基于硅纳米线阵列的有机/无机杂化光伏电池的制备及性能表征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能因其清洁,无污染,可再生等独特优势受到人们的广泛关注与青睐。太阳能电池(也称光伏电池)作为利用太阳能的主要手段之一,在过去几十年内得到很大的发展。目前市场上销售的光伏电池主要是单晶或多晶硅光伏电池,其高昂的发电成本限制了电池的广泛使用。为降低硅光伏电池的成本,本文从两个方面对电池进行改性:第一,硅纳米阵列结构代替平面硅,硅纳米阵优异的光学和电学性能可降低电池中硅原料所需的厚度和纯度;第二,将有机/无机材料进行复合,制备杂化硅光伏电池,利用共轭分子可溶液制备的特性,简化硅光伏电池的制备过程。基于以上研究思想,本课题采用简单的溶液刻蚀法制备硅纳米线阵列,并对其表面进行钝化处理,在此基础上制备了一系列硅纳米结构/共轭分子光伏电池,其主要研究工作如下:
     1、以离子液体作为电解液,制备准固态的硅/离子液体光电化学光伏器件,并研究了不同表面修饰的硅电极对器件性能的影响。经过优化,该光伏器件的转化效率已达到6%。硅表面的X射线光电子能谱与器件的稳定性测试表明,该方法制备的光伏器件的稳定性明显优于传统的以水或有机溶剂为电解液的光伏器件。
     2、将一种共轭小分子(Spiro-OMeTAD)引入硅电池中,溶液法制备了全固态硅/共轭分子异质结光伏电池。通过比较核-壳径向异质结结构器件的性能与嵌入式以及平面结构异质结器件的性能,阐述了核-壳形成的径向异质结在器件中的独特的优势。经过优化,该光伏器件的转化效率可达9.7%,为同时期所报道的硅杂化光伏电池的最高转化效率。
     3、基于硅/共轭高分子(PEDOT:PSS)肖特基光伏器件的制备及性能表征,研究出当前硅/PEDOT:PSS肖特基光伏器件性能不稳定的因素。在此基础上通过原子力显微镜对PEDOT:PSS形貌、电势进行表征,测试硅/PEDOT:PSS肖特基电池的电流密度-电压曲线、电容-电压曲线、瞬态衰减电压测试曲线,研究了PEDOT:PSS对该类电池性能的影响。
     4、摸索出重现性较高硅/PEDOT:PSS肖特基光伏器件的制备条件,在该条件下器件的转换效率可稳定在~9%。对电池进行简单的理论模拟,研究PEDOT:PSS的功函对电池性能的影响。将Pt、TiC等颗粒引入PEDOT:PSS溶液中,对PEDOT:PSS膜进行掺杂,实验结果显示,掺杂后电池的性能得到明显的改善,电池的转换效率可提高14%,达到10.35%左右。
In recent years, due to the petroleum extinction and environmental pollutionproblem, photovoltaics (PV) have become a most pursued renewable energy technology.At present, crystallized silicon photovoltaics have hold more than80%market sharebecause of their non-toxic, abundant raw materials and the long-term stability.However,the cost of cell is still too high limiting its widespread use. In order to reducethe cell cost, oranic-inorganic hybrid solar cell based on silicon nanowire arrayarchitecture (SiNWs) and conjugated moleculas are investigated.
     In the traditional high efficient planar silicon cells, in order to ensure collection ofthe photogenerated charge carriers, minority-carrier diffusion length needs to becompatible with the ultra long absorption optical depth (up to200μm), which isassociated with the indirect band gap semiconductor properties, therefore highlypurified crystalline as well as thick absorption sheet is required. Comparing with theplanar silicon cells, hybrid radial heterojunction solar cells based on SiNWs andconjugated moleculas have several advantages. First, the radical junction based onSiNWs which shows excellent light harvesting capability and efficient charge-carrierextraction can reduce the amount as well as the purify of silicon used in the cell. Second,the hybrid heterojunctions take advantage of the solution-based processes of conjugatedmoleculas, which simplify the fabrication processes and reduce the manufacturing costof the cell.
