氢化硅薄膜介观力学行为研究和耐高温压力传感器研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要针对氢化硅薄膜介观力学行为和耐高温压力传感器这两个问题展开了理论与实验的研究。氢化硅薄膜广泛应用于光电子器件,如二极管、薄膜晶体管、太阳电池、液晶显示器等,人们对其光电特性作了深入的研究,但对力学特性涉及很少。已有的研究表明氢化硅薄膜,尤其是纳米硅薄膜有很强的应力敏感特性,在高灵敏度压力传感器、位移传感器和量子隧道传感器等相关器件应用上有极大的应用前景,因此通过对氢化硅薄膜显微结构与介观力学性能的研究,探明二者之间关系(内禀关联特性)为器件开发的提供基本数据。
     本文对射频等离子体增强化学气相沉积(RF-PECVD)系统进行了改造,制备了氢化硅薄膜,成功地进行了磷或硼的掺杂。用拉曼谱揭示了氢化硅薄膜的晶粒平均大小和晶态比;用椭偏仪测试了所制备薄膜的厚度;用X射线衍射谱对薄膜微结构和材料性能的进行了比较。以相同的工艺在玻璃和单晶硅衬底上制备了本征或掺磷(硼)的纳米硅薄膜,对不同衬底上纳米硅薄膜进行了对比研究,发现衬底对薄膜生长速率影响不大,但所制备薄膜的微观结构有很大的差异。相同工艺条件下,在玻璃衬底上生长的薄膜,表面粗糙度小于单晶硅衬底上的薄膜;而晶化程度低于单晶硅衬底。掺杂使微结构有了变化,掺磷促进晶化,掺硼促进非晶化。
     用不同波长的激光线对单晶硅,纳米硅薄膜和非晶硅薄膜拉曼散射实验,发现拉曼线形随激光线波长的不同而不同。当用紫外光短波长325nm激光线激发时,由于穿透深度浅,在318.2cm~(-1)处出现了小峰。无论单晶硅衬底还是玻璃衬底的硅薄膜,当用785nm激光线激发时,由于穿透深度深,对单晶硅衬底的薄膜,反映了衬底的信息,在520.0cm~(-1)附近有尖锐的谱峰;而对玻璃衬底的薄膜而言,则是弥散的拉曼光谱,反应了玻璃衬底非晶无序的微结构特征。对氢化硅薄膜介观力学行为及其与微结构内禀关联特性进行了研究,发现相同的晶态比,制备于玻璃衬底上的氢化硅薄膜由于存在非晶态的过渡缓冲层,弹性模量小于相应的制备于单晶硅衬底上的氢化硅薄膜。由于磷的掺入,薄膜中晶粒细化,有序度提高,薄膜的晶态比一般在40%以上。硼的掺入,晶态比减小,一般低于40%。同时发现对掺磷,本征和掺硼的氢化硅薄膜,分别在晶态比为45%,30%和15%左右,弹性模量最小。这些研究结果对器件级硅薄膜的制备以及器件化有重要的指导意义。
     针对高灵敏度纳米硅薄膜压力传感器的研究,本文进行了耐高温压力传感器的研究。传统的硅扩散压阻式压力传感器用重掺杂4个p型硅应变电阻构成惠斯顿电桥的力敏检测模式,采用pn结隔离,当温度在100℃以上时,pn结漏电流很大,使器件无法工作。制作耐高温压阻式压力传感器,必须取消pn结隔离,较易的方法之一是采用绝缘体介质隔离(silicon on insulator,SOI)结构。本文研究了单晶硅的晶面和晶向的特性,结合硅微加工工艺,针对高温高压的要求,采用圆平膜芯片,以单晶硅(100)晶面为工作面,两对桥臂力敏电阻分别布置在互相垂直的[110]和[1(?)0]晶向上,位于圆膜边缘处,从而获得了四个臂的差动等臂等应变的惠斯登检测电桥。采用SIMOX技术,在n型硅片上高能注入氧离子,获得了优质商用的SOI晶片,在微加工平台上,制作了耐高温压力传感器芯片,尺寸为5.0mm×5.0mm×0.5mm。制作了硅芯片/玻璃环静电键合装置,完成了硅芯片/玻璃环静电键合。制作了热压焊工作台,选用退火后的金丝,通过金金连接完成内引线键合。掌握了耐高温胶粘剂的实用配比及固化工艺;自制了耐高温覆铜传引板,采用含银的高温焊锡丝,选用耐高温导线作为外导线,完成了耐高温传感器封装的关键部分。
     选用恒流源激励,设计了温度补偿电路,用对温度求导数的数学方法,推导了灵敏度热漂移(temperature coefficient of sensitivity,TCS)、热零点漂移(temperature coefficient of offset,TCO)和零位输出(offsetshift of voltage,V_(os))漂移补偿计算公式,实现了宽温区温度系数补偿,在-20℃~200℃补偿温区内,通过温度循环标定,经补偿后TCS和TCO的值均小于1.0×10~(-4)/℃·FS;非线性误差小于0.1%FS,不重复性和迟滞误差均小于0.05%FS,总精度小于0.2%FS,高、低温时漂均小于0.1mV/8h,获得了量程从0~40MPa、耐温-40~220℃,具有一定抗瞬时高温冲击能力,高精度稳定性佳的压阻式压力传感器,静态技术指标优于同类型Kulite公司产品。后又用针对适用于塑料、橡胶、化纤、蒸汽、热油等高温介质压力的测量工况,采用分体结构,研制了通用型分体式耐高温压力传感器,用汞作为传压介质,使被测高温高压液体或气体与敏感元件隔离开来,大大地拓宽了工作温区,使传感器工作温度提高到350℃。
This thesis gives an overview of mesoscopic mechanical behavior of hydrogenated silicon thin film and high pressure sensor fabricaton.Hydrogenated silicon thin films have been widely used in electronic and optoelectronic devices such as diodes,thin film transistors,solar cells,liquid crystal display.The research up to date has mainly been concentrated on the film electrical and optical properties and much less on the mechanical ones.However hydrogenated silicon thin films have received great attention due to their sensitive response under mechanical strain and pursued because of its potential advantages for fabrication of high sensitivity piezoresistive pressure sensors, displacement sensors and integrated tunneling sensors.So it is important to understand the mesoscopic mechanical characterization of hydrogenated silicon thin films and the intrinsic relationship with the microstructure.
