电阻阵列红外景物产生器微桥结构的材料及制作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动态红外景物模拟系统由于能够在实验室内对红外探测系统的动态性能进行测试与评估而受到国内外的重视。该系统的关键器件是红外景物产生器。目前,具有微桥结构的电阻阵列红外景物产生器由于具有宽光谱、大动态范围、高分辨率、高帧频、无闪烁等优点已成为国际上重点发展的红外景物产生技术。本文围绕电阻阵列红外景物产生器微桥结构所涉及的介电材料、电阻材料及低应力薄膜的沉积技术进行了系统研究,并采用微加工技术成功制作了160×120阵列的微桥结构,为今后器件的工程化制造打下良好的基础。研究的主要内容及结论如下:
     1.对介电材料氢化非晶硅(α-Si:H简写α-Si)薄膜的沉积技术及应力特性进行了研究。采用等离子体增强化学气相沉积(PECVD)法沉积α-Si薄膜,研究了工艺参数对薄膜沉积速率及折射率的影响,重点研究了薄膜应力与工艺参数的关系。研究结果表明,SiH4气体流量与射频功率对薄膜的沉积速率及折射率影响显著;提高射频功率能够使薄膜从张应力转变为压应力且压应力随射频功率的增大而增大;提高压强能够使薄膜从压应力转变为张应力;应力随沉积温度的升高而增大;薄膜中H、SiH组态与SiH2组态含量随射频功率的增大而增大;通过调节射频功率大小是改变薄膜应力的较为方便的方法。通过优化工艺,获得了具有较小张应力薄膜的沉积工艺参数。
     2.对介电材料氮化硅(SiNx)、氧化硅(SiOx)薄膜应力及两者特性进行了对比研究。采用PECVD法沉积了低应力的SiNx与SiOx薄膜,分别研究了流量比、射频功率、压强等工艺参数与薄膜应力之间的关系。研究结果表明,对于SiNx薄膜,薄膜应力随SiH4/NH3或SiH4/N2流量比,射频功率的增大而减小,随压强的增大而增大,采用N2反应所得到的SiNx薄膜H含量低于采用NH3反应所得薄膜;对于SiOx薄膜,低的N2O/SiH4流量比、低的射频功率可以获得低应力的薄膜。对SiNx与SiOx薄膜的力学特性、热稳定性、吸收特性进行了对比。结果表明,SiOx薄膜具有相对低的杨氏模量与硬度,具有较好的热稳定性;SiOx薄膜红外吸收带的宽度较小且在9.4μm处具有最大的吸收系数2.18×104cm-1,而SiNx薄膜在11.6μm处具有最大的吸收系数1.61×104cm-1,两种薄膜在长波红外窗口8~12μm波段内吸收强度相当;SiOx、SiNx薄膜具有良好的干法刻蚀特性从而易于通过微加工方法来实现微桥结构的制作。
     3.对介电材料氮氧化硅(SiOxNy)薄膜进行了研究。采用PECVD法沉积SiOxNy薄膜,研究不同N2O/NH3流量比R时薄膜的组分、光学常数及红外吸收特性。随着流量比R的增加,SiOxNy薄膜中O的相对百分含量提高,N含量降低,而Si含量基本不变;薄膜由于Si-O、Si-N键形成的吸收峰峰值波长向短波(高波数)移动,变化范围为11.6μm(860cm-1)~9.4μm(1063cm-1),且吸收峰的宽度先增大后减小。此外,薄膜的折射率与薄膜中H含量也随流量比R的增加而降低。相比于SiOx、SiNx薄膜,组分特定的SiOxNy薄膜的吸收峰最宽且在长波红外窗口8~12μm内吸收强度最大。SiOxNy薄膜本身具有低应力的特性,且应力可以通过改变N2O/NH3流量比来进一步调节。研究结果还表明,SiOxNy是一种优良的梯度折射率材料,可以同时具有低的薄膜应力与可见光范围内的低吸收特性。比较了本文所涉及的四种介电材料杨氏模量和硬度值。
     4.对电阻材料TiWN薄膜的沉积技术及特性进行了研究。采用射频溅射方法沉积了TiWN薄膜,深入研究了不同N2分压比(0~11%)对薄膜电阻率、组分与晶体结构的影响。同时,对薄膜的表面形貌、电阻温度系数(TCR)进行了研究。结果表明,当N2分压比由0增至6%时,薄膜的电阻率由117.5μ cm缓慢变化至675μ cm,当进一步增加N2的分压比,薄膜电阻率急剧增大。XPS测试表明随着N2分压比的增加,薄膜中N含量逐渐增大(当N2分压比为11%时,薄膜中N含量达到36%),从而引起薄膜结构的变化,此变化是薄膜电阻率改变的主要原因。随着N2分压比的增大,薄膜的晶体结构发生了明显变化,薄膜中β-W相转变为(Ti,W2)N的固溶相。XPS与XRD分析证明所沉积的TiWN(N2分压比为11%)薄膜是一个(Ti,W2)N的固溶相(形成WxTiyNz固溶体)。TiWN薄膜典型的TCR值为-391ppm/℃。AFM测试表明沉积的TiWN薄膜能够较好地复制基底的形貌。
     5.对电阻阵列红外景物产生器微桥结构的设计、制作及热学性能仿真进行了研究。微桥结构设计主要包括制作工艺工程中材料选择与版图设计。采用微加工技术制作了自支撑悬空的微桥结构。采用剥离方法对TiWN电阻薄膜进行了图形化并研制了160元线阵结构。在此基础上,采用表面工艺技术成功制作了160×120阵列微桥结构。最后,采用有限元分析的方法对微桥结构进行了热学性能的分析。分析结果表明,制作的微桥桥面具有良好的温度分布均匀性且热变形较小;在相同电功率下,SiOx低热导率薄膜材料的引入能显著提高桥面温度。
