污泥复合燃料热利用特征与灰渣成型性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污泥是污水处理工艺过程中产生的固体废弃物。随着我国城市化进程的加快,污水处理设施的建设完善,污泥产生量也越来越大。污泥具有含水率高、力学性质差、含有大量的有毒有害物质,且占地面积大等特点,如果得不到妥善地处理处置,将会带来严重的环境问题。
     随着人们观念的转变和技术进步,各类所谓的“污染物”开始被视作“放错位置的资源”而加以回收利用。有研究表明,污泥中含有大量的有机组分,占污泥干重的50%左右,其热值与褐煤相当,可以进行能源化利用。到目前为止,污泥作为能源而加以利用的方法主要包括厌氧消化、微生物燃料电池、气化和热解、燃烧和混烧等。其中,燃烧和混烧可直接实现能量转化,且设备技术相对成熟,被认为是当前最经济可行的污泥能源转化方式。
     本文采用污泥-煤混合成型→干化→热利用→灰渣利用的过程,在不增加能耗基础上,实现污泥中能量的回收利用之目的,并对产生的灰渣进行完全利用。
     80%左右的含水率是污泥燃烧利用的主要障碍,通过将煤和污泥复合成型制备成复合燃料,可以实现燃烧过程的能量供给平衡,同时可加速复合燃料中污泥含水的干化速率。本文研究了污泥含水率、污泥添加比例和冷压成型压力等因素对复合燃料成型的影响,以及不同温度条件下复合燃料的干化特点,结果表明利于复合燃料成型的工艺条件为:污泥初始含水率60-70%,成型时固含70-80%。10-30MPa范围内的成型压力对落下强度影响较小。制备得到的成型燃料的落下强度可达到采用商用黏结剂制备得到的型煤水平。混合成型后的污泥复合燃料,和污泥相比明显有利于水分的扩散和挥发,可在室温及不高于100℃条件下快速干化,同时实现了污泥脱水及能源化利用的目的。
     对污泥、煤以及二者的复合燃料在空气及氮气条件下进行热分析,研究了总失重量、失重速率、热效应、燃烧及热解参数特点及焦炭生成等内容。结果表明,与煤相比,污泥具有较高的灰分和挥发分,但所含的有机组分的燃烧和热解温度均低于煤。污泥的加入可以降低复合燃料的着火点,提高燃料的活化能。复合燃料的燃烧和热解过程中,污泥和煤表现各自的热特征,无明显的交互作用。污泥中的焦炭含量低于煤,且不稳定,在1000℃热过程中几乎完全分解。
     研究了污泥、煤以及复合燃料燃烧的污染物排放特征,分析了不同复合比例燃料及温度条件下SO2、NOX等污染物的排放特征,以及灰渣的重金属浸出特征。结果表明燃烧过程中,复合燃料中污泥具有一定的固硫和固氮作用,污泥中的s、N含量较高,燃烧过程中SO2、NOX排放的绝对量有所上升但固硫率、固氮率随复合燃料中污泥含量的升高而提高。灰渣的重金属浸出均可达到国家的相关标准规定。
     不同条件下对燃烧后的污泥灰及复合燃料燃烧后的灰渣进行团粒或压力成型,形成烧结坯料,采用两步烧结法制备得到不同性能的陶粒产品。表征并分析了产物的吸水率、密度及物相。对于污泥/污泥灰,采用两步烧结,在低温烧结后,在温度1050℃,时间5-20min条件下,可以烧结得到吸水率45.32-4.11%,密度1.67-0.84g/cm3的陶粒产品。对于复合燃料,在低温烧结后,在温度1150℃,时间5-30min条件下,可以烧结得到吸水率56.35-1.12%,密度1.609-0.758g/cm3的陶粒产品。和纯污泥/污泥灰的烧结条件相比,复合燃料灰需要更高的烧结温度和更长的烧结时间。物相分析表明,随着温度的升高,污泥灰逐渐发生变化,石英相峰值明显降低,转化出现莫来石、斜方钠沸石等物相,并有非晶态无定形物相出现。复合燃料灰渣的烧结过程中,莫来石等物相的存在可能是引起烧结温度提高的原因。
     通过本研究的工艺过程,充分利用现有燃烧设备,解决了污泥含水率高不利于热利用弊端,在不增加能耗的基础上实现了对污泥中能量的回收,具有良好的实用性和推广性。同时,充分利用污泥灰及复合燃料灰渣的材料特征,对最终的灰渣进行了陶瓷化利用,实现了污泥“零排放”及完全的资源化利用。
Sewage sludge is the solid residue produced in the process of wastewater treatment. The production of sewage sludge has been gradually increased along with the rapid development of urbanization and perfect construction of wastewater treatment facilities. Sewage sludge has the characteristics of high moisture content, poor mechanical properties, containing a lot of poisonous and harmful substances as well as covering a big area. If not properly disposed, it would bring serious problems to environment.