     Hydrogenated silicon films were deposited on glass and single crystalline silicon substrate in a capacitive coupled radio-frequent(RF of 13.56MHz) PECVD system aided with direct current(dc) bias stimulation.The thickness of the thin films is measured using spectroscopic ellipsometry measuring system.X-ray diffraction was used to characterize the structure of the silicon films and grain size determination. Raman spectroscopy was performed to verify the crystalline structure and to determine the structural composition of the silicon films.Atomic force microscopy was used to investigate the topography and roughness of the films.It is shown little difference of film thickness exists and deposition rate is little affected with different substrates while microstructure of the thin films varies with different substrate.Under the same deposition condition,the films on single crystalline silicon provide better crystallinty than that on glass substrate while they have much smaller rms roughness than that deposited on single crystalline silicon.It means that the silicon atoms on glass surface have no significant diffusion.They essentially condense wherever they land on the surface of the substrate.It is also suggested that the chemical nature of the substrate surface influences the initial stage of the growth.
     Nanocrystalline silicon and amorphous silicon thin films are grown on the single crystalline silicon and glass substrate,respectively.Raman scattering is used on those films by three different excitation wavelengths,from red to near ultraviolet.It is found that the Raman spectrometry is different by varying the incident wavelength.We probe the incident light intensity energy,the photo absorption coefficient of silicon respectively and the Penetration depth.The experiment result is well explained and it is shown that to get further information of material microstructure optimum laser should be chosen.Mesoscopic mechanical characterization of hydrogenated silicon film is gotten by nanoindentation based on the conventional depth-sensing indentation method. The crystalline volume fraction(X_c) is obtained from the Raman spectra.An analytical relation between Xc and elastic modulus is established.It is shown the elastic modulus of the film on glass substrate is lower than that on silicon with the same Xc.The grain size of phosphorus doping thin film is smaller than that of intrinsic one and more ordered.The Xc is usually above 40%.The film with diborane doping is on the appetite side.The Xc is usually below 40%.To P-doped,intrinsic and B-doped fims,when Xc is 45%,30%and 15%respectively,the elastic modulus are lower.These results should have important impacts on the engineering of nanocrystalline silicon and related devices.
     There is a growing requirement for piezoresistive pressure sensor to operate in high temperature and harsh environment.Typical such areas are in the oil industry and a host of others.The conventional piezoresistive pressure sensors are made by forming diffused or ion implanted strain gauges in a Wheatstone bridge configuration on the thin silicon diaphragm.A known limitation of these silicon-based devices using isolation by reverse biased pn-junctions is the rising junction leakage current at elevated temperatures up to 100℃,which make them in unstable state.One of the promising attempts for fabrication of high temperature piezoresistive pressure sensors is to cancel pn-insulation of the piezoresistors.We use the separation by implanted oxygen(SIMOX) method,which is one of the two mainstream methods supplying commercial silicon-on-insulator(SOI) wafers,to design and fabricate the sensing chip dielectrically insulated by SiO_2.For the purposes of pressure measurement for low cost high temperature application,the mechanical structure is designed for operation between the temperature of—40~220℃and the range of 0~40MPa.Using high temperature packaging process and excitation of constant current,the sensor is testified with precise accuracy and stability.The specific works finished and main innovative contributions of this dissertation are as follows.
     The characteristic of silicon plane and direction is researched with micro machining and anisotropic-etching technology.For the requirement of operation in high temperature and high pressure,we choose the design of circular plane membrane.In the structure,two pairs of the strain gauges of the Wheatstone bridge are placed respectively on the direction[110]and[110]which are perpendicular each other on the (100) plane of the surface silicon layer.Four strain gauges are on the fringe of the diaphragm.Two gauges are along the direction of[110]while the other two are perpendicular to the direction of[110].For these four gauges they are parallel each other to make the Wheatstone detective bridge of four equal strains and resistances. Using SIMOX process a large dose of oxygen is implanted into the silicon wafer.The beam energy is 200keV with 1.8×10~(18)O~+/cm~2 and the target substrate is kept at 650℃to get high-quality SOI wafer.Furthermore,the sensor chip of wide range is fabricated in micro machining work bay.The size of it is 5.0mm×5.0mm×0.5mm.
     The electrostatic bonding of silicon and Prex7740 glass ring is done on self-made experimental instrument.The gold wire thermocompression bonding worktable is also made for wire bonding.The board covered with Cu is fabricated for leading.The soldering tin thread and lead wire is required for high temperature operation.Using high temperature packaging process,the sensor is testified with precise accuracy and excellent stability and reliability.
     The temperature coefficient of sensitivity(TCS) and temperature coefficient of offset(TCO) compensation circuit is selected and easily done in using a constant current of 2mA.A quantitative compensation formula is introduced in mathematics by the derivative of the equation above with respect to temperature.Using this circuit and result,the absolute value of the sensor's TCS and TCO is easy to be less than 100×10 ~6/℃.FSO by calibration of several temperature compensation cycles.Most non-linearity and hysteresis of the sensors are less than 0.1%FSO and 0.05%FSO,respectively.The sensitivity at the temperature of 220℃is 0.37~0.8mV/V/MPa due to different chips. Since the micro machining process methodology has been consistently proved to be reproducible,its batch production offers the advantage of low cost,reduced process time,and high yield.Thanks to high temperature packaging,the characteristics of the sensor are shown to be satisfied when operating at high temperature.
     This work is supported by "Six top talent" project of Jiangsu Province(Grant No. 06-D-022),National Basic Research Program of China(Grant No.2004CB619305),the technology development plan of Zhejiang Province(Grant No.2005C31048),doctoral innovation plan of Jiangsu University and the fifth undergraduate scientific research project of Jiangsu University(Grant No.05A036).