Dynamic infrared scene simulation system has been widely studied and has evolved intoa critical laboratory tool for measurement and evaluation of infrared imagers. The core of thesimulation system is an infrared scene projector. Due to their several advantages such as largespectral band, large dynamic range, high resolution, high frame rates, no flicker, Themicrobridge resistor array infrared projectors have been become the international focus on thedevelopment of the infrared scene projection technology.
     This dissertation is mainly concerned with the candidate dielectric and metal materials forthe microbridge resistor array and fabrication of160×120arrays. The author’s majorcontributions are outlined as follows:
     1. The deposition and internal stress of hydrogenated amorphous silicon (α-Si:H Abbre.α-Si) thin films have been studied. α-Si thin films were deposited by plasma enhancedchemical vapor deposition (PECVD),the results show that the main parameter(gas flow rateand RF power) play an important role on the deposition rate and refractive index of the film.The results also indicate that increasing RF power can change the state of the internal stressfrom tension to compression while increasing pressure can change the state of the internalstress from compression to tension. The internal stress in α-Si thin film is strongly dependenton substrate temperature and the internal stress increase with temperature. The total hydrogencontent, SiH and SiH2content increase with RF power. Finally, the optimal processparameters for low stress film were obtained.
     2. The stress of SiOx and SiNx films and their comparison of properties have beenstudied. SiOx and SiNx films were deposited by PECVD. The stress, Young modulus,hardness, thermal stability, and infrared optical absorption properties of the two types of filmswere investigated and compared. The results show that the SiNx film stress decrease withincreasing the RF power and SiH4/NH3(or SiH4/N2)flow ratio, while increase with thepressure. The H content of the film deposited with N2is less than that of the film depositedwith the NH3. The SiOx film stress becomes more compressive with the N2O/SiH4or RFpower increase. The SiOx film has lower Young modulus and hardness and has a betterthermal stability when compared with the SiNx film. Moreover, the peak wavelength is11.6μm for SiNx film and9.4μm for SiOx film, respectively. The maximum absorptioncoefficient is1.61×104cm-1for SiNx film and2.18×104cm-1for SiOx film, respectively. Theintegral absorption intensity between8μm and12μm of the SiOx and SiNx films isapproximately equal. The results also show that the SiOx and SiNx films can be easily etched by plasma.