     The main subject of this work is to fabricate the low-cost and high-efficiency PVcells composed of SiNWs and conjugated moleculas. Here, the SiNWs are fabricated bythe metal-assisted solution etching method and passivated by methylation. The majorwork can be summarized as follows:
     1、Photoelectrochemical (PEC) cells based on different Si electrodes and ionicliquid (IL) are fabricated. The X-ray photoelectron spectrum measurement and thestability measurement of the cell shows that methylation and IL can protect the silicon from oxidation. The moderate efficiency and the excellent stability of the PEC celldemonstrate that the cell may have the potential of practical use.
     2、Heterojunction solar cells based on SiNWs and Spiro-OMeTAD are fabricatedby a simple solution method. The devices with radial junction show excellent efficiencyof~10.0%. By comparing the performance of the device with core-shell structure to thatof the device with the embedded one as well as the planar one, the necessity of radialjunction with core-shell structure is outlined.
     3、In addition to the AFM and SKPM images of PEDOT:PSS films, by analyzingthe current density-voltage curves, the capantance-voltage measurements and thetransient photovoltage measurements of the Schottky cells composed of Silicon andPEDOT:PSS, the poor reproducibility of Si/PEDOT:PSS cell as well as the the influenceof PEDOT:PSS film is investragated.
     4、The method which shows good repeatability of the Silicon/PEDOT:PSS cells isdemonstrated. Simply simulate the work function of PEDOT:PSS affection to theSilicon/PEDOT:PSS cell. The efficiency can be increased14%when the particles of Ptand TiC are added to the PEDOT:PSS films, attaining the value of10.35%.
引文
[1] International Enerergy Outlook2011. Energy Information Administration,2011.
    [2] Chapin D., Fuller C., Pearson G., A New Silicon p-n Junction Photocell forConverting Solar Radiation into Electrical Power. Journal of Applied Physics,1954,25(5),676.
    [3] Green M. A., Emery K., Hishikawa Y., Warta W., Dunlop E. D., Solar cell efficiencytables (version39). Progress in Photovoltaics: Research and Applications,2012,20(1),12.
    [4] Green M. A., Third generation photovoltaics: Ultra high conversion efficiency at lowcost. Progress in Photovoltaics: Research and Applications,2001,9(2),123.
    [5] Nozik A. J., Multiple exciton generation in semiconductor quantum dots. ChemicalPhysics Letters,2008,457(1),3.
    [6] Bach U., Lupo D., Comte P., Moser J., Weiss rtel F., Salbeck J., Spreitzer H.,Gr tzel M., Solid-state dye-sensitized mesoporous TiO2solar cells with highphoton-to-electron conversion efficiencies. Nature,1998,395(6702),583.
    [7] Lancelle Beltran E., Prené P., Boscher C., Belleville P., Buvat P., Sanchez C.,All-Solid-State Dye-Sensitized Nanoporous TiO2Hybrid solar cells with highenergy-conversion efficiency. Advanced Materials,2006,18(19),2579.
    [8] Stupca M., Alsalhi M., Al Saud T., Almuhanna A., Nayfeh M., Enhancement ofpolycrystalline silicon solar cells using ultrathin films of silicon nanoparticle.Applied Physics Letters,2007,91(6),063107.
    [9] Gur I., Fromer N. A., Geier M. L., Alivisatos A. P., Air-stable all-inorganicnanocrystal solar cells processed from solution. Science,2005,310(5747),462.
    [10] Martinson A. B., Elam J. W., Hupp J. T., Pellin M. J., ZnO nanotube baseddye-sensitized solar cells. Nano letters,2007,7(8),2183.
    [11] Mor G. K., Shankar K., Paulose M., Varghese O. K., Grimes C. A., Use ofhighly-ordered TiO2nanotube arrays in dye-sensitized solar cells. Nano letters,2006,6(2),215.
    [12] Zhou H., Colli A., Ahnood A., Yang Y., Rupesinghe N., Butler T., Haneef I., HiralalP., Nathan A., Amaratunga G. A., Arrays of parallel connected coaxial multiwallcarbon nanotube amorphous silicon solar cells. Advanced Materials,2009,21(38-39),3919.