     With the change of people's conscious and the progress of technologies, kinds of so-called "pollutant" have been considered as "resources located in wrong places", and being recycled. Researches have indicated that sludge contains a lot of organic matters accounting for about50%of the dry weight, and it could be adopted as energy due to that its calorific value is the same as that of lignite. Up to now, the major methods of energy-oriented utilization of sludge have included anaerobic digestion, microbial fuel cell, gasification and pyrolysis, combustion and co-combustion. Wherein, the combustion and co-combustion with the advantage of the realization of direct energy conversion and relatively mature equipments and technology, is considered as the most economically viable way for utilization of sludge as energy nowadays.
     With the purpose of energy-oriented utilization of sewage sludge without increase of energy consumption, the paper adopted the process of sludge-coal mixed and molding, drying, heat utilization, and ash utilization, and consequently realized the recycle of sewage sludge and fuel ash.
     The main obstacle of sewage sludge combustion is the80%moisture content. By means of compound preparation into composite molding fuel, the mixture of coal and sludge can achieve the balance of energy supply in the combustion process, and can simultaneously accelerate the drying of sludge in the mixture. Experiments were conducted in this paper including the effects of initial water content, amount of addition of sewage sludge and moulding pressure on characteristics of combined fuel, as well as the drying characteristics of the combined fuel at different temperatures. Results showed that the optimized conditions for moulding combined fuel were60-70%of initial moisture content of sludge and70-80%of solid content in the mixture of sludge and coal. The drop shatter had been less affected by moulding pressure at range of10-30MPa. Combined fuel prepared from sludge had good strength of drop shatter, which was satisfied with the commercial leve of briquette. Compared with the sewage sludge alone, the moulded sludge-coal could be dried more easily and quickly at room temperature or lower than100℃. Thus, the purposes of rapid dehydration of sewage sludge as well as its utilization as a potential energy were achieved.
     Thermal characteristics of sludge, coal and mixture fuel were analyzed under air and N2condition, respectively. The parameters of total loss of weight, weight loss rate, heating effect, combustion and pyrolysis parameters, coke formation were studied. Results showed that compared with coal, sewage sludge had higher content of ash and volatile, however, combustion and pyrolysis temperature were lower than those of the coal. The addition of sludge improved the ignition temperature and activation energy of the combined fuel. Sludge or coal was expressed its own thermal characteristics during combustion and pyrolysis process of the combined fuel, and no obvious interaction was observed. The content of coke in the sludge was lower than that in the coal, and was completely decomposed at1000℃.
     The emission of pollutants during the combustion process of sewage sludge, coal and the combined fuel was studied, including the characteristics of SO2and NOx emissions under different ratio of sludge/coal and temperatures and also the leaching characteristics of heavy metals in the ash. Results showed that addition of sludge could maintain sulfur and nitrogen retention during combustion process of the combined fuel. The absolute quantities of SO2and NOx emission were increased because of the higher content of S and N in the sludge, but the capture efficiency of sulfur and nitrogen was enhanced with the increasing addition of sludge in the combined fuel. Leaching of heavy metal from the ash satisfied the national related standards.
     The combustion ash of sludge and combined fuel were prepared for ceramsite products under different conditions with two step sintering process, respectively, and different performances of haydite were obtained. Water absorption and bulk density were characterized, and the mineral phases of raw materials and the formed haydite were determined by X-ray Diffraction (XRD). Results showed that for the sludge ash, the products of haydite with the range of45.32-4.11%of water absorbent and1.67-0.84g/cm3of bulk density, respectively, were obtained by the control of material formula and process conditions such as temperature and sintering time. As for the ash of combined fuel, products with56.35-1.12%of water absorbent range and1.609-0.758g/cm3of bulk density, were obtained at1150℃and sintering time range of5-30min. Higher sintering temperature and longer sintering time were needed during the process of sintering the ash of the combined fuel as compared with the ash of sludge. XRD analysis showed that material phase changed with the increase of temperature, the peak of quartz phase obviously decreased, and the phases such as mullite, rhombic sodium zeolite and amorphous appeared. Sintering temperature of combined fuel ash increased might be related to the presence of mullite content.