引文
[1]Koshida N,Matsumoto N.Fabrication and quantum properties of nanostmctured silicon.Mater Sci.Eng.R,2003,40(5):169-205
    [2]He YL,Liu XN,Wang ZC,et al.Study of nano-crystalline silicon films.Sci.China Ser.A,1993,36(2):248-256
    [3]He YL,Yin CZ,Cheng GX,et al.The structure and properties of nanosize crystaline silicon films.J.Appl.Phys.,1994,75(2):797-803
    [4]Viera G,Mikikian M,Bertran E,et al.Atomic structure of the nanocrystalline Si particles appearing in nanostructured Si thin films produced in low-temperature radiofrequency plasmas,J.Appl.Phys.,2002,92(8):4684-4694
    [5]Petersen KE.Silicon as a mechanical material.Proc.of the IEEE,1982,70(5):420-437
    [6]Metzger L,Fischer F,Mokwa W.Polysilicon sacrificial layer etching using CIF3 for thin film encapsulation of silicon acceleration sensors with high aspect ratio.Sensor.Actuat.A-Phys.,2007,133(1):259-265
    [7]Cuscuna M,Mariucci L,Fortunato G,et al.Improved electrical stability in asymmetric fingered polysilicon thin film transistors.Appl.Phys.Lett.,2006,89(12):Art.No.123506
    [8]Gowrishankar V,Scully SR,McGehee MD,et al.Exciton splitting and carrier transport across the amorphous-silicon/polymer solar cell interface.Appl.Phys.Lett.,2006,89(25):Art.No.252102
    [9]Jang J,Kim KM,Cho KS,et al.An amorphous silicon triode rectifier switching device for active-matrix liquid-crystal display.IEEE T Electron.Dev.,2003,24(2):78-80 FEB 2003
    [10]Nathan A,Homsey R,Aflatooni K.Transduction principles of a-Si:H Schottky diode X-ray image sensors.IEEE T Electron.Dev.,2000,47(11):2093-2100
    [11]Richter H,Wang ZP,Ley L.The one phonon Raman-spectrum in microcrystalline silicon.Solid State Commun.,1981,39(5):625-629
    [12]Liu M,Wang Z,He YL,et al.Resonant tunneling through nano-size quantum dots embedded in amorphous tissues.Microelectron.Eng.,2000,51-2:119-126
    [13]He YL,Hu GY,Yu MB,et al.Conduction mechanism of hydrogenated nanocrystalline silicon films.Phys.Rev.B,1999,59(23):15352-15357
    [14]Veprek S,Mareck V.Preparation of thin layers of Ge and Si by chemical hydrogen plasma transport.Solid State Electron.,1968,11(7):683
    [15]Chen J,Lu JJ,Pan W,et al.Observation of periodical negative differential conductivity in nanocrystalline silicon/crystalline silicon heterostructures.Nanotechnology,2007,18(1):Art.No.015203
    [16]Bodapati A,Schelling PK,Phillpot SR,et al.Vibrations and thermal transport in nanocrystalline silicon.Phys.Rev.B,2006,74(24):Art.No.245207
    [17]Lee CH,Sazonov A,Nathan A,et al.Directly deposited nanocrystalline silicon thin-film transistors with ultra high mobilities.Appl.Phys.Lett.,2006,89(25):Art.No.252101
    [18]Walters RJ,Bourianoff GI,Atwater HA.Field-effect electroluminescence in silicon nanocrystals.Nat.Mater.,2005,4(2):143-146
    [19]Chen XY,Shen WZ.Observation of low-dimensional state tunneling in nanocrystalline silicon/crystalline silicon heterostructures.Appl.Phys.Lett.,2004,85(2):287-289
    [20]Klein S,Finger F,Carius R,et al.Deposition of microcrystalline silicon prepared by hot-wire chemical-vapor deposition:The influence of the deposition parameters on the material properties and solar cell performance.J.Appl.Phys.,2005,98(2):Art.No.024905
    [21]Kattamis AZ,Holmes RJ,Cheng IC,et al.High mobility nanocrystalline silicon transistors on clear plastic substrates.IEEE Electron Dev.Lett.,2006,27(1):49-51
    [22]Tan YT,Kamiya T,Durrani ZAK,et al.Room temperature nanocrystalline silicon single-electron transistors.J.Appl.Phys.,2003,94(1):633-637
    [23]He YL,Liu H,Yu MB,et al.The structure characteristics and piezo-resistance effect in hydrogenated nanocrystalline silicon films.Nanostructured Mater.,1996,7(7):769-777
    [24]薛伟,王权,丁建宁,等.基于MEMS技术的超微压压力传感器研究进展.农业机械学报, 2006,37(3):157-159
    [25]沈学础.半导体光谱和光学性质.北京:科学出版社,2001:116
    [26]Sadewasser S,Abadal G,Bamiol N,et al.Integrated tunneling sensor for nanoelectromechanical systems.Appl.Phys.Lett.,2006,89(17):Art.No.173101
    [27]王权,丁建宁,何宇亮,等.氢化硅薄膜介观力学行为及其与微结构内禀关联特性.物理学报,2007,8(In press)
    [28]Bai YL,Wang HY,Xia MF,et al.Statistical mesomechanics of solid,linking coupled multiple space and time scales.Appl.Mech.Rev.,2005,58:372-388
    [29]南策文.非均质材料物理-显微结构-性能关联.科学出版社,2005,43
    [30]薛伟,王权,丁建宁,等.微构件316L在力电耦合下力学行为实验研究.传感技术学报,2006,19(5):1620-1622
    [31]王权,丁建宁,薛伟,等.高温硅压阻式微型压力传感器研究现状与展望.仪表技术与传感器,2005,12:1-3