    [13] Huynh W. U., Dittmer J. J., Alivisatos A. P., Hybrid nanorod-polymer solar cells.Science,2002,295(5564),2425.
    [14] Greene L. E., Law M., Yuhas B. D., Yang P., ZnO-TiO2core-shell nanorod/P3HTsolar cells. The Journal of Physical Chemistry C,2007,111(50),18451.
    [15] Schierhorn M., Boettcher S. W., Ivanovskaya A., Norvell E., Sherman J. B., StuckyG. D., Moskovits M., Fabrication and electrochemical photovoltaic response ofCdSe nanorod arrays. The Journal of Physical Chemistry C,2008,112(23),8516.
    [16] Kayes B. M., Atwater H. A., Lewis N. S., Comparison of the device physicsprinciples of planar and radial p-n junction nanorod solar cells. Journal of AppliedPhysics,2005,97(11),114302.
    [17] Law M., Greene L. E., Johnson J. C., Saykally R., Yang P., Nanowiredye-sensitized solar cells. Nature materials,2005,4(6),455.
    [18] Garnett E. C., Peters C., Brongersma M., Cui Y., McGehee M. In silicon nanowirehybrid photovoltaics, Photovoltaic Specialists Conference (PVSC),201035thIEEE, Hawaii,20-25June2010IEEE: Hawaii,2010; p000934.
    [19] Shiu S. C., Chao J.J., Hung S. C., Yeh C. L., Lin C.F., Morphology dependence ofsilicon nanowire/Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)heterojunction solar cells. Chemistry of Materials,2010,22(10),3108.
    [20] Peng K., Hu J., Yan Y., Wu Y., Fang H., Xu Y., Lee S., Zhu J., Fabrication ofSingle-crystalline silicon nanowires by scratching a silicon surface with catalyticmetal particles. Advanced Functional Materials,2005,16(3),387.
    [21] Zhang M. L., Peng K. Q., Fan X., Jie J.-S., Zhang R. Q., Lee S. T., Wong N. B.,Preparation of large-area uniform silicon nanowires arrays through metal-assistedchemical etching. The Journal of Physical Chemistry C,2008,112(12),4444.
    [22] Yao M., Madaria A. R., Chi C., Huang N., Lin C., Povinelli M. L., Dapkus P. D.,Zhou C. In Scalable synthesis of vertically aligned, catalyst-free gallium arsenidenanowire arrays: towards optimized optical absorption, SPIE defense, security, andsensing, International Society for Optics and Photonics:2012;8,837314.
    [23] Hochbaum A. I., Gargas D., Hwang Y. J., Yang P., Single crystalline mesoporoussilicon nanowires. Nano letters,2009,9(10),3550.
    [24] Garnett E., Yang P., Light trapping in silicon nanowire Solar Cells. Nano letters,2010,10(3),1082.
    [25] Nozik A., Beard M., Luther J., Law M., Ellingson R., Johnson J., Semiconductorquantum dots and quantum dot arrays and applications of multiple excitongeneration to third-generation photovoltaic solar cells. Chemical reviews,2010,110(11),6873.
    [26] Nozik A., Quantum dot solar cells. Physica E: Low-dimensional systems andnanostructures,2002,14(1),115.
    [27] Green M. A., Silicon photovoltaic modules: a brief history of the first50years.Progress in Photovoltaics: Research and Applications,2005,13(5),447-455.
    [28] Gereth R., Fischer H., Link E., Mattes S., Pschunder W., Contribution to siliconsolar cell technology. Energy Conversion,1972,12(3),103.
    [29] Green M. A., The path to25%silicon solar cell efficiency: history of silicon cellevolution. Progress in Photovoltaics: Research and Applications,2009,17(3),183.
    [30] Deckman H., Wronski C., Witzke H., Yablonovitch E., Optically enhancedamorphous silicon solar cells. Applied Physics Letters,1983,42(11),968.
    [31] Tiedje T., Yablonovitch E., Cody G. D., Brooks B. G., Limiting efficiency of siliconsolar cells. Electron Devices, IEEE Transactions on,1984,31(5),711.
