Cu and Lewis base site to form undissociated intermediate. There exist competitive adsorption between CO2 and C2H4 on Cu.
    The PSSCR performance is influenced by the content of ZnO in the Cu/ZnO-TiO2 solid materials. The solid material, 1%Cu/20%Zn-TiO2, has the best PSSCR performance and the products are crylic acid, aldehyde and CO. The reaction temperature, space velocity, and reactant component have obvious effects on the PSSCR. IUnder the conditions of radiation of UV light (wavelength 365nm, intensity 10mw/cm2), 100℃, space velocity 200 h-1 and CO2:C2H4=1:1, the conversions of CO2 and C2H4 reache1.25% and 1.23% respectively, and the selectivity to crylic acid is over 90%;
    Based on the experimental results, a PSSCR mechanism for direct-synthesis of crylic acid from CO2 and C2H4, the action of each component in the solid material and the synergetic effects of “light-surface-thermal” in PSSCR process has been proposed.
引文
[1] 石中玉. 紫外线光源及其应用.北京: 轻工业出版社
    [2] Gratzel M. Heterogeneous photochemical electron transfer, CRC press, Baton Rouge, FL, 1998
    [3] Dimitrijecic N M, Li S B, Graetzel M. Visible Light Induced Oxygen Evolution in Aqueous CdS Suspensions. J Am Chem Soc, 1984, 106:6565~6569
    [4] Parrm Y et al. Solar photocatalytic processes for the purification of water state of development and barriers to commercialization solar energy, 1996, 56 (5): 429-437
    [5] Linsebigler A L, Lu G, Yates J T Jr. Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results. Chem Rev, 1995,95:735~758
    [6] Sanjines R, Tang H, Berger H. et al. Electronic structure of TiO2 anatase oxide, J.Appl. Phys., 1994, 75, 2945~2951
    [7] M.I.Litter, Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems, Applied Catalysis B: Environmental 23 (1999) 89-114.
    [8] Ohtani B, Kawaguchi J., Kozawa M. et al. Effect of platinum loading on the photocatalytic activity of cadmium(II) sulfide particles suspended in aqueous amino acid solutions, Journal of Photochemistry and Photobiology A: Chemistry, 1995, 90(23): 75~80
    [9] 徐用军,陈福明,姜琳琳等,载钯半导体悬浮催化体系中CO2的光还原,感光科学与光化学. 1999,17(1):61~65
    [10] Goren Z. Selective photoreduction of CO2/HCO3- to formate by aqueous suspensions and colloids of Pd-TiO2. J. Phys. Chem., 1990,94:3784
    [11] Chung K H, Park D C. Photocatalytic decomposition of water over cesium-loaded potassium niobate photocatalyst. J Mol Catal A: Chem, 1998, 129: 53~59
    [12] Sclafani A, Mozzanega M-N, Herrmann J-M, Influence of Silver Deposits on the Photocatalytic Activity of Titania, J. Cat., 1997, 168(1), 117~120
    [13] Rufus I B, Viswanathan B, Ramakrishnan V, et al, Cadmium sulfide with iridium sulfide and platinum sulfide deposits as a photocatalyst for the decomposition of aqueous sulfide, J.Photochem. Photobio. A: Chem., 1995, 91(1): 63~66
    [14] 张彭义,余刚,蒋展鹏,半导体光催化剂及其改性技术进展,环境科学进展,1997,5(3),1-10
    [15] K.Tennakone, J.Bandara, Multiphoton semiconductor photocatalysis, Solar Energy Materials & Solar Cells 60 (2000) 361-365.
    [16] Choi W, Termin A, Hoffmann M R. J. Phys. Chem., 1994, 98(51): 13669~13679.
    [17] 于向阳,程继健,杨阳等,稀土元素掺杂对TiO2光催化性能的影响,华东理工大学学报,Vol.26, No.3, 2000-06, p:287-230.
    [18] 李新勇, 李树本. 纳米半导体研究进展. 化学进展, 1996, 8(3): 231~239
    [19] Metselear R. Studies in inorganic chemistry, Elsevier, Amsterdam, 1990, 239~244
    [20] Leland J K, Bard A J. Graphitic nanotubes in luminescence assays, Biosensors and Bioelectronics, 1998, 13(3-4)
    [21] Zawadzki M., Hreniak D., Wrzyszcz J., Photoluminescence and cathodoluminescence of
    
    
    Tb-doped Al2O3–ZrO2 nanostructures obtained by sol–gel method, Chemical Physics, 2003, 291(3): 275~285
    [22] Albery W J, Bartlett P N. J. Electrochem. Soc., 1984, 131(2): 315~336
    [23] Howe R F, Gratzel M. J. Phys. Chem., 1987, 91(14):3906~3909
    [24] Hagfeld A, Gratzel M. Chem. Rev., 1995, 95(1):49~75
    [25] S.D. Peyerimhoff, R.J. Bunker, J.L. Whitten. Linear stretch in polyatomic molecules: accurate self-consistent field molecular orbital wavefunctions for carbon dioxide and beryllium fluoride. J. Chem. Phys., 1967, 46: 1707.