    [32]Werner MR,Fahrner WR.Review on materials,microsensors,systems,and devices for high-temperature and harsh-environment applications.IEEE Tran.Industrial Electron.,2001,48(2):249-257
    [33]Gridchin VA,Lubimsky VM,Sarina MP.Piezoresistive properties of polysilicon films.Sensor Aactu.A-Phys.,1995,49(1-2):67-72
    [34]Okojie RS,Ned AA,Kurtz AD.Operation of alpha(GH)-SiC pressure sensor at 500 degrees C.Sensor.Aactu.A-Phys.,1998,66(1-3):200-204
    [35]Eickhoff M,Moiler H,Kroetz G,et al.A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates.Sensor.Aactu.A-Phys.,1999,74(1-3):56-59
    [36]朱作云,李跃进,杨银堂,等.SiC薄膜高温压力传感器.传感器技术,2001,20(2):1-3
    [37]王权,丁建宁,王文襄,等.通用型耐高温微型压力传感器封装工艺研究.仪表技术与传感器,2005,6:6
    [1]Hecht E,Zajac A.Optics.New York:Addison Wesley publishing company,1976:924
    [2]Viera G,Huet S,Boufendi L.Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy.J.Appl.Phys.,2001,90(8):4175-4183
    [3]程光煦.拉曼布里渊散射.北京:科学出版社,2001:204
    [4]沈学础.半导体光谱和光学性质.北京:科学出版社,2001:509
    [5]程光煦,陈坤基,夏桦,等.薄膜无序材料微结构的拉曼研究.光散射学报,1992,4(2):150-162
    [6]Han DX,Lorentzen JD,Weinberg-Wolf J,et al.Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wires chemical vapor deposition.J.Appl.Phys.,2003,94(51):2930-2936
    [7]He YL,Yin CZ,Cheng GX,et al.The structure and properties of nanosize crystalline silicon films.J.Appl.Phys.,1994,75(2):797-803
    [8]Yang M,Huang DM,Hao PH,et al.Study of the Raman peak shift and the linewidth of light emitting porous silicon.J.Appl.Phys.,1994,75(1):651-653
    [9]Ossadnik C,Veprek S,Gregora I.Applicability of Raman scattering for the characterization of nanocrystalline silicon.Thin Solid Films,1999,337(1-2):148-151
    [10]Michler J,von Kaenel Y,Stiegler J,et al.Complementary application of electron microscopy and micro-Raman spectroscopy for microstructure,stress,and bonding defect investigation of heteroepitaxial chemical vapor deposited diamond films.J.Appl.Phys.,1998,83(1):187-197
    [11]Kang TD,Lee H,Park SJ,et al.Microcrystalline silicon thin films studied using spectroscopic ellipsometry.J.Appl.Phys.,2002,92,(5):2464-2474
    [12]沈学础.半导体光谱和光学性质.北京:科学出版社,2003:38
    [13]Yamaguchi T,Kaneko Y,Jayatissa AH,et al.Thickness change in an annealed amorphous silicon film detected by spectroscopic ellipsometry.Thin Solid Films,1996,279(1-2):174-179
    [14]丛秋兹.多晶二维X射线衍射.北京:科学技术出版社,1997:59
    [15]Warren B.X-Ray diffraction.New York:Dover,1990
    [16]Suryanayana C,Grant N.X-ray diffraction-A practical Approach.New York:Plenum press, 1998:208-215
    [17]Fitzsimmons MR,Eastman JA,Mullerstach M,et al.Structure characterization of nanometer-sized crystalline Pd by X-Ray-diffraction techniques.Phys.Rev.B,1991,44(6):2452-2460
    [18]Zhao YH,Lu K.Grain-size dependence of thermal properties of nanocrystalline elemental selenium studied by x-ray diffraction.Phys.Rev.B,1997,56(22):14330-14337
    [19]周玉.材料分析方法.北京:机械工业出版社,2000,57
    [1]Torres P,Meier J,Fluckiger R,et al.Device grade microcrystalline silicon owing to reduced oxygen contamination.Appl.Phys.Lett.,1996,69(10):1373-1375
    [2]Isomura M,Kondo M,Matsuda A.Device-grade amorphous silicon prepared by high-pressure plasma.J.Appl.Phys.,2002,41(4A):1947-1951
    [3]Niikura C,Kondo M,Matsuda A.High rate growth of device-grade microcrystalline silicon films at 8 nm/s.Sol.Energ.Mat.Sol C.,2006,90(18-19):3223-3231
    [4]Digital Instruments Veeco Metrology Group.MultiMode~(TM) SPM instruction manual(Version 4.31ce)
    [5]Hiller M,Lavrov EV.Raman scattering study of H_2 in Si.Phys.Rev.,2006,74(23):235214
    [6]Comedi D,Zalloum OHY,Irving EA,et al.X-ray-diffraction study of crystalline Si nanocluster formation in annealed silicon-rich silicon oxides.J.Appl.Phys.,2006,99(2):023518
    [7]王权,丁建宁,薛伟,等.用侧向力显微镜对力/电/热耦合作用下金表面力学行为的研究.传感技术学报,2006,19(5):1497-1499
    [8]Martin-Palma RJ,Pascual L,Landa-Canovas AR,et al.HRTEM analysis of the nanostructure of porous silicon.Mat.Sci.Eng.C,2006,26(5-7):830-834
    [9]Dian J,Macek A,Niznausky D,et al.SEM and HRTEM study of porous silicon relationship between fabrication,morphology and optical properties.Appl.Surf.Sci.,2004,238(1-4):169-174
    [10]Ice G.Characterizing amorphous strain.Nat.Mate.,2005,4:17-18
    [11]Reis FDAA.Scaling in the crossover from random to correlated growth.Phys.Rev.E,2006,73(2):021605
    [12]Fujiwara H,Kondo M,Matsuda A.Stress-induced nucleation of microcrystalline silicon from amorphous phase.Jpn.J.Appl.Phys.,2002,41:2821-2828.