     By means of the processes discussed in the paper, the purpose of energy-oriented utilizationof sludge could be realized, which can make full use of the existing combustion equipments, and avoid the defects of high moisture content of the sludge. The methods in this paper perform good practicability and popularization.Meanwhile, the final ash of sludge and combined fuel can be adopted for preparation of ceramic materials, and consequently achieve the sludge "zero emissions" and complete utilization as resources.
引文
Abbasi T, Tauseef S M, Abbasi S A. Anaerobic digestion for global warming control and energy generation-an overview[J]. Renewable and Sustainable Energy Reviews.2012,16(5): 3228-3242.
    Adam C, Peplinski B, Michaelis M. Thermochemical treatment of sewage sludge ashes for phosphorus recovery [J]. Waste Management.2009,29(3):1122-1128.
    Aznar M, Manya J J, Garcia G, et al. Influence of freeboard temperature, fluidization velocity, and particle size on tar production and composition during the air gasification of sewage sludge[J]. Energy & Fuels.2008,22(4):2840-2850.
    Barbosa R, Lapa N, Boavida D, et al. Co-combustion of coal and sewage sludge:Chemical and ecotoxicological properties of ashes [J]. Journal of Hazardous Materials.2009,170(2-3): 902-909.
    Bridle TR, Pritchard D. Energy and nutrient recovery from sewage sludge via pyrolysis [J]. Water Science and Technology.2004,50(9):169-175.
    Cao YC, Pawlowski A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis:brief overview and energy efficiency assessment[J]. Renewable & Sustainable Energy Reviews.2011,16(3):1657-1665.
    Cakir FY, Stenstrom MK. Greenhouse gas production:A comparison between aerobic and anaerobic wastewater treatment technology [J]. Water Research.2005,39(17):4197-4203.
    Cha J, Choi S, Yu H, et al.Directly applicable microbial fuel cells in aeration tank for wastewater treatment [J]. Bioelectrochemistry.2010,78(1):72-79.
    Charles M. Riley, Relation of chemical properties to the bloating of clays[J]. Journal of the American Ceramic Society,1951,34(4):121-128.
    Chen Y, Mori S, Pan WP. Studying the mechanisms of ignition of coal particles by TG-DTA [J]. Thermochimica Acta.1996,275(1):149-158.
    Cheng J, Zhou J, Liu J,et al. Sulfur removal at high temperature during coal combustion in furnaces:a review[J], Progress in Energy and Combustion Science.2003,29(5):381-504.
    Conesa J, Marcilla A, Moral R, et al. Evolution of gases in the primary pyrolysis of different sewage sludges [J].Thermochimica Acta.1998,313(1):63-73.
    Cui H, Ninomiya Y, Masui M, et al. Fundamental behaviors in combustion of raw sewage sludge[J]. Energy & Fuels.2005,20(1):77-83.
    Dai JY, Xu MQ, Chen JP,et al. PCDD/F, PAH and heavy metals in the sewage sludge from six wastewater treatment plants in Beijing, China[J]. Chemosphere.2007,66(2):353-361.
    Deng WY, Yan JH, Li XD, et al. Emission characteristics of dioxins, furans and polycyclic aromatic hydrocarbons during fluidized-bed combustion of sewage sludge[J]. Journal of Environmental Science-China.2009,21(12):1747-1752.
    Dong HL, Rong Y, Jingai S, et al. Combustion characteristics of sewage sludge in a bench-scale fluidized bed reactor [J]. Energy & Fuels.2007,22(1):2-8.
    Dogru M, Midilli A, Howarth CR. Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis [J]. Fuel Process Technology.2002,75(1):55-82.
    Du ZW, Li HR, Gu TY. A state of the art review on microbial fuel cells:A promising technology for wastewater treatment and bioenergy[J]. Biotechnology Advances.2007,25(5):464-482.
    Dyer TD, Halliday JE, Dhir R K. Hydration chemistry of sewage sludge ash used as a cement component[J]. Journal of Materials in Civil Engineering.2011,23(5):648-655.
    Egazy BE. Brick making from water treatment plant sludge [J]. Journal of Engineering and Applied Sciences.2007,54(6):599-615.
    European Union.Council Directive86/278/EEC [EB/OL]. (2009-04-20) [2012-04-15] http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31986L0278:EN:NOT.
    European Union. Council Directive 1999/31/EC [EB/OL]. (1999-4-26) [2012-04-15]http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1999:182:0001:0 019:EN:PDF
    European Union.Directive 2000/76/EC[EB/OL]. (2000-12-28) [2012-04-151http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32000L0076:e n:HTML.