     3. The deposition and properties of silicon oxynitride (SiOxNy) films have been studied.SiOxNy films were deposited by PECVD. The N2O/NH3flow ratio was varied in order toobtain different oxynitride compositions. The compositions, optical constants and infraredoptical absorption properties of silicon oxynitride films were investigated. The results showthat the O atomic content increases and the N atomic content decreases while the Si atomiccontent keeps nearly unchanged as the N2O/NH3flow ratio increases. The silicon oxynitridefilms show a dominant infrared absorption peak due to the Si-O/Si-N bond, with the infraredabsorption peak located between11.6μm (860cm-1) and9.4μm (1063cm-1). The position ofabsorption peak also shifts to a shorter wavelength when increasing the N2O/NH3flow ratio.Meanwhile, the width of absorption peak increases firstly and then decreases with the N2O/NH3flow ratio increasing. Moreover, the H content and the refractive index decrease with theflow ratio increasing. Compared with silicon oxide and silicon nitride films, the siliconoxynitride films with a specific composition have largest width of absorption peak andstrongest intensity between8μm and12μm. The results also show that the stress of SiOxNyfilms is low and can be further changed by N2O/NH3flow ratio. SiOxNy films can be used inoptical coatings as inhomogeneous layers and SiOxNy films have low absorption in thevisible spectrum and low stress at the same time. Finally, the Young modulus and hardness ofthe four kind of dielectric material mentioned above were compared.
     4. Structural and electrical properties of TiWN thin films have been studied. TiWN thinfilms were deposited by reactive RF sputtering. The nitrogen partial pressure ratio in thegrowth chamber was varied from0to11%. The influence of the nitrogen partial pressure ratioon the properties of TiWN thin films was studied. The electrical resistivity of the TiWN thinfilms vary gradually from117.5μ cm to675μ cm with the increasement of nitrogenpartial pressure ratio from0to6%. However, the resistivity increases sharply if the ratio wasraised further. XPS analysis shows that nitrogen concentration in the films increase with thenitrogen partial pressure ratio and reached36%when the ratio was11%. Binding energyanalysis shows that W is mainly in W2N and Ti is mainly in TiN when the films contain anitrogen concentration of36%. GIXRD analysis confirm that a FCC (Ti,W2)N is present inthe film. Moreover, the temperature coefficient of resistance (TCR) of TiWN thin films wasinvestigated and the typical TCR is-391ppm/℃. The results also show that the formed filmcan duplicates the morphology of the substrate well.
     5The design, fabrication and thermal properties of microbridge structure have beenstudied. The structure design includes selection of material and layout design. A free-standing structure was fabricated by using micromachining methods. The TiWN film was patterned bymeans of lift-off method. Furthermore, one-level160linear array and two-level160×120array of microbridges were designed and fabricated by using surface micromachining,utilizing polyimide sacrificial layer. The finite element method was used to analyze thethermal properties of microbridge. The temperature distributing analysis indicates a gooduniformity on the surface of microbridge and the thermal deformation is very small. Moreover,the temperature of surface can be increased remarkably when a lower thermal conductivitymaterial is adopted.
引文
[1] Bryant P,Solomon S. Infrared scene projection: Virtual reality for IR sensor testing. PhotonicsSpectra.2007,41(4).58-63
    [2] Beasley D B,Saylor D A.Application of multiple IR projector technologies for AMCOM HWILsimulations.Proceedings of SPIE.1999,3697.223-231
    [3] Buford Jr J A, Jolly A CMobley S B.Advancements in HWIL simulation at the US ArmyAviation Missile Command.Proceedings of SPIE.1999,3697.23-30
    [4] Brett Beasley D, Saylor D ABuford J.BRITE II Characterization and Application to a NewAdvanced Flight Motion Simulator.Proceedings of SPIE.2003,5092.24-34
    [5] Saylor D A, Brett Beasley D, Braselton B, et al.Current status of IR scene projection at the U.S.Army Aviation and Missile Command.Proceedings of SPIE.2001,4366.147-157
    [6] Driggers R G, Barnard K J, Burroughs Jr E E, et al. Review of infrared scene projectortechnology-1993. Optical Engineering.1994,33(Compendex).2408-2417
    [7] Flint G W,Mex. A N. infrared scene projector. U.S. patent5012112(1991).
    [8] Billingsley J D,Tex A. Dynamic infrared scene projector. U.S. patent4530010(1985).