    [26] 尚久方, 操时杰, 辛无名等译. J. A. 迪安 主编. 兰氏化学手册, 北京:科学出版社, 1991, 3~6.
    [27] H. Adachi. Ryoshi Zairyo Kagaku Nyumon (Introducton to Quantum Material Chemistry). Tokyo: Sankyoshuppan, 1991, p75.
    [28] 黄仲涛等译, W. 凯姆编. C1化学中的催化. 北京: 化学工业出版社, 1989.109.
    [29] F. Solymosi. The bonding, structure and reaction of CO2 adsorbed on clean and promoted metal surfaces. Journal of Molecular Catalysis, 1991, 65: 337-358
    [30] 王建伟, 钟顺和. CO2吸附活化的研究进展, 化学进展, 1998, 10(4): 374
    [31] A. Auroux, A. Gervasini. Microcalorimetric study of the acidity and basicity of metal oxide surfaces. J. Phys. Chem., 1990, 94: 6371
    [32] 李青,钟顺和,邵宇,CO2部分氧化乙烷制乙烯Pd/V2O5-SiO2催化剂的研究,石油化工,1999,Vol.28,294-297.
    [33] Etsuko Fujita, Photochemical carbon dioxide reduction with metal complexes, Coordination Chemistry Reviews, 185-186 (1999) 373-384.
    [34] Hiromi Yamashita, Nobuhiro Kamada, Hong He, et al Reduction of CO2 with H2O on TiO2(100) and TiO2 (110) single crystals under UV-irradiation. Chemistry Letters, 1994, 855~858
    [35] Masakazu Anpo, Hiromi Yamashita, Yuichi Ichihashi, Shaw Ehara. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry, 1995, 396: 21~26
    [36] Yoshiumi Kohno,Takuzo Funabiki,Satohiro Yoshida,et al Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 1999, 126: 117~123
    [37] Goren Z. Selective photoreduction of CO2/HCO3- to formate by aqueous suspensions and colloids of Pd-TiO2. J. Phys. Chem., 1990, 94: 3784
    [38] K.Hirano, K.Inoue, T.Yatsu, J.Photochem. Photobiol. A: Chem. 64 (1992) 255.
    [39] Petra Johne, Horst Kisch. Photoreduction of carbon dioxide catalysed by free and supported zinc and cadmium sulphide powders. Journal of Photochemistry and Photobiology A: Chemistry, 111 (1997):223~228
    [40] Hiromi Yamashita, Yo Fujii, Yuichi Ichihashi, et al Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catalysis Today, 1998, 45 :221~227
    [41] M. Subrahmanyam, S. Kaneco, N. Alonso-Vante. A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity, Applied Catalysis B: Environmental 23 (1999) 169~174.
    [42] J. W. Robinson, CRC Handbook of Spectroscopy V (I)
    
    [43] J.C.Bertolini, J.Massardier, The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 3, Eds. D.A.King and D.P.woodruff(Elsvier, Amsterdam,1984)p.107.
    [44] Jesus D, Carlos J, F.Zaera, Double-bond activation in unsaturated aldehydes: conversion of acrolein to propene and ketene on Pt(111) surfaces, Journal of Molecular Catalysis A: Chemical, 138(1999), 237~240
    [45] 庄友谊,乙烯在过渡金属表面的吸附与分解,温州师范学院学报(自然科学版),2001, 22 (3):10~12.
    [46] P.A.Dilara Vohs J.M., Petrie W.T., HREELS study of the interaction of ethylene with Pt films supported on ZrO2(100) and ZnO(0001), Applied Surface Science 115(1997)243-251 and the references therein.
    [47] Brown W. A., Kose R., King D. A., The role of adsorption heats and bond energies in the assignment of surface reaction products: ethyne and ethene on Ni{110}, Journal of Molecular Catalysis A: Chemical, 1999, 141(1-3):21-29
    [48] J.Kubota, S.Ichihara, J.N.Kondo et al, π-bonded ethene on Pt(111) surface studied by IRAS, Surface Science, 357~358(1996): 634~638.
    [49] M.KRAWCZYK AND W.PALCZEWSKA, SURFACE REACTIVITY OF THE BORIDED PD(111) WITH RESPECT TO HYDROGEN, ETHYNE AND ETHENE, VACUUM, 46(8-10), 1995, 1151~1153
    [50] E.YAGASAKI, R.I.MASEL, CATALYSIS 11(1994) 165.
    [51] A.CASSUTO, M.MANE, H.HUGENSCHMIDT, P.DOLLE AND J.JUPILLE,SURF. SCI. 237 (1990) 63.