    [32] Kerr M. J., Cuevas A., Campbell P., Limiting efficiency of crystalline silicon solarcells due to Coulomb-enhanced Auger recombination. Progress in Photovoltaics:Research and Applications,2003,11(2),97.
    [33] Shah A., Schade H., Vanecek M., Meier J., Vallat-Sauvain E., Wyrsch N., Kroll U.,Droz C., Bailat J., Thin-film silicon solar cell technology. Progress in Photovoltaics:Research and Applications,2004,12(2-3),113.
    [34] Chittick R., Alexander J., Sterling H., The preparation and properties of amorphoussilicon. Journal of The Electrochemical Society,1969,116(1),77.
    [35] Tawada Y., Kondo M., Okamoto H., Hamakawa Y., Hydrogenated amorphoussilicon carbide as a window material for high efficiency a-Si solar cells. Solarenergy materials,1982,6(3),299.
    [36] Meier J., Fluckiger R., Keppner H., Shah A., Complete microcrystalline p-i-n solarcell crystalline or amorphous cell behavior? Applied Physics Letters,1994,65(7),860.
    [37] Carlson D., Wronski C., Amorphous silicon solar cell. Applied Physics Letters,1976,28(11),671.
    [38] Yamamoto K., Yoshimi M., Tawada Y., Okamoto Y., Nakajima A., Igari S.,Thin-film poly-Si solar cells on glass substrate fabricated at low temperature.Applied Physics A: Materials Science&Processing,1999,69(2),179.
    [39] Hahn G., Geiger P., Record efficiencies for EFG and string ribbon solar cells.Progress in Photovoltaics: Research and Applications,2003,11(5),341.
    [40] Shah A., Meier J., Vallat-Sauvain E., Wyrsch N., Kroll U., Droz C., Graf U.,Material and solar cell research in microcrystalline silicon. Solar Energy Materialsand Solar Cells,2003,78(1),469.
    [41] Vetterl O., Finger F., Carius R., Hapke P., Houben L., Kluth O., Lambertz A., MückA., Rech B., Wagner H., Intrinsic microcrystalline silicon: A new material forphotovoltaics. Solar Energy Materials and Solar Cells,2000,62(1),97.
    [42] Rech B., Roschek T., Repmann T., Müller J., Schmitz R., Appenzeller W.,Microcrystalline silicon for large area thin film solar cells. Thin Solid Films,2003,427(1),157.
    [43] Kallmann H., Pope M., Photovoltaic effect in organic crystals. The Journal ofChemical Physics,1959,30(2),585.
    [44] Tang C., Two layer organic photovoltaic cell. Applied Physics Letters,1986,48(2),183.
    [45] Yu G., Gao J., Hummelen J., Wudl F., Heeger A., Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions.Science-AAAS-Weekly Paper Edition,1995,270(5243),1789.
    [46] Brabec C. J., Zerza G., Cerullo G., De Silvestri S., Luzzati S., Hummelen J. C.,Sariciftci S., Tracing photoinduced electron transfer process in conjugatedpolymer/fullerene bulk heterojunctions in real time. Chemical Physics Letters,2001,340(3),232.
    [47] Mihailetchi V., Koster L., Hummelen J., Blom P., Photocurrent generation inpolymer-fullerene bulk heterojunctions. Physical review letters,2004,93(21),216601.
    [48] Roncali J., Molecular bulk heterojunctions: an emerging approach to organic solarcells. Accounts of chemical research,2009,42(11),1719.
    [49] Chen M. H., Hou J., Hong Z., Yang G., Sista S., Chen L. M., Yang Y., Efficientpolymer solar cells with thin active layers based on alternating polyfluorenecopolymer/fullerene bulk heterojunctions. Advanced Materials,2009,21(42),4238.
    [50] Garcia-Belmonte G., Munar A., Barea E. M., Bisquert J., Ugarte I., Pacios R.,Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed byimpedance spectroscopy. Organic Electronics,2008,9(5),847.
    [51] Tan Z., Zhou E., Zhan X., Wang X., Li Y., Barlow S., Marder S. R., Efficientall-polymer solar cells based on blend of tris (thienylenevinylene)-substitutedpolythiophene and poly [perylene diimide-alt-bis (dithienothiophene)]. AppliedPhysics Letters,2008,93(7),073309.