    [9]高教波,王军,骆延令,等.动态红外场景投射器研究新进展.红外与激光工程.2008,(S2).351-354
    [10]李卓,钱丽勋,李平,等.动态红外场景生成技术及其新进展.红外与激光工程.2011,(03).377-383
    [11]杨晓段,陈鸿林.红外制导武器仿真系统的发展概况.红外与激光工程.1998,(06).16-19
    [12]吴永刚,崔彬,吴根水,等.基于MOS—电阻阵列的红外动态图像生成系统.测控技术.1996,(05).55-57
    [13]王旌,吴永刚,张金生,等.基于MOS电阻阵列的红外图像实时生成系统设计.计算机测量与控制.2010,(12).2846-2849
    [14]吴永刚.红外动态目标热图像物理生成装置.航空兵器.2001,(01).8-10
    [15]骆延令,高教波,高飞.切变聚合物网络液晶光阀.红外与激光工程.2009,(04).629-632
    [16]骆延令,高蒙,高教波,等.7×7电寻址红外液晶光阀.红外与激光工程.2010,(04).597-600
    [17]马文超,张涛,马斌.电阻阵列型红外景象仿真系统的设计与实现.红外与激光工程.2010,(03).383-388
    [18]李守荣,梁平治,屈新萍.红外微辐射元的研制.红外与毫米波学报.2003,(04).277-280
    [19]肖云鹏,马斌,梁平治.国产电阻阵列动态红外景像投射器研制进展.红外技术.2006,(05).266-270
    [20]孙超.电阻阵列红外场景产生器的仿真设计与微细加工工艺研究(硕士学位论文).电子科技大学.2010
    [21]纪新明.MEMS红外光声气体传感系统的研究(博士学位论文).复旦大学.2005
    [22]张建奇,方小平.红外物理.西安:西安电子科技大学出版社2004.
    [23] Williams O M, Goldsmith Ii G CStockbridge R G.History of resistor array infrared projectors:Hindsight is always100%operability.Proceedings of SPIE.2005,5785.208-224
    [24] Cole B, Weeres S, Higashi R, et al.Honeywell resistor array development and futuredirections.Proceedings of SPIE.1999,3697.188-196
    [25] Solomon S, Goldsmith Ii G CHawkins M.Continuing adventures in high-temperature resistiveemitter physics materials.Proceedings of SPIE.2004,5408.127-135
    [26] Solomon S, Ginn R, Campbell S, et al.High temperature materials for resistive infrared sceneprojectors.Proceedings of SPIE.2006,6208.S1-S7
    [27] gerstenberg D,Morristown N J. hafnium nitride film resistor. U.S. patent3575833(1971).
    [28] Chan,Lap. Ti/titanium nitride and ti/tungsten nitride thin film resistors for thermal ink jettechnology U.S. patent5870121(1999).
    [29] Cole B E,Han C J. Low power infrared scene projector array and method of manufacture. U.S.patent5600148(1997).
    [30] Cole B E,Holmen J O. High temperature ZrN and HfN IR scene projector pixels. U.S. patent6210494B1(2001).
    [31] Lannon J, Pace C, Goodwin S, et al. Anneal behavior of reactively sputtered HfN films. Journalof Vacuum Science&Technology A.2004,22(4).1730-1733
    [32] Cole B, Higashi B, Ridley J, et al.Innovations in IR projector arrays.Proceedings of SPIE2000,4027.350-367
    [33] Cole B, Higashi R, Ridley J, et al.High-speed large-area pixels compatible with200Hz framerates.Proceedings of SPIE2001,4366.121-129
    [34] Cantey T M.High dynamic range real-time infrared scene projection(PH. D). university ofalabama2007
    [35]朱长纯,赵红坡,韩建强,等. MEMS薄膜中的残余应力问题.微纳电子技术.2003,(10).30-34
    [36]钱劲,刘澂,张大成,等.微电子机械系统中的残余应力问题.机械强度.2001,(04).393-401
    [37] Wu C C, Theiss S D, Gu G, et al. Integration of organic LED's and amorphous Si TFT's ontoflexible and lightweight metal foil substrates. Ieee Electron Device Letters.1997,18(12).609-612
    [38]刘卫国,金娜.集成非制冷热成像探测阵列.第一版.北京:国防工业出版社,2004.250-256
    [39] Lim H C, Schulkin B, Pulickal M J, et al. Flexible membrane pressure sensor. Sensors andActuators a-Physical.2005,119(2).332-335
    [40] Iliescu C, Poenar D P, Carp M, et al. A microfluidic device for impedance spectroscopy analysisof biological samples. Sensors and Actuators B-Chemical.2007,123(1).168-176
    [41] Jin X C, Ladabaum IKhuri-Yakub B T. The microfabrication of capacitive ultrasonic transducers.Journal of Microelectromechanical Systems.1998,7(3).295-302
    [42] Yon J-J, Mottin ETissot J-L.Latest amorphous silicon microbolometer developments atLETI-LIR.Proceedings of SPIE2008,6940.