    Fernandez Ferreras J, Garcia Posadas H, Rico Gutierrez JL. Use of ash from sewage sludge in the preparation of desulfurant sorbents[J]. International Journal of Chemical Reactor Engineering.2010,8:A67.
    Folgueras MB, Diaz R M, Xiberta J. Pyrolysis of blends of different types of sewage sludge with one bituminous coal[J]. Energy.2005,30(7):1079-1091.
    Folgueras AB, Diaz R M, Xiberta J, et al.Thermogravimetric analysis of the co-combustion of coal and sewage sludge[J]. Fuel.2003,82(15-17):2051-2055.
    Folgueras MB, Diaz RM, Xiberta J, et al.Volatilisation of trace elements for coal-sewage sludge blends during their combustion[J].Fuel.2003,82(15-17):1939-1948.
    Folgueras MB, Diaz RM, Xiberta J.Sulphur retention during co-combustion of coal and sewage sludge[J].Fuel.2004,83(10):1315-1322.
    Folgueras MB, Diaz RM, Xiberta J, et al. Influence of sewage sludge addition on coal ash fusion temperatures[J]. Energ Fuel.2005,19(6):2562-2570.
    Fonts I, Juan A, Gea G, et al. Sewage sludge pyrolysis in fluidized bed,1:influence of operational conditions on the product distribution[J]. Industrial & Engineering Chemistry Research. 2008,47(15):5376-5385.
    Fonts I, Azuara M, Lazaro L, et al. Gas chromatography study of sewage sludge pyrolysis liquids obtained at different operational conditions in a fluidized bed [J]. Industrial & Engineering Chemistry Research.2009,48(12):5907-5915.
    Franz M. Phosphate fertilizer from sewage sludge ash (SSA)[J]. Waste Management.2008,28(10): 1809-1818.
    Frsc PL, Fellow M. Developments in the thermal drying of sewage sludge[J]. Water and Environment Journal.1995,9(3):306-316.
    Furness DT, Hoggett LA, Judd SJ. Thermochemical treatment of sewage sludge [J]. Journal of the Chartered Institution of Water and Environmental Management.2000,14(1):57-65.
    Fytili D, Zabaniotou A. Utilization of sewage sludge in EU application of old and new methods-a review. Renewable & Sustainable Energy Reviews.2008,12(1):116-140.
    Fytianos K, Charantoni E. Leaching of heavy metals from municipal sewage sludge[J]. Environment International.1998,24(4):467-475.
    Gulyurtlu I, Lopes MH, Abelha P, et al.The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal[J]. Journal of Energy Resources Technology-Transactions of the ASME.2006,128(2):104-110.
    Gupta A, Gaur V, Verma N. Breakthrough analysis for adsorption of sulfur-dioxide over zeolites[J]. Chemical engineering and processing.2004,43(1):9-22.
    Hirama T, Hosoda H, Moritomi H, et al. Formation and decomposition of nitrous oxide from a circulating fluidized-bed coal combustor[J]. Journal of the Japan Institute of Energy.1993, 72:252-262.
    Inguanzo M, Domnguez A, Menendez JA, et al. On the pyrolysis of sewage sludge:the influence of pyrolysis conditions on solid, liquid and gas fractions[J]. Journal of Analytical and Applied Pyrolysis.2002,63(1):209-222.
    Ischia M, Perazzolli C, Dal Maschio R, et al. Pyrolysis study of sewage sludge by TG-MS and TG-GC-MS coupled analyses [J]. Journal of Thermal Analysis and Calorimetry.2007,87(2): 567-574.
    Janusz F, Czeslaw P.Solar energy application for sewage sludge drying process[J], Rocznik Ochrona Srodowiska.2011,13(Part 2):1783-1794.
    Jewell WJ. Anaerobic sewage treatment.Part 6[J]. Environmental Science & Technology.1987, 21(1):14-21.
    Jiang JG, Du XJ, Yang SH. Analysis of the combustion of sewage sludge-derived fuel by a thermogravimetric method in China [J]. Waste Management.2010,30(7):1407-1413.
    Jiang JQ, Zhao QL, Zhang JN, et al. Electricity generation from bio-treatment of sewage sludge with microbial fuel cell [J]. Bioresource Technology.2009,100(23):5808-5812.
    Judex JW, Gaiffi M, Burgbacher HC. Gasification of dried sewage sludge:status of the demonstration and the pilot plant [J]. Waste Management.2012,32(4):719-723.
    Kang SW, Dong JI, Kim JM, et al. Gasification and its emission characteristics for dried sewage sludge utilizing a fluidized bed gasifier[J]. Journal of Material Cycles and Waste Management.2011,13(3):180-185.