    [52] Ma W., Yang C., Gong X., Lee K., Heeger A. J., Thermally stable, efficientpolymer solar cells with nanoscale control of the interpenetrating networkmorphology. Advanced Functional Materials,2005,15(10),1617.
    [53] Hou J., Chen H.Y., Zhang S., Li G., Yang Y., Synthesis, characterization, andphotovoltaic properties of a low band gap polymer based on silole-containingpolythiophenes and2,1,3-benzothiadiazole. Journal of the American ChemicalSociety,2008,130(48),16144.
    [54] Brabec C. J., Organic photovoltaics: technology and market. Solar EnergyMaterials and Solar Cells,2004,83(2),273-292.
    [55] Li G., Shrotriya V., Huang J., Yao Y., Moriarty T., Emery K., Yang Y.,High-efficiency solution processable polymer photovoltaic cells byself-organization of polymer blends. Nature materials,2005,4(11),864.
    [56] Lenes M., Wetzelaer G. J. A., Kooistra F. B., Veenstra S. C., Hummelen J. C., BlomP. W., Fullerene bisadducts for enhanced open-circuit voltages and efficiencies inpolymer solar cells. Advanced Materials,2008,20(11),2116.
    [57] He Y., Chen H.-Y., Hou J., Li Y., A new acceptor for high-performance polymersolar cells. Journal of the American Chemical Society,2010,132(4),1377.
    [58] Sun B., Greenham N. C., Improved efficiency of photovoltaics based on CdSenanorods and poly (3-hexylthiophene) nanofibers. Physical Chemistry ChemicalPhysics,2006,8(30),3557.
    [59] Shaheen S. E., Brabec C. J., Sariciftci N. S., Padinger F., Fromherz T., Hummelen J.C.,2.5%efficient organic plastic solar cells. Applied Physics Letters,2001,78(6),841.
    [60] Shrotriya V., Li G., Yao Y., Chu C.W., Yang Y., Transition metal oxides as the bufferlayer for polymer photovoltaic cells. Applied Physics Letters,2006,88(7),073508.
    [61] Hau S. K., Yip H. L., Baek N. S., Zou J., OMalley K., Jen A. K.-Y., Air-stableinverted flexible polymer solar cells using zinc oxide nanoparticles as an electronselective layer. Applied Physics Letters,2008,92(25),253301.
    [62] He Z., Zhong C., Huang X., Wong W. Y., Wu H., Chen L., Su S., Cao Y.,Simultaneous enhancement of open-circuit voltage, short-circuit current density,and fill factor in polymer solar cells. Advanced Materials,2011,23(40),4636.
    [63] Girotto C., Voroshazi E., Cheyns D., Heremans P., Rand B. P., Solution-processedMoO3thin films as a hole-injection layer for organic solar cells. ACS appliedmaterials&interfaces,2011,3(9),3244.
    [64] Steirer K. X., Ndione P. F., Widjonarko N. E., Lloyd M. T., Meyer J., Ratcliff E. L.,Kahn A., Armstrong N. R., Curtis C. J., Ginley D. S., Enhanced efficiency inplastic solar cells via energy matched solution processed NiOxinterlayers.Advanced Energy Materials,2011,1(5),813.
    [65] Greenham N. C., Peng X., Alivisatos A. P., Charge separation and transport inconjugated-polymer/semiconductor-nanocrystal composites studied byphotoluminescence quenching and photoconductivity. Physical Review B,1996,54(24),17628.
    [66] Ren S., Chang L.Y., Lim S. K., Zhao J., Smith M., Zhao N., Bulovi V., BawendiM., Gradec ak S., Inorganic-organic hybrid solar cell: bridging quantum dots toconjugated polymer nanowires. Nano letters,2011,11(9),3998.
    [67] He L. N., Jiang C. Y., Wang H., Lai D., Rusli, High efficiency planar Si/organicheterojunction hybrid solar cells. Applied Physics Letters,2012,100(7),073503.