    [43] Luft W,Tsuo Y S. Hydrogenated Amorphous Silicon Alloy Deposition Processes. NewYork:Marcel dekker, inc,1993.
    [44] Harbison J P, Williams A JLang D V. Effect of silane dilution on intrinsic stress inglow-discharge hydrogenated amorphous-silicon films. Journal of Applied Physics.1984,55(4).946-951
    [45] Stevens K S,Johnson N M. Intrinsic stress in hydrogenated amorphous-silicon deposited with aremote hydrogen plasma. Journal of Applied Physics.1992,71(6).2628-2631
    [46] Dutta J, Kroll U, Chabloz P, et al. Dependence of intrinsic stress in hydrogenatedamorphous-silicon on excitation-frequency in a plasma-enhanced chemical vapor-depositionprocess. Journal of Applied Physics.1992,72(7).3220-3222
    [47] Finegan J D,Hoffman R W. Stress anisotropy in evaporated iron films. Journal of AppliedPhysics.1959,30(4).597-598
    [48] Hoffman D W,Kukla C M. Determination of film stresses during sputter deposition using an insitu probe. Journal of Vacuum Science&Technology a-Vacuum Surfaces and Films.1985,3(6).2600-2604
    [49] Freund L B,Suresh S. Thin Film Materials: Stress, Defect Formation and Surface Evolution.Cambridge University Press,2004.
    [50]陈焘,罗崇泰.薄膜应力的研究进展.真空与低温.2006,(02).68-74
    [51]邵淑英,范正修,范瑞瑛,等.薄膜应力研究.激光与光电子学进展.2005,(01).22-27
    [52]田民波.薄膜技术与薄膜材料.第一版.北京:清华大学出版社,2006.876-879
    [53] Ohring M. Materials Science of Thin Film: Deposition and Structure.2nd ed. AcademicPress,2001.725-726
    [54] Weber M, Koch RRieder K H. UHV cantilever beam technique for quantitative measurements ofmagnetization, magnetostriction, and intrinsic stress of ultrathin magnetic-films. PhysicalReview Letters.1994,73(8).1166-1169
    [55]张文栋译.微传感器与微执行器全书.第一版.北京:科学出版社,2005.142-144
    [56] Thomas M E, Hartnett M PMcKay J E. The use of surface profilometers for the measurement ofwafer curvature. Journal of Vacuum Science&Technology a-Vacuum Surfaces and Films.1988,6(4).2570-2571
    [57]杨银堂,付俊兴,周端,等.半导体基片上薄膜应力的测试装置.仪器仪表学报.1997,(03).298-301
    [58]杨于兴,胡赓祥.薄膜X射线应力分析技术的研究.上海交通大学学报.1994,(06)
    [59]徐可为,高润生,于利根,等.薄膜应力测定的X射线掠射法.物理学报.1994,(08)
    [60] Taylor C A, Wayne M FChiu W K S. Residual stress measurement in thin carbon films byRaman spectroscopy and nanoindentation. Thin Solid Films.2003,429(1-2).190-200
    [61] Li Y, Guo Q, Kalb J A, et al. Matching Glass-Forming Ability with the Density of theAmorphous Phase. Science.2008,322(5909).1816-1819
    [62] Martyniuk M, Antoszewski J, Musca C A, et al.Determination of residual stress in lowtemperature PECVD silicon nitride thin films.Proceedings of SPIE.2004,5276.451-462
    [63] Zhang X, Chen K-SMark Spearing S. Thermo-mechanical behavior of thick PECVD oxide filmsfor power MEMS applications. Sensors and Actuators A: Physical.2003,103(1-2).263-270
    [64] Wong W S,Salleo A. Flexible electronics: materials and applications Springer,2009.47
    [65] Wang W L, Polo M C, Sanchez G, et al. Internal stress and strain in heavily boron-dopeddiamond films grown by microwave plasma and hot filament chemical vapor deposition. Journalof Applied Physics.1996,80(3).1846-1850
    [66] Ferreira N G, Abramof E, Corat E J, et al. Residual stresses and crystalline quality of heavilyboron-doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction.Carbon.2003,41(6).1301-1308