    [13]Chung CK,Tsai MQ,Tsai PH,et al.Fabrication and characterization of amorphous Si films by PECVD for MEMS.J.Micromech.Microeng.,2005,15:136-142
    [14]Chen XY,Shen WZ,He YL.Enhancement of electron mobility in nanocrystalline silicon/crystalline silicon heterostructurees.J.Appl.Phys.,2005,97,024305
    [15]Bray K,Parsons G.Surface transport kinetics in low-temperature silicon deposition determined from topography evolution.Phys.Rev.B,2002,65(3):Art.No.035311
    [16]Bray KR,Parsons GN.Effect of hydrogen on adsorbed precursor diffusion kinetics during hydrogenated amorphous silicon deposition.Appl.Phys.Lett.,2002,80(13):2356-2358
    [17]Orwa JO,Shannon JM,Gateru RG,et al.Effect of ion bombardment and annealing on the electrical properties of hydrogenated amorphous silicon metal-semiconductor-metal structures.J.Appl.Phys.,2005,97(2):Art.No.023519
    [18]Dalal VL,Graves J,Leib J.Influence of pressure and ion bombardment on the growth and properties of nanocrystalline silicon materials.Appl.Phys.Lett.,2004,85(8):1413-1414
    [19]Kalache B,Kosarev AI,Vanderhaghen R,et al.Ion bombardment effects on microcrystalline silicon growth mechanisms and on the film properties.J.Appl.Phys.,2003,93(2):1262-1273
    [20]Levi DH,Teplin CW,Iwaniczko E,et al.Real-time spectroscopic ellipsometry studies of the growth of amorphous and epitaxial silicon for photovoltaic applications.J.Vacuum Sci.Tech.A,2006,24(4):1676-1683
    [21]Teplin CW,Levi DH,Iwaniczko E,et al.Monitoring and modeling silicon homoepitaxy breakdown with real-time spectroscopic ellipsometry.J.Appl.Phys.,2005,97(10):103536
    [22]Fujiwara H,Kondo M.Real-time monitoring and process control in amorphous/crystalline silicon heterojunction solar cells by spectroscopic ellipsometry and infrared spectroscopy.Appl.Phys.Lett.,2005,86(3):032112
    [23]Asaoka H,Yamazaki T,Shamoto S.Initial growth stage of a highly mismatched strontium film on a hydrogen-terminated silicon(111) surface.Appl.Phys.Lett.,2006,88(20):201911
    [24]Frank MM,Chabal YJ,Green ML,et al.Enhanced initial growth of atomic-layer-deposited metal oxides on hydrogen-terminated silicon.Appl.Phys.Lett.,2003,83(4):740-742
    [1]Paillard V,Puech P,Laguna MA,et al.Resonant Raman scattering in polycrystalline silicon thin films.Appl.Phys.Lett.,1998,73:1718-1720
    [2]Dombrowski KF,De Wolf I,Dietrich B.Stress measurements using ultraviolet micm-Raman spectroscopy.Appl.Phys.Lett.,1999,75:2450-2451
    [3]徐刚毅,王天民,李国华,等.纳米硅薄膜的Raman光谱.半导体学报,2000,21(12):1170-1176
    [4]Yang M,Huang DM,Hao PH,et al Study of the Raman peak shift and the line width of light-emitting porous f the Raman peak shift and the line width of light-emitting porous Silicon.J.Appl.Phys.,1994,75(1):651-653
    [5]Paillard V,Puech P,Sirvin R,et al.Measurement of the in-depth stress profile in hydrogenated microcrystalline silicon thin films using Raman spectrometry.J.Appl.Phys.,2001,90(7):3276-3279
    [6]Zi J,Buscher H,Falter C,et al.Raman shifts in Si nanocrystals.Appl.Phys.Lett.,1996,69(2):200-202
    [7]桑胜波,薛晨阳,张文栋,等.微加工工艺应力的喇曼在线测量.半导体学报,2006,27(6):1141-1146
    [8]Bonera E,Fanciulli M,Mariani M.Raman spectroscopy of strain in sub-wavelength microelectronic devices.Appl.Phys.Lett.,2005,87:111913
    [9]Poborchii V,Tada T,Kanayama T.High-spatial-resolution Raman microscopy pf stress in shallow-trench-isolated Si structures.Appl.Phys.Lett.,2006,89:233505
    [10]阎守胜.固体物理基础.北京:北京大学出版社,2000:44
    [11]DeWolf I.Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits.Semicond.Sci.Technol.,1996,11:139-154
    [12]Aspnes DE,Studna AA.Dielectric functions and optical parameters of Si,Ge,GaP,GaAs,GaSb,InP,InAs,and InSb from 1.5 to 6.0 eV.Phys.Rev.B,1983,27(2):985-1009
    [13]Zhang SL,Hou YT,H0 KS,et al.Raman investigation with excitation of various wavelength lasers on porous silicon.J.Appl.Phys.,1992,72(9):4469-4471
    [14]Agullo-Rueda F,Moreno JD,Montoya E,et al.Influence of wavelength on the Raman line shape in porous silicon.J.Appl.Phys.,1998,84(4):2349-2351
    [15]Yan Y,Huang FM,Zhang SL,et al.Raman spectra of SiC nanorods with different excitation wavelengths.Chin.Sci.Bull.,2001,46(22):1865-1866
    [16]程光煦.拉曼布里渊散射.北京:科学出版社,2001,240
    [17]Srikar VI,Swan AK,Unlu MS,et al.Micro-Raman Measurement of Bending Stresses inMicromachined Silicon Flexures.J.MEMS.,2003,12(6):779-787
    [18]Arokiaraj J,Tripathy S,Vicknesh S,et al.Realization of freestanding InP membranes on Si by low-temperature wafer bonding and stress analysis using micro-Raman spectroscopy.Appl.Phys.Lett.,2006,88(22):221901
    [19]Kinnell PK,Gardiner DJ,Bowden M,et al.Characterization of a micro-engineered selective strain-coupling structure using Raman spectroscopy.J.M.icromech.Microeng.,2005,15(4):807-811
    [20]吴自勤,王兵.薄膜生长.北京:科学出版社,2005,133
    [21]Anastassakis E,Pinczuk A,Burstein E,et al.Effect of static uniaxial stress on the Raman spectrum of silicon.Solid State Commun.,1970,8(2):133-138
    [22]Brantley W.Calculated elastic constants for stress problems associated with semiconductor devices.J.Appl.Phys.,1973,44:534-535