    [68] Chen T. G., Huang B. Y., Chen E. C., Yu P., Meng H. F., Micro-textured conductivepolymer/silicon heterojunction photovoltaic devices with high efficiency. AppliedPhysics Letters,2012,101(3),033301.
    [69] Zhang F., Sun B., Song T., Zhu X., Lee S., Air Stable, Efficient Hybridphotovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures.Chemistry of Materials,2011,23(8),2084.
    [70] Liu Q., Ono M., Tang Z., Ishikawa R., Ueno K., Shirai H., Highly efficientcrystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells.Applied Physics Letters,2012,100(18),183901.
    [71] Jeong S., Garnett E. C., Wang S., Yu Z., Fan S., Brongersma M. L., McGehee M.D., Cui Y., Hybrid silicon nanocone-polymer solar cells. Nano Letters,2012,12(6),2971.
    [72] Shen X., Sun B., Liu D., Lee S.-T., Hybrid heterojunction solar cell based onorganic-inorganic silicon nanowire array architecture. Journal of the AmericanChemical Society,2011,133(48),19408.
    [73] Lu W., Wang C., Yue W., Chen L., Si/PEDOT:PSS core/shell nanowire arrays forefficient hybrid solar cells. Nanoscale,2011,3(9),3631.
    [74] He L., Jiang C., Rusli, Lai D., Wang H., Highly efficient Si-nanorods/organichybrid core-sheath heterojunction solar cells. Applied Physics Letters,2011,99(2),3610469.
    [75] Peng K., Wu Y., Fang H., Zhong X., Xu Y., Zhu J., Uniform, axial-orientationalignment of one-dimensional single-crystal silicon nanostructure arrays.Angewandte Chemie International Edition,2005,44(18),2737.
    [76] Gabrielli L. H., Cardenas J., Poitras C. B., Lipson M., Silicon nanostructure cloakoperating at optical frequencies. Nature Photonics,2009,3(8),461.
    [77] Hadobás K., Kirsch S., Carl A., Acet M., Wassermann E., Reflection properties ofnanostructure-arrayed silicon surfaces. Nanotechnology,2000,11(3),161.
    [78] Xu H. J., Li X. J., Silicon nanoporous pillar array: a silicon hierarchical structurewith high light absorption and triple-band photoluminescence. Optics Express,2008,16(5),2933.
    [79] Hu L., Chen G., Analysis of optical absorption in silicon nanowire arrays forphotovoltaic applications. Nano letters,2007,7(11),3249.
    [80] Zhu J., Yu Z., Burkhard G., Hsu C., Connor S., Xu Y., Wang Q., McGehee M., FanS., Cui Y., Optical absorption enhancement in amorphous silicon nanowire andnanocone arrays. Nano letters,2009,9(1),279.
    [81] Han S. E., Chen G., Optical absorption enhancement in silicon nanohole arrays forsolar photovoltaics. Nano letters,2010,10(3),1012.
    [82] Kayes B. M., Atwater H. A., Lewis N. S., Comparison of the device physicsprinciples of planar and radial p-n junction nanorod solar cells. Journal of AppliedPhysics,2005,97(11),114302.
    [83] Garnett E., Yang P., Silicon Nanowire Radial p-n Junction Solar Cells. Journal ofthe American Chemical Society,2008,130(29),9224.
    [84] Zhang F., Song T., Sun B., Conjugated polymer-silicon nanowire array hybridSchottky diode for solar cell application. Nanotechnology,2012,23(19),162107.
    [85] Zhang F., Han X., Lee S., Sun B., Heterojunction with organic thin layer for threedimensional high performance hybrid solar cells. Journal of Materials Chemistry,2012,22(12),5362.
    [86] Oh J., Yuan H. C., Branz H. M., An18.2%-efficient black-silicon solar cellachieved through control of carrier recombination in nanostructures. NatureNanotechnology,2012,7(11),743.
    [87] Peng K. Q., Lee S. T., Silicon nanowires for photovoltaic solar energy conversion.Advanced materials,2011,23(2),198.
    [88] Ozdemir B., Kulakci M., Turan R., Unalan H. E., Silicon nanowire-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) heterojunction solar cells.Applied Physics Letters,2011,99(11),113510.