    [67]张泰华,杨业敏.纳米硬度技术的发展和应用.力学进展.2002,(03).349-364
    [68]张国炳,郝一龙,田大宇, et al.多晶硅薄膜应力特性研究.半导体学报.1999,(06).463-467
    [69] Wehrspohn R B, Deane S C, French I D, et al. Relative importance of the Si-Si bond and Si-Hbond for the stability of amorphous silicon thin film transistors. Journal of Applied Physics.2000,87(1).144-154
    [70]杨基南.太阳能电池产业的现状和发展.微细加工技术.2005,(02).1-4
    [71]钱祥忠.非晶硅薄膜光吸收系数的研究.真空电子技术.2004,(02).20-22
    [72] Sweenor D E, O'Leary S KFoutz B E. On defining the optical gap of an amorphoussemiconductor: an empirical calibration for the case of hydrogenated amorphous silicon. SolidState Communications.1999,110(5).281-286
    [73]侯国付,薛俊明,孙建,等.高压PECVD技术沉积硅基薄膜过程中硅烷状态的研究.物理学报.2007,(02).1177-1181
    [74]赵晓锋,温殿忠.基于PECVD制备多晶硅薄膜研究.人工晶体学报.2006,(05).1151-1154
    [75] Yin Y, McKenzie DBilek M. Intrinsic stress induced by substrate bias in amorphoushydrogenated silicon thin films. Surface&Coatings Technology.2005,198(1-3).156-160
    [76] Hishikawa Y. Raman study on the variation of the silicon network of a-Si:H. Journal of AppliedPhysics.1987,62(8).3150-3155
    [77] Langford A A, Fleet M L, Nelson B P, et al. Infrared-absorption strength and hydrogen contentof hydrogenated amorphous-silicon. Physical Review B.1992,45(23).13367-13377
    [78]岳瑞峰,董良,刘理天.用于室温红外探测器热敏材料的PECVD掺硼a-Si薄膜的研究.真空科学与技术学报.2006,(04).277-281
    [79]姜利军,赵润涛,陈翔,等.交替频率PECVD方法沉积低应力氮化硅薄膜及其性质研究.功能材料与器件学报.1999,(02).121-126
    [80] Iliescu C, Tay F E HWei J S. Low stress PECVD-SiNx layers at high deposition rates using highpower and high frequency for MEMS applications. Journal of Micromechanics andMicroengineering.2006,16(4).869-874
    [81] Hasegawa S, Amano Y, Inokuma T, et al. Relationship between the stress and bonding propertiesof amorphous SiN:H films. Journal of Applied Physics.1992,72(12).5676-5681
    [82] Hasegawa S, Amano Y, Inokuma T, et al. Effects of active hydrogen on the stress-relaxation ofamorphous SiHx:H films. Journal of Applied Physics.1994,75(3).1493-1500
    [83] Habermehl S. Stress relaxation in Si-rich silicon nitride thin films. Journal of Applied Physics.1998,83(9).4672-4677
    [84] Lackner J M, Waldhauser W, Berghauser R, et al. Influences of the nitrogen content on themorphological, chemical and optical properties of pulsed laser deposited silicon nitride thin films.Surface&Coatings Technology.2005,192(2-3).225-230
    [85] Hey H P W, Sluijk B GHemmes D G. Ion-bombardment-a determining factor in plasma CVD.Solid State Technology.1990,33(4).139-144
    [86] Maley N. Critical investigation of the infrared-transmission-data analysis of hydrogenatedamorphous silicon alloys. Physical Review B.1992,46(4).2078-2085
    [87] Ono H, Ikarashi T, Miura Y, et al. Bonding configurations of nitrogen absorption peak at960cm-1in silicon oxynitride films. Applied Physics Letters.1999,74(2).203-205
    [88] Dupuis J, Fourmond E, Lelièvre J F, et al. Impact of PECVD SiON stoichiometry andpost-annealing on the silicon surface passivation. Thin Solid Films.2008,516(20).6954-6958
    [89]何乐年. PECVD非晶SiOx∶H薄膜的Si-O-Si键红外吸收特性研究.真空科学与技术.2001,21(01).60-64
    [90]吴江辉,高教波,李建军.固体材料定向光谱发射率测量装置研究及误差分析.应用光学.2010,(04).597-601
    [91]黄庆安.硅微机械加工技术.第一版.北京:科学出版社,1996.