    Khiari B, Marias F, Zagrouba F, et al.Analytical study of the pyrolysis process in a wastewater treatment pilot station[J]. Desalination.2004,167(15):39-47.
    Kim JK, Lee HD. Combustion possibility of dry sewage sludge used as blended fuel in anthracite-fired power plant[J]. Journal of Chemical Engineering of Japan.2011,44(8): 561-571.
    Korneel R, Ren e A. R. Microbial electrosynthesis-revisiting the electrical route for microbial production[J]. Nature Reviews Microbiology.2010,10(8):706-716.
    Leckner B, amand E. Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed. Fuel.2004,83(4-5):477-486.
    Liu H, Cheng S, Logan B. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology.' 2005,39(14):5488-5493.
    Logan B, Hamelers B, Rozendal R, et al. Microbial fuel cells:methodology and technology [J]. Environmental Science & Technology.2006,40(17):5181-5192.
    Lopes MH, Abelha P, Oliveira JFS, et al. Heavy metals behavior during monocombustion and co-combustion of sewage sludge[J]. Environmental Engineering Science.2005,22(2): 205-220.
    Lowe P. Developments in the thermal drying of sewage sludge[J]. Journal of the Chartered Institution of Water and Environmental Managent.1995,9(3):306-316.
    Ma XW, Weng H X, Su M H, et al. Drying sewage sludge using flue gas from power plants in China[J]. Environmental Earth Sciences.2012,65(6):1841-1846
    Manara P, Zabaniotou A. Towards sewage sludge based biofuels via thermochemical conversion-areview[J]. Renew Sust Energ Rev.2012,16:2566-2582.
    Mathioudakis VL, Kapagiannidis AG, Athanasoulia E, et al. Extended dewatering of sewage sludge in solar drying plants [J]. Desalination.2009,248(1-3):733-739.
    Mccarty P, Bae J, Kim J. Domestic Wastewater Treatment as a Net Energy Producer-Can This be Achieved? [J]. Enviromental Science & Technology.2011,45(17):7100-7106.
    Menendez J, Dominguez A, Inguanzo M, et al. Microwave pyrolysis of sewage sludge:analysis of the gas fraction [J]. Journal of Analytical and Applied Pyrolysis.2004,71(2):657-667.
    Merino I, Arevalo LF, Romero F. Preparation and characterization of ceramic products by thermal treatment of sewage sludge ashes mixed with different additives[J]. Waste Management. 2007,27(12):1829-1844.
    Murakami T, Suzuki Y, Nagasawa H, Yamamoto T, Koseki T, Hirose H, Okamoto S. Combustion characteristics of sewage sludge in an incineration plant for energy recovery[J]. Fuel Process Technol.2009,90:778-783.
    Nadziakiewicz J, Koziol M. Co-combustion of sludge with coal[J]. Applied Energy.2003,75(3-4): 239-248.
    Naomichi N, Yutaka N. Recent development of anaerobic digestion processes for energy recovery from wastes[J]. Journal ofBioscience and Bioengineering.2007,103(2):105-112.
    Niks AS. Flashchain theory for rapid coal devolatilization kinetics.5. interpreting rates of devolatilization for various coal types and operating-conditions[J]. Energy & Fuels.1994,8 (3):671-679.
    Nowak B, Aschenbrenner P, Winter F. Heavy metal removal from sewage sludge ash and municipal solid waste fly ash-a comparison [J]. Fuel Prosessing Technology.2013,105: 195-201.
    Nowak B, Perutka L, Aschenbrenner P. Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash [J]. Waste Management.2012,31(6): 1285-1291.
    Ogada T, Werther J. Combustion characteristics of wet sludge in a fluidized bed[J]. Fuel,1996, 75(5):617-626.
    Okuno N, Takahashi S. Full scale application of manufacturing bricks from sewage [J]. Water Science and Technology.1997,36(11):243-250.
    Otero M, Gomez X, Garcia A I,et al. Effects of sewage sludge blending on the coal combustion:A thermogravimetric assessment[J]. Chemsphere.2007,69(11):1740-1750.
    Otero M, Diez C, Calvo L F, et al.Analysis of the co-combustion of sewage sludge and coal by TG-MS [J]. Biomass & Bioenergy.2002,22(4):319-329.
    Pant D, Van Bogaert G, Diels L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J]. Bioresource Technology.2010,101(6): 1533-1543.
    Qi Y, Szendrak D, Yuen RTW, et al. Application of sludge dewatered products to soil and its effects on the leaching behaviour of heavy metals [J]. Chemical Engineering Journal.2011, 166(2):586-595.