    [23]Nickel NH,Lengsfeld P,Sieber I.Raman spectroscopy of heavily doped polycrystalline silicon thin films.Phys.Rev.B,2000,61(23):15558-15561
    [24]Lengsfeld P,Nickel NH,Genzel C,et al.Stress in undoped and doped laser crystallized poly-Si.J.Appl.Phys.,2002,91(11):9128-9135
    [25]Huang CF,Yang YJ,Peng CY,et al.Mechanical strain effect of n-channel polycrystalline silicon thin-film transistors.Appl.Phys.Lett.,2006,89(10):103502
    [26]DeWolf I,Maes HE,Jones SK.Stress measurements in silicon devices through Raman spectroscopy:bridging the gap between theory and experiment.J.Appl.Phys.,1996,79(9): 7148-7156
    [27]Oian J,Yu TX,Zhao YP.Two-dimensional stress measurement of a micromachined piezoresistive structure with micro-Raman spectroscopy.Microsyst.Technol.,2005,11(2-3):97-103
    [28]Ieong M,Doris B,Kedzierski J,et al.Silicon device scaling to the sub-10-nm regime.Science,2004,306:2057-2060
    [29]Zhang Z,Yoon J,Suo ZG.Method to analyze dislocation injection from sharp features in strained silicon structures.Appl.Phys.Lett.,2006,89(26):261912
    [30]Lee S,von Allmen P.Magnetic-field dependence of valley splitting in Si quantum wells grown on tilted SiGe substrates.Phys.Rev.B,2006,74(24):245302
    [31]Zhang P,Istratov AA,Weber ER,et al.Direct strain measurement in a 65 nm node strained silicon transistor by convergent-beam electron diffraction.Appl.Phys.Lett.,2006,89(16):161907
    [32]Kim J,Xie YH.Fabrication of dislocation-free tensile strained Si thin films using controllably oxidized porous Si substrates.Appl.Phys.Lett.,2006,89(15):152117
    [33]Wang GH,Toh EH,Foo YL,et al.High quality silicon-germanium-on-insulator wafers fabricated using cyclical thermal oxidation and annealing.Appl.Phys.Lett.,2006,89(5):053109
    [34]Balakumar S,Tung CH,Lo GQ,et al.Solid phase epitaxy during Ge condensation from amorphous SiGe layer on silicon-on-insulator substrate.Appl.Phys.Lett.,2006,89(3):032101
    [1]Toyama T,Kotani Y,Okamoto H,et al.Light emission from nanocrystalline Si thin-film light emitting diodes due to tunneling carrier injection.Appl.Phys.Lett.,1998,72(12):1489-1491
    [2]Park NM,Kim TS,Park SJ.Band gap engineering of amorphous silicon quantum dots for light-emitting diodes.Appl.Phys.Lett.,2001,78(17):2575-2577
    [3]Kim BH,Cho CH,Park SJ,et al.Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency.Appl.Phys.Lett.,2006,89(6):Art.No.063509
    [4]Gowrishankar V,Scully SR,McGehee MD,et al.Exciton splitting and carrier transport across the amorphous-silicon/polymer solar cell interface.Appl.Phys.Lett.,2006,89(25):Art.No.252102
    [5]Abbott MD,Cotter JE,Trupke T,et al.Investigation of edge recombination effects in silicon solar cell structures using photoluminescence.Appl.Phys.Lett.,2006,88(11):114105
    [6]Matsui T,Kondo M,Ogata K,et al.Influence of alloy composition on carrier transport and solar cell properties of hydrogenated microcrystalline silicon-germanium thin films.Appl.Phys.Lett.,2006,89(14):Art.No.142115
    [7]Lee CH,Sazonov A,Nathan A,et al.Directly deposited nanocrystalline silicon thin-film transistors with ultra high mobilities.Appl.Phys.Lett.,2006,89(25):Art.No.252101
    [8]Lee CH,Sazonov A,Nathan A.High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition.Appl.Phys.Lett.,2005,86(22):Art.No.222106
    [9]Hatzopoulos AT,Pappas I,Tassis DH,et al.Analytical current-voltage model for nanocrystalline silicon thin-film transistors.Appl.Phys.Lett.,2006,89(19):Art.No.193500
    [10]Tan YT,Kamiya T,Durrani ZAK,et al.Room temperature nanocrystalline silicon single-electron transistors.J.Appl.Phys.,2003,94(1):633-637
    [11]Chen XY,Shen WZ,He YL.Enhancement of electron mobility in nanocrystalline silicon crystalline silicon heterostructures.J.Appl.Phys.,2005,97(2):Art.No.024305
    [12]Khalafalla MAH,Durrani ZAK,Mizuta H.Coherent states in a coupled quantum dot nanocrystalline silicon transistor.Appl.Phys.Lett.,2004,85(12):2262-2264
    [13]Zhang R,Chen XY,Zhang K,et al.Photocurrent response of hydrogenated nanocrystalline silicon thin films.J.Appl.Phys.,2006,100(10):Art.No.104310
    [14]Pan W,Lu JJ,Chen J,et al.Resonant tunneling characteristics in crystalline silicon/nanocrystalline silicon heterostructure diodes.Phys.Rev.B,2006,74(12):Art.No.125308
    [15]Chen H,Shen WZ,Wei WS.Structural order effect in visible photoluminescence properties of nanocrystalline Si:H thin films.Appl.Phys.Lett.,2006,88(12):Art.No.121921
    [16]He YL,Liu H,Yu MB,et al.The structure characteristics and piezo-resistance effect in hydrogenated nanocrystalline silicon films.Nanostructured Mater.,1996,7(7):769-777
    [17]Bai YL,Wang H,Xia M,et al.Statistical mesomechanics of solid,liking coupled multiple space and time scales.Appl.Mech.Rev.,2005,58:372-388
    [18]牛德芳.力学量敏感器件及其应用.北京:科学出版社,1987,62
    [19]Oliver WC,Pharr GM.Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology.J.Mater.Res.,2004,19(1):3-20