    [92]崔铮.微纳米加工技术及其应用.第二版.北京:高等教育出版社,2009.335-337
    [93] Green M L, Gusev E P, Degraeve R, et al. Ultrathin (<4nm) SiO2and Si-O-N gate dielectriclayers for silicon microelectronics: Understanding the processing, structure, and physical andelectrical limits. Journal of Applied Physics.2001,90(5).2057-2121
    [94] Wrazien S J, Zhao Y, Krayer J D, et al. Characterization of SONOS oxynitride nonvolatilesemiconductor memory devices. Solid-State Electronics.2003,47(5).885-891
    [95] Germann R, Salemink H W M, Beyeler R, et al. Silicon oxynitride layers for optical waveguideapplications. Journal of the Electrochemical Society.2000,147(6).2237-2241
    [96] Bona G L, Germann ROffrein B J. SiON high-refractive-index waveguide and planar lightwavecircuits. IBM Journal of Research and Development.2003,47(2-3).239-249
    [97] Weber J, Bartzsch HFrach P. Sputter deposition of silicon oxynitride gradient and multilayercoatings. Appl. Opt.2008,47(13). C288-C292
    [98] Qiu W B, Kang Y MGoddard L L. Quasicontinuous refractive index tailoring of SiNx andSiOxNy for broadband antireflective coatings. Applied Physics Letters.2010,96(14)
    [99] Ay F,Aydinli A. Comparative investigation of hydrogen bonding in silicon based PECVD growndielectrics for optical waveguides. Optical Materials.2004,26(1).33-46
    [100] Dong H, Chen K, Wang D, et al. A new luminescent defect state in low temperature grownamorphous SiNxOy thin films. Physica Status Solidi (C) Current Topics in Solid State Physics.2010,7(3-4).828-831
    [101]刘泽文,胡光伟,刘理天,等.微机械开关低应力氮氧化硅桥膜的制备方法.中国patent101159199(2007).
    [102] Lenggenhager R, Jaeggi D, Malcovati P, et al.CMOS membrane infrared sensors and improvedTMAHW etchant.Technical Digest-International Electron Devices Meeting.1994,531-534
    [103]董良.MEMS集成室温红外探测器研究(博士学位论文).清华大学.2004
    [104]张宗波,罗永明,徐彩虹.氮氧化硅薄膜的研究进展.材料导报.2009,23(11).110-114
    [105] Criado D, Alayo M I, Pereyra I, et al. Structural analysis of silicon oxynitride films deposited byPECVD. Materials Science and Engineering B: Solid-State Materials for Advanced Technology.2004,112(2-3SPEC. ISS.).123-127
    [106] Hussein M G, W rhoff K, Sengo G, et al. Optimization of plasma-enhanced chemical vapordeposition silicon oxynitride layers for integrated optics applications. Thin Solid Films.2007,515(7-8).3779-3786
    [107] Gritsenko V A, Xu J B, Kwok R W M, et al. Short range order and the nature of defects andtraps in amorphous silicon oxynitride governed by the Mott rule. Physical Review Letters.1998,81(5).1054-1057
    [108] Tsu D V, Lucovsky G, Mantini M J, et al. Deposition of silicon oxynitride thin films by remoteplasma enhanced chemical vapor deposition. Journal of Vacuum Science&Technology A:Vacuum, Surfaces, and Films.1987,5(4).1998-2002
    [109] Scopel W L, da Silva A J R, Orellana W, et al. Theoretical and experimental studies of theatomic structure of oxygen-rich amorphous silicon oxynitride films. Physical Review B.2003,68(15)
    [110] Rebib F, Tomasella E, Aida S, et al. Influence of the structure of a-SiOxNy thin films on theirelectrical properties. Plasma Processes and Polymers.2007,4(SUPPL.1)
    [111] Rebib F, Tomasella E, Dubois M, et al. SiOxNy thin films deposited by reactive sputtering:Process study and structural characterisation. Thin Solid Films.2007,515(7-8).3480-3487
    [112] Del Prado A, Mártil I, Fernández M, et al. Full composition range silicon oxynitride filmsdeposited by ECR-PECVD at room temperature. Thin Solid Films.1999,343-344(1-2).437-440