    Rabaey K, Rozendal R A. Microbial electrosynthesis-revisiting the electrical route for microbial production[J]. Nature Reviews Microbiology.2010,8(10):706-716.
    Rui B, Nuno L Dulce B, et al. Co-combustion of coal and sewage sludge:Chemical and ecotoxicological properties of ashes. Journal of Hazardous Materials.2009,170(5):902-909.
    Sanchez M, Menendez J, Dominguez A, et al. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge [J]. Biomass & Bioenergy.2009,33(6-7):933-940.
    Sakurai Y, Takahashi Y, Makino T. Laboratory measurement of absorption and oxidation of sulphur dioxide by zeolite[J]. Journal of geochemical exploration.1998,64(1-3):315-319.
    SaEngera M, Werther J, Ogada T. NOx and N2O emission characteristics from fluidised bed combustion of semi-dried municipal sewage sludge. Fuel.2001,80:167-177.
    Seggiani M, Vitolo S, Puccini M, et al.Cogasification of sewage sludge in an updraft gasifier[J]. Fuel.2012,93(1):486-491.
    Shao Q, Xu H, Tong M. The technical study on the preparation of lightweight ceramsite made from sewage sludge and fly ash[J]. Advanced Materials Research.2012,356-360: 1871-1875.
    Shao J, Yan R, Chen H, et al. Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry fourier transform infrared analysis[J]. Energy & Fuels.2008,22(1):38-45.
    Shimizu T, Toyono M, Ohsawa H. Emissions of NOx and N2O during co-combustion of dried sewage sludge with coal in a bubbling fluidized bed combustor. Fuel.2007,86(7-8): 957-964.
    Shimizu T, Toyono M. Emissions of NOx and N2O during co-combustion of dried sewage sludge with coal in a circulating fluidized bed combustor. Fuel.2007,86(15):2308-2315.
    Solomon PR, Hamblen DG, Serio MA, et al.A characterization method and model for predicting coal conversion behavior[J]. Fuel.1984,72(4):469-488.
    Stasta P, Jaroslav B, Ladislav B, Oral J. Thermal processing of sewage sludge[J]. Applied Thermal Engineering.2006,26:1420-1426.
    Suzuki S, Tanaka M, Kaneko T. Glass-ceramic from sewage sludge ash[J]. Journal of Materials science.1997,32(7):1775-1779.
    Tomasz B, Lech N, Pawe S. Application of the TG-MS system in studying sewage sludge pyrolysis and gasification [J]. Polish Journal of Chemical Technology.2008,10(1):1-5.
    Tsai Chen Chiu, Wang Kuen Sheng, et al. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge [J]. Journal of Hazardous Materials.2006,134(1-3):87-93.
    Viana M, Melchert MB, Morais LC, et al. Sewage sludge coke estimation using thermal analysis [J]. Journal of Thermal Analysis and Calorimetry.2011,106(2):437-443.
    Vogel C, Adam C. Heavy Metal removal from sewage sludge ash by thermochemical treatment with gaseous hydrochloric acid[J]. Environmental Science & Technology.2011,45(17): 7445-7450.
    Wong JWC, Selvam A. Growth and elemental accumulation of plants grown in acidic soil amended with coal fly ash-sewage sludge co-compost[J]. Archives of Environmental Contamination and Toxicology.2009,57(3):515-523.
    Werther J, Ogada T. Sewage sludge combustion[J]. Progress in Energy and Combustion Science. 1999,25(1):55-116.
    Xie LP, Li T, Gao JD, et al. Effect of moisture content in sewage sludge on air gasification[J]. Journal of Fuel Chemistry and Technology.2010,38(5):615-620.
    Xu H, He P, Gu W. Recovery of phosphorus as struvite from sewage sludge ash[J]. Journal of Environmental Sciences-China.2012,24(8):1533-1538.
    Yue M, Yue QY, Qi YF, et al. Properties and effect of forming sewage sludge into lightweight ceramics [J]. Frontiers of Environmental Science & Engineering.2012,6(1):117-124.
    Qi Y, Szendrak D, Yuen RTW, et al. Application of sludge dewatered products to soil and its effects on the leaching behaviour of heavy metals[J]. Chemical Engineering Journal.2011, 166:586-595.
    Zhai YB, Liu Q, Zeng GM. Experimental study on the characteristics of sewage sludge pyrolysis under the low temperature conditions[J]. Environmental Engineering Science.2008,25(8): 1203-1211.