    [52] R.G. WINDHAM, M.E#.BARTRAM AND B.E.KOEL, J. PHYS. CHEM. 92(1988) 2862.
    [53] J. F. Paul and P. Sautet, Comparison of the nature of the hydrogen-metal bond on Pd(111) and Ni(111) by a periodic density functional method, Surface Science, 356(1996)1403~1409
    [54] Ushikubo Takashi, Koike Yasuo, Wada Keisuke et al, Study of the structure of niobium oxide by X-ray absorption fine structure and surface science techniques, Catalysis Today, 1996, 28(1-2): 59-69.
    [55] 谢磊,王德峥,曹玉明等,CH3OH,C2H4在有序和缺陷Nb2O5表面的吸附,分子催化,Vol.8, No.5 1994,10,338-346
    [56] C.T.Brigden, S.Poulston, M.V.Twigg, et al, Photo-oxidation of short-chain hydrocarbons over titania, Applied Catalysis B: Environmental 32 (2001) 63-71.
    [57] S.Yamazaki, S.Tanaka, H. Tsukamoto, Kinetic studies of oxidation of ethylene over a TiO2 photocatalyst Journal of Photochemistry and Photociology A: Chemistry 121 (1999) 55-61.
    [58] Xianzhi F, Louis A. Clark, Walter A. Zeltner, Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene, Journal of Photochemistry and Photobiology A 97 (1996) 181-186.
    [59] A. Sirisuk, C. G. Hill Jr., M. A. Anderson, Photocatalytic degradation of ethylene over thin films of titania supported on glass rings, Catalysis Today, 54(1999)159-164
    [60] 王心晨,刘平,王绪绪等,TiO2-ZrO2复合催化剂上乙烯的光催化降解,福州大学学报
    
    
    (自然科学版),Vol.29,No.52001,10,97-99.
    [61] 孙继红,张晔,范文浩等,Sol-Gel技术与纳米材料的化学剪裁,化学进展,1999,11(1) 80-85
    
    [62] 颜秀如,李晓红,霍明亮等,纳米SnO2@TiO2的制备及其光催化性能,物理化学学报,2001,17(1) 23-28
    [63] 菅盘铭,夏亚穆,李德宏等,掺杂TiO2纳米粉的合成、表征及催化性能研究,催化学报,2001,22(2) 161-164
    [64] 戴清,路春娥,翁葵平等,载钛中孔二氧化硅分子筛的光催化性能,催化学报,1999,20(3) 313-316
    [65] 李芳柏,古国榜,李新军等,WO3/TiO2纳米材料的制备及光催化性能,物理化学学报,2000,16(11) 997-1002
    [66] 井立强,孙晓君,蔡伟民,纳米粒子TiO2/Ti膜的表征及其光催化活性,分子催化.2002,16(6) 438-444
    [67] 闫鹏飞,王建强,施龙等,TiO2纳米粉制备的热处理条件研究,黑龙江大学自然科学学报,2001,18(3) 82-84
    [68] 邵艳群,唐电,陈士仁,锐铁矿TiO2的溶胶—凝胶晶化过程,金属热处理,2001(4) 46-47
    [69] 王希涛,钟顺和,Fe-P-O超细非晶态催化剂的制备与表征,应用化学,2001,18(11) 885-888
    [70] 张龙力,杨国华,孔庆池,超微细TiO2制备研究,化工新型材料,2001(7) 19-21
    [71] 孙晓宇,谢关根,张宏升等,以Cu-ZnO/SiO2作催化剂在甲醇脱氢制甲酸甲酯反应中ZnO的助催化作用,复旦学报:自然版,1995,34(2) 214-222
    [72] 钟顺和,王杰慧,Ni-Cu和TiO2-SiO2间的相互作用及其对催化性能的影响,催化学报,1995,16(4) 9-13
    [73] Linsebigler A L, Lu G, Yates J T Jr. Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results. Chem Rev, 1995,95:735~758
    [74] 林元华,张中太,黄淑兰,李晋林,纳米金红石型TiO2粉体的制备及其表征,无机材料学报.1999,14(6).853~860
    [75] Vanheusden K, Seager C H, Warren W L et al., Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis, Journal of Luminescence, 1997.75(1) : 11~16
    [76] O. Seiferth, K. Wolter, B. Dillmann at el, IR investigations of CO2 adsorption on chromia surfaces : Cr2O3(0001)/Cr(110) versus polycrystalline α- Cr2O3, Surface Science 421(1999)176~190
    [77] Kyoko Kitamura Bando, Kazuhiro Sayama, Hitoshi Kusama, et al, In-situ FT-IR study on CO2 hydrogenation over Cu catalysts supported on SiO2, Al2O3, and TiO2, Applied Catalysis A: General 165(1997) 391~409
    [78] 董庆年,红外光谱法,石油化学工业出版社,1977,9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700