    [113] Lanford W A,Rand M J. The hydrogen content of plasma-deposited silicon nitride. Journal ofApplied Physics.1978,49(4).2473-2477
    [114] Oparowski J M, Sisson R DBiederman R R. The effects of processing parameters on themicrostructure and properties of sputter-deposited tiw thin film diffusion barriers. Thin SolidFilms.1987,153.313-328
    [115] Moser J H, Tian F, Haller O, et al. Single-phase polycrystalline Ti1-xWxN alloys (0≤x≤0.7)grown by UHV reactive magnetron sputtering-microstructure and physical-properties. ThinSolid Films.1994,253(1-2).445-450
    [116] Kuchuk A V, Kladko V P, Lytvyn O S, et al. Relationship between condition of deposition andproperties of W-Ti-N thin films prepared by reactive magnetron sputtering. AdvancedEngineering Materials.2006,8(3).209-212
    [117] Geissberger A E, Sadler R A, Balzan M L, et al. TiW nitride thermally stable schottky contacts togaas-characterization and application to self-aligned gate field-effect transistor fabrication.Journal of Vacuum Science&Technology B.1987,5(6).1701-1706
    [118] Shaginyan L R, Misina M, Zemek J, et al. Composition, structure, microhardness and residualstress of W-Ti-N films deposited by reactive magnetron sputtering. Thin Solid Films.2002,408(1-2).136-147
    [119] Glebovsky V G, Yaschak V Y, Baranov V V, et al. Properties of titanium-tungsten thin-filmsobtained by magnetron sputtering of composite cast targets. Thin Solid Films.1995,257(1).1-6
    [120] Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-ray Photoelectron Spectroscopy.Eden Prairie,MN,USA: Perkin-Elmer Corp.,1979.
    [121] Shen Y G, Mai Y W, McKenzie D R, et al. Composition, residual stress, and structural propertiesof thin tungsten nitride films deposited by reactive magnetron sputtering. Journal of AppliedPhysics.2000,88(3).1380-1388
    [122] Lee C W, Kim Y TMin S K. Characteristics of plasma-enhanced chemical-vapor-depositedtungsten nitride thin films. Applied Physics Letters.1993,62(25).3312-3314
    [123] Baker C C,Shah S I. Reactive sputter deposition of tungsten nitride thin films. Journal ofVacuum Science&Technology a-Vacuum Surfaces and Films.2002,20(5).1699-1703
    [124] Abadias G, Dub SShmegera R. Nanoindentation hardness and structure of ion beam sputteredTiN, W and TiN/W multilayer hard coatings. Surface&Coatings Technology.2006,200(22-23).6538-6543
    [125] Villain P, Goudeau P, Ligot J, et al. X-ray diffraction study of residual stresses andmicrostructure in tungsten thin films sputter deposited on polyimide. Journal of Vacuum Science&Technology A.2003,21(4).967-972
    [126] Dirks A G, Wolters R A MNellissen A J M. On the microstructure property relationship ofW-Ti-(N) diffusion-barriers. Thin Solid Films.1990,193(1-2).201-210
    [127] Wang M X, Zhang J J, Yang J, et al. Influence of Ar/N2flow ratio on structure and properties ofnanoscale ZrN/WN multilayered coatings. Surface&Coatings Technology.2007,201(9-11).5472-5476
    [128] Cavaleiro A, Trindade BVieira M T. Influence of Ti addition on the properties of W-Ti-C/Nsputtered films. Surface&Coatings Technology.2003,174.68-75
    [129] Louro C,Cavaleiro A. Oxidation behaviour of W-N-M (M=Ni, Ti) sputtered films. Surface&Coatings Technology.1995,74-75(1-3).998-1004
    [130] Meunier C, Monteil C, Savall C, et al. RBS-ERDA, XPS and XRD characterizations of PECVDtungsten nitride films. Applied Surface Science.1998,125(3-4).313-320
    [131]刘卫国,金娜.集成非制冷热成像探测阵列.第一版.北京:国防工业出版社,2004.243-250
    [132]范群波,张朝晖. ANSYS8.0热分析教程与实例解析.第一版.北京:中国铁道出版社,2005.
    [133]张朝晖. ANSYS热分析教程与实例解析第一版.北京:中国铁道出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700