    Zhang BP, Xiong SJ, Xiao B, et al. Mechanism of wet sewage sludge pyrolysis in a tubular furnace [J]. International Journal of Hydrogen Energy,2011,36(1):355-363.
    Zhang G, Zhao Q, Jiao Y, et al. Efficient electricity generation from sewage sludge using biocathode microbial fuel cell [J]. Water Research,2012,46(1):43-52.
    蔡璐,陈同斌,高定,等.中国大中型城市的城市污泥热值分析[J].中国给水排水.2010(15):106-108.
    陈同斌,郑国砥,高定,等.城市污泥堆肥处理及其产业化发展中的几个关键问题[J].中国给水排水.2009(9):104-108.
    陈益宾,陈文韬,陈铮,等.废弃牡蛎壳和污泥作为燃煤固硫剂的实验研究[J].福建师大福清分校学报.2012(2):45-49.
    成岳,郭磊,金文辉.城市污泥制备多孔陶瓷填料的试验研究[J].中国陶瓷.2011,47(9):48-50
    董玉平,郭飞强,董磊,等.生物质热解气化技术[J].中国工程科学.2011,13(2):44-49.
    冯乃谦,邢锋.生态水泥及应用[J].混凝土与水泥制品.2000(6):18-21.
    付才国,黄光许,郝英轩.生物质型煤的工业性试验[J].中国煤炭.2012,38(8):92-94.
    范锦忠.我国轻骨料及其混凝土和制品生产、应用综述[J].硅酸盐通报.2005,24(5):73-77.
    傅维标,张燕屏,韩洪樵,等.煤粒热解通用模型(Fu-Zhang模型).中国科学(A辑),1988,12(4):1283-1290.
    高廷耀,顾国维,周琪.水污染控制工程第三版(下册)[M].北京:高等教育出版社,2009.
    黄盛初.2009中国煤炭发展报告[M].北京:煤炭工业出版社,2009.
    黄培东,钟冠华,余全金,等.以污泥为粘结剂的生物质型煤固硫试验研究[J].广东化工.201 0,37(4):78-79.
    胡志强.无机材料科学基础教程[M].北京:化学工业出版社,2004.
    胡小芳,胡大为.新型煤低成本高性能环保燃烧催化剂[J].洁净煤技术.2008,14(2):45-48.
    胡海祥,彭会清,赵根成.活性炭用于烟气脱硫的研究进展[J].炭素.2003(4):36-40.
    汉春利,张军.活性矾土吸收高温烟气中二氧化硫机理研究[J].工程热物理学报.2002,23(6):767-769.
    汉春利,张军.活性矾土与烟气污染物的脱除[J].热能动力工程.2001,16(4):355-358.
    蒋建国,杜雪娟,杨世辉.城市污水厂污泥衍生燃料成型的研究[J].中国环境科学.2008,28(10):904-909.
    李登新,高晋生,岳光溪,等.煤中有机硫的电化学脱硫机理[J].燃烧科学与技术.2002,8(5):421-425.
    李维,杨向平,李建军.高碑店污水处理厂沼气热电联供情况介绍[J].给水排水,2003,29(12):17-20.
    卢志,张毅,Hanssen H,等.德国汉堡污水处理厂污泥循环处理模式探讨[J].中国给水排水,2007,23(10):105-108
    林子增,孙克勤.城市污泥为部分原料制备黏土烧结普通砖[J].硅酸盐学报.2010,38(10):1963-1968.
    陆靓燕,陈延林,鲍秀婷,等.粉煤灰对二氧化硫吸附性能的研究[J].粉煤灰综合利用.2007(]):16-18.
    沈恒范.概率论与数理统计教程(第四版)[M].北京:高等教育出版社.2004.
    唐黎华,朱子彬.活性污泥作为气化用型煤粘结剂的研究:I.污泥添加量和型煤成型条件的 考察[J].环境科学学报.1999,19(1):87-90.
    谭天恩,麦本熙,丁惠华.化工原理,(下册)[M].北京:化学工业出版社,1998.
    王兴润,金宜英,聂永丰.国内外污泥热干燥工艺的应用进展及技术要点[J].中国给水排水.2007,23(8):5-8.
    王中平,徐基璇.利用苏州河底泥制备陶粒[J].建筑材料学报.1999,2(2):176-181.
    王兴润,金宜英,聂永丰,等.污泥制陶粒技术可行性分析与烧结机理研究.环境科学研究.2008,21(6):80-84.
    王丹.污泥水煤浆的基础特性、脱硫特性以及锅炉燃烧特性研究[D].浙江大学硕士论文.2010.