    [20]Oliver WC,Pharr GM.An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments.J.Mater.Res.,1992,7(6):1564-1583
    [21]Johnsonn K.Contact Mechanics.Cambridge:Cambridge University Press,1985,210
    [22]Kailer A,Gogotsi YG,Nickel KG.Phase transformations of silicon caused by contact loading.J.Appl.Phys.,1997,81(7):3057-3063
    [23]Ruffell S,Bradby JE,Wdliams JS.High pressure crystalline phase formation during nanoindentation:Amorphous versus crystalline silicon.Appl.Phys.Lett.,2006,89(9):Art.No.091919
    [24]Yan JW,Takahashi H,Tamaki J,et al.Transmission electron microscopic observation of nanoindentations made on ductile-machined silicon wafers.Appl.Phys.Lett.,2005,87(21):Art.No.211901
    [25]International standard.Metallic Materials-Instrumented indentation test for hardness and materials parameters.ISO 14577:2002
    [26]He YL,Wei YY,Zheng GZ,et al.An exploratory study of the conduction mechanism of hydrogenated nanocrystalline silicon films.J.Appl.Phys.,1997,82(7):3408-3413
    [27]He YL,Hu GY,Yu MB,et al.Conduction mechanism of hydrogenated nanocrystalline silicon films.Phys.Rev.B,1999,59(23):15352-15357
    [28]Liu XN,Wu XW,Bao XM,et al.Photoluminescence from nanocrystallites embedded in hydrogenated amorphous-silicon films prepared by plasma-enhanced chemical vapor deposition.Appl.Phys.Lett.,1994,64(2):220-222
    [29]Makishima A,Mackenzie JD.Hardness Equation for Ormosils.J.Sol-Gel Sci.Tech.,2000,19:627-630
    [30]Joslin DL,Oliver WC.A new method for analyzing data from continuous depth sensing microindentations tests.J.Mater.Res.,1990,5(1):123-126
    [31]Wang LG,Rokhlin SI.On determination of material parameters from loading and unloading responses in nanoindentation with a single sharp indenter.J.Mater.Res.,2006,21(4):995-1011
    [32]Swadener JG,Taljat B,Pharr GM.Measurement of residual stress by load and depth sensing indentation with spherical indenters.J.Mater.Res.,2001,16(7):2091-2102
    [1]Smith C S.Piezoresistance effect in Germanium and Silicon.Phys.Rev.,1954,43:42-49
    [2]Tufte O N,Chapman P W,Long D.Silicon diffused-element piezoresistive diaphragms.J.Appl.Phys.,1962,33(11):3322-3327
    [3]Kanda Y.A graphical representation of the piezoresistance coefficients in silicon.IEEE T Electron.Dev.,1982,29(1):64-70
    [4]Ko W H,Hynecek J.,Boettcher S.F.Development of a miniature pressure transducer for biomedical applications.IEEE T Electron.Dev.,1979,26(2):1896-1905
    [5]Pal P,Chandra S.A novel process for perfect convex comer realization in bulk micromachining.J.Micro.Microeng.,2004,14(10):1416-1420
    [6]Howe R T.Surface micromachining for microsensors and microactuators.J.Vac.Sci.Tech.B,1988,6(6):1809-1813
    [7]Pramanlk C,Saha H,Gangopadhyay U.Design optimization of a high performance silicon MEMS piezoresistive pressure sensor for biomedical applications.J.Micro.Microeng.,2006,16(10):2060-2066
    [8]Zhao YL,Zhao LB,Jiang ZD.A novel high temperature pressure sensor on the basis SOI layers.Sensor.Actuators A-Phys.,2003,108(1-3):108-111
    [9]Bao M H,Wang W Y.Future of microelectromechanical systems(MEMS).Sensor.Actuators A-Phys.,1996,56(1-2):135-141
    [10]Bao M H.Micro Mechanical Transducers-Pressure Sensors,Accelerometers and Gyroscopes.Amsterdam:Elsevier publisher,2000.201-202
    [11]Herring C,Vogt E.Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering.Phys.Rev.,1956,101:944-961
    [12]孙以材,刘玉玲,孟庆浩.压力传感器的设计制造与应用.北京:冶金工业出版社.2000,50-51.
    [13]Okojie RS,Ned AA,Kurtz AD.Operation of alpha(GH)-SiC pressure sensor at 500 degrees C.Sensor.Actuators A-Phys.,1998,66(1-3):200-204
    [14]Plossl A,Krauter G.Silicon-on-insulator:materials aspects and applications.Solid State Electron.,2000,44(5):775-782
    [15]Gosele U,Reiche M,Tong QY.Properties of SIMOX and bonded SOI material.Microelectron Eng.,1995,28(1-4):391-397
    [16]Plaza JA,Llobera A,Dominguez C,et al.BESOI-based integrated optical silicon accelerometer.J.MEMS.,2004,13(2):355-364
    [17]Fecioru AM,Senz S,Scholz R,et al.Silicon layer transfer by hydrogen implantation combined with wafer bonding in ultrahigh vacuum.Appl.Phys.Lett.,2006,89(19):Art.No.192109
    [18]Petersen K,Brown J,Vermeulen T,et al.Ultra-stable,high-temperature pressure sensors using silicon fusion bonding.Sensor.Actuators A-Phys,.1990,21(1-3):96-101
    [19]王权,丁建宁,薛伟,等.高温硅压阻式微型压力传感器研究现状与展望.仪表技术与传感器,2005,12:1-3
    [20]Kozlovskiy SI,Nedostup VV,Boiko II.First-order piezoresistance coefficients in heavily doped p-type silicon crystals.Sensor.Actuators A-Phys.,2007,133(1):72-81
    [21]Kanda Y.Piezoresistance effect of silicon.Sensor Actuat.A-Phys.,1991,28(2):83-91
    [22]Li XX,Chen XM,Song ZH,et al.A microgyroscope with piezoresistance for both high-performance coriolis-effect detection and seesaw-like vibration control.J.MEMS,2006,15(6):1698-1707
    [23]Matsuoka Y,Yamamoto Y,Yamadak,et al.Characteristic analysis of a pressure sensor using the silicon piezoresistance effect for high pressure mesurements.J.Micromech.Microeng.,1995,5(1):25-31