    翁焕新,章金骏,曹彦圣,等.污泥陶粒的性能特征与烧制工艺[J].浙江大学学报:工学版.2011,45(10):1877-1883.
    吴越,时剑,童红.应用循环流化床锅炉掺烧城市污泥的技术研究.环境保护科学.2009,35(5):35-37.
    吴静,姜洁,周红明,等.我国城市污水厂污泥厌氧消化系统的运行现状[J].中国给水排水.2008,24(22):21-24.
    吴占松,马润田,赵满成.煤炭清洁有效利用技术[M].北京:化学工业出版社,2007.
    汪靓,朱南文,张善发,等.污泥建材利用现状及前景探讨[J].给水排水.2005,31(3):40-44.
    王征,郭玉顺.粉煤灰高强陶粒烧胀规律的试验研究[J].保温材料与建筑节能.2002,(2):10-15
    王永光,胡文寿,梁燕萍.西安市天然陶粒粘土矿及开发利用[J].中国非金属矿工业导刊.2001,21(3):31-32.
    万立国,田禹,张丽君,等.污水污泥高温热解技术研究现状与进展[J].环境科学与技术.2011,34(6):109-114.
    谢建麟,余晓钟.城市污水厂污泥制型煤的研究[J].武汉城市建设学院学报.1992,9(1):105-110.
    许德平,罗长福.工业型煤推广应用中存在的问题及解决途径[J].煤炭加工与综合利用.2002(5):29-31.
    徐强.污泥处理处置新技术、新工艺、新设备[M].北京:化学工业出版社,2011.
    徐通模.锅炉燃烧设备[M].西安:西安交通大学出版社.1990.
    徐云生,沈际群.工业型煤在链条炉上的燃烧性能研究[J].昆明工学院学报.1995,20(4): 9-18.
    薛旭方,于晗,洪楠,等.餐饮垃圾热解制取生物燃油伪实验研究[J].燃料化学学报,2011,39(5):390-395.
    岩井重久,申丘澈,名取真.污水污泥处理[M].北京:中国建筑出版社,1981.
    杨时元.江苏陶粒页岩矿产资源分布与性能浅析[J].中国非金属矿工业导刊.2006,56(4)53-55
    闫振甲,何艳君.陶粒生产实用技术[M].北京:化学工业出版社,2006.
    杨小文,杜英豪.污泥处理与资源化利用方案选择[J].中国给水排水.2002,18(4):31-33.
    章嵘,费征云.杭州七格污水处理厂污泥处置及示范工程[J].中国给水排水.201 1,27(18):79-82.
    赵乐军,戴树桂,辜显华.污泥填埋技术应用进展[J].中国给水排水.2004,20(4):27-30.
    朱英,赵由才,李鸿江.城镇污水处理厂污泥填埋方法与技术分析[J].中国给水排水.2010(20):12-1 5.
    赵丽君,杨意东.城市污泥堆肥技术研究[J].中国给水排水.1999,15(9):58-60.
    赵友恒,于衍真,李玄.利用污泥制砖的应用研究与现状[J].中国资源综合利用.2011,29(3):33-35.
    张长飞,葛仕福,赵培涛.污泥合成燃料的研制及燃烧特性研究[J].环境科学学报.2011,31(1):130-135.
    张辉,吴祖成,胡勤海,等.电化学法在煤炭预脱硫中的应用[J].化工学报.2010,61(S1):1-5.
    张守玉,陈富艳.活性炭质材料脱硫机理探讨[J].煤炭转化.2002,25(2):29-34.
    张大康,吴建平,田文艳.以污泥为黏合剂的型煤固硫助燃新探[J].节能技术.2007,25(6):569-571.
    智永婷.吸附法脱除烟气中的二氧化硫的研究.[D].天津大学博士论文,2011.
    住房和城乡建设部.CJ/T 309-2009城镇污水处理厂污泥处置农用泥质[S].北京:中国标准出版社,2009.中华人民共和国环境保护部.2010中国环境状况公报[EB/OL](2011-06-03)[2012-04-15]http://jcs.mep.gov.cn/hjzl/zkgb/2010zkgb/201106/t20110602_211577.htm
    中国国家标准化管理委员会.GB/T 23485-2009城镇污水处理厂污泥处置混合填埋用泥质[S].北京:中国标准出版社,2009.
    中国国家标准化管理委员会.GB/T 24602-2009城镇污水处理厂污泥处置单独焚烧用泥质 [s].北京:中国标准出版社,2009.
    中国国家标准化管理委员会.GB/T 17431.2-2010.轻集料及其试验方法第2部分:轻集料试验方法[S].北京:中国标准出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700