    [24]Garcia SP,Bao HL,Hines MA.Etchant anisotropy controls the step bunching instability in KOH etching of silicon.Phys.Rev.Lett.,2004,93(16):Art.No.166102
    [25]Resnik D,Vrtacnik D,Amon S.Morphological study of {311} crystal planes anisotropically etched in(100) silicon:role of etchants and etching parameters.J.Micromech.Microeng,200010(3):430-439
    [26]Schroder H,Obermeier E,Steckenborn A.Effects of the etchmask properties on the anisotropy ratio in anisotropic etching of {100} silicon in aqueous KOH.J.Micromech.Microeng.,1998,8(2):99-103
    [27]Lin LW,Chu HC,Lu YW.A simulation program for the sensitivity and linearity of piezoresistive pressure sensors.J.MEMS.,1999,8(4):514-522
    [28]Wang Q,Ding J N,Xue W,et al.Micromachining process of high temperature pressure sensor gauge chip based on SIMOX SOI wafer.Int.J.Mat.Product Tech.,2007(Inpress)
    [29]Cheng XL,Lin ZL,Wang YJ,et al.A study of Si epitaxial layer growth on SOI wafers prepared by SIMOX.Vacuum,2004,75(1):25-32
    [30]Hong WE,Ro JS.Activation and deactivation in heavily boron-doped silicon using ultra-low-energy ion implantation.J.Appl.Phys.,2005,97(1):Art.No.013530
    [31]Wang GH,Toh EH,Foo YL,et al.High quality silicon-germanium-on-insulator wafers fabricated using cyclical thermal oxidation and annealing.Appl.Phys.Lett.,2006,89(5):Art.No.053109
    [32]Lei CH,Rockett AA,Robertson IM,et al.Interface reactions and Kirkendall voids in metal organic vapor-phase epitaxy grown Cu(In,Ga)Se-2 thin films on GaAs.J.Appl.Phys.,100(11):Art.No.114915 DEC 1 2006
    [33]Lei CH,Rockett AA,Robertson IM,et al.Interface reactions and Kirkendall voids in metal organic vapor-phase epitaxy grown Cu(In,Ga)Se-2 thin films on GaAs.J.Appl.Phys.,2006,100(11):Art.No.114915
    [34]王权,丁建宁,王文襄,等.基于SIMOX的耐高温压力传感器芯片制作.半导体学报,2005,26(8):1595-1598
    [35]Senturia SD,Smith RL.Microsensor packaging and system partitioning.Sensor Actuat.,1988,15(3):221-234
    [36]Morrissey A,Kelly G,Alderman J.Selection of materials for reduced stress packaging of a microsystem.Sensor Actuat.A-Phys.,1999,74(1-3):178-181
    [37]Guo YD,Song XS,Li XB,et al.Thermodynamic properties of cubic boron nitride under high pressure from ab initio calculations.Solid State Commun.,2007,141(10):577-581
    [38]黄庆安.硅微机械加工技术.北京:科学出版社.1996,207
    [39]Wailis G,Pomerantz DI.Field assisted glass-metal sealing.J.Appl.Phys.,1969,40(10):3946-3949
    [40]王权,丁建宁,王文襄,等.一种硅芯片/玻璃环静电键合的简易装置.真空科学与技术学报.2005,25(3):214-216
    [41]Kanda Y,Matsuda K,Murayama,et al.The mechanism of field-assisted silicon glass bonding.Sensor Actuat.A-Phys.,1990,23(1-3):939-943
    [42]施敏.半导体器件物理.北京:电子工业出版社.1987,172
    [43]Anthony TR.Anodic bonding of imperfect surfaces.J.Appl.Phys.,1983,54(5):2419-2428
    [44]王权,丁建宁,薛伟,等.一种硅芯片外引线键合的热压焊装置及工艺研究.焊接学报,2006,5:61-64
    [45]电子工业半导体专业工人技术教材编写组.半导体器件工艺.上海:上海科学技术文献出版社.1983,386
    [46]Wang Q,Ding JN,Xue W,et al.Micromachining process of high temperature pressure sensor gauge chip based on SIMOX SOI wafer.Int.J.Mat.Product Tech.,2007(In press)
    [47]中国电子学会生产技术学会分会丛书编委会.微电子封装技术.安徽:中国科技大学出版社.2000.22
    [48]吴宗泽.机械设计师.北京:机械工业出版社.2003.811
    [49]王权,丁建宁,王文襄,等.通用型耐高温微型压力传感器封装工艺研究.仪表技术与传感器,2005,6:6-7
    [50]王权,丁建宁,王文襄,等.通用型压阻式高温压力传感器研究.中国机械工程,2005,16,(20):1795-1798
    [51]中国电子学会敏感技术分会北京电子学会编.传感器与执行器(年卷)2002/2003.北京:电子工业出版社,2004,392
    [52]Matsuda K,Kanda Y,Yamamur K,et al.Nonlinearity of piezoresistance effect in P-type and N-type silicon.Sensor.Actuators A-Phys.,1990,21(1-3):45-48
    [53]李科杰.新编传感器技术手册.北京:国防工业出版社,2002,63
    [54]Kim SC,Wise KD.Temperature sensistivity in silicon piezoresistive pressure transducers.IEEE T Electron.Dev.,1983,30(7):802-810
    [55]Gakkestad J,Ohluckers P,Halbo L.Compensation of sensitivity shift in piezoresistive pressure sensors using linear voltage excitation.Sensor.Actuators A-Phys.,1995,49(1-2):11-15
    [56]Wang Q,Ding JN,Wang WX.Fabrication and temperature coefficient compensation technology of low cost high temperature pressure sensor.Sensor.Actuators A-Phys.,2005,120:468-475
    [57]王权,丁建宁,王文襄,等.压力传感器灵敏度温度系数三极管补偿技术.仪表技术与传感器.2004.10:61-62
    [58]Melvas P,Kalvesten E,Stemme G.A temperature compensated dual beam pressure sensor.Sensor.Actuators A-Phys.,2002,100(1):46-53
    [59]De Bruyker D,Puers R.Thermostatic control for temperature compensation of a silicon pressure sensor.Sensor.Actuators A-Phys.,2000,82:120-127
    [60]王权,丁建宁,王文襄,等.高温压力传感器温度漂移补偿研究.传感器技术.2005,2:13-15
    [61]王权,丁建宁,王文襄,等.通用型压阻式高温压力传感器研究.中国机械工程,2005,16,(20):1795-1798
    [62]薛伟,王权,丁建宁,等.内燃机气缸压力智能检测仪研究.农业机械学报,2006,7:194-196
    [63]Tanaka TJ,Bauer FJ,Lutz TJ,et al.Liquid metal integrated test system(LIMITS).Fusion Eng.Des.,2004,72(1-3):83-92
    [64]Prut VV,Shibaev SA.An injector of solid hydrogen pellets.Instrum.Exp.Tech.,1994,37(2):195-199 Part 2
    [65]王权,丁建宁,王文襄,等.基于SIMOX技术的耐高温微型油井压力传感器研究.2004年中国机械工程学会年会论文集.北京:机械工业出版社.2004.99
    [66]薛伟,王权,丁建宁,等.内燃机气缸压力智能检测仪研究.农业机械学报,2006,7:194-196
    [67]成都先达电子有限公司.PT系列高温熔体压力传感器变送器使用说明书.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700