    [89] Kim D. R., Lee C. H., Rao P. M., Cho I. S., Zheng X., Hybrid Si microwire andplanar solar cells: passivation and characterization. Nano Lett,2011,11(7),2704.
    [90] He L., Rusli, Jiang C., Wang H., Lai D., Simple Approach of Fabricating HighEfficiency Si nanowire/conductive polymer hybrid solar cells. Ieee ElectronDevice Letters,2011,32(10),1406.
    [91] Shen X., Sun B., Yan F., Zhao J., Zhang F., Wang S., Zhu X., Lee S.,High-performance photoelectrochemical cells from ionic liquid electrolyte inmethyl-terminated Silicon nanowire Arrays. Acs Nano,2010,4(10),5869.
    [92] Bashouti M. Y., Stelzner T., Berger A., Christiansen S., Haick H., Chemicalpassivation of Silicon nanowires with C1-C6Alkyl Chains through Covalent Si-Cbonds. The Journal of Physical Chemistry C,2008,112(49),19168.
    [93] Tsakalakos L., Balch J., Fronheiser J., Korevaar B. A., Sulima O., Rand J., Siliconnanowire solar cells. Applied Physics Letters,2007,91(23),233117.
    [94] Peng K., Wang X., Lee S. T., Silicon nanowire array photoelectrochemical solarcells. Applied Physics Letters,2008,92(16),163103.
    [95] Nakato Y., Tsubomura H., Silicon photoelectrodes modified with ultrafine metalislands. Electrochimica Acta,1992,37(5),897.
    [96] Goodey A., Eichfeld S., Lew K., Redwing J., Mallouk T., Silicon nanowire arrayphotoelectrochemical cells. Journal of the American Chemical Society,2007,129(41),12344.
    [97] Peng K., Wang X., Wu X., Lee S., Platinum nanoparticle decorated Siliconnanowires for efficient solar energy conversion. Nano letters,2009,9(11),3704.
    [98] Wang X., Peng K. Q., Pan X. J., Chen X., Yang Y., Li L., Meng X. M., Zhang W. J.,Lee S. T., High-performance Silicon nanowire array photoelectrochemical solarcells through surface passivation and modification. Angewandte ChemieInternational Edition,2011,50(42),9861.
    [99] Yoon H. P., Yuwen Y. A., Kendrick C. E., Barber G. D., Podraza N. J., Redwing J.M., Mallouk T. E., Wronski C. R., Mayer T. S., Enhanced conversion efficienciesfor pillar array solar cells fabricated from crystalline silicon with short minoritycarrier diffusion lengths. Applied Physics Letters,2010,96(21),213503.
    [1] Kelzenberg M. D., Boettcher S. W., Petykiewicz J. A., Turner-Evans D. B., PutnamM. C., Warren E. L., Spurgeon J. M., Briggs R. M., Lewis N. S., Atwater H. A.,Enhanced absorption and carrier collection in Si wire arrays for photovoltaicapplications. Nature materials,2010,9(4),368.
    [2] Maiolo J. R., Atwater H. A., Lewis N. S., Macroporous silicon as a model for siliconwire array solar cells. Journal of Physical Chemistry C,2008,112(15),6194.
    [3] Peng K., Wang X., Wu X., Lee S., Platinum nanoparticle decorated siliconnanowires for efficient solar energy conversion. Nano letters,2009,9(11),3704..
    [4] Wang X., Peng K. Q., Pan X. J., Chen X., Yang Y., Li L., Meng X. M., Zhang W. J.,Lee S. T., High-performance silicon nanowire array photoelectrochemical solarcells through surface passivation and modification. Angewandte ChemieInternational Edition,2011,50(42),9861.
    [5] Peng K., Wang X., Lee S. T., Silicon nanowire array photoelectrochemical solarcells. Applied Physics Letters,2008,92(16),163103.
    [6] Boettcher S. W., Warren E. L., Putnam M. C., Santori E. A., Turner-Evans D.,Kelzenberg M. D., Walter M. G., McKone J. R., Brunschwig B. S., Atwater H. A.,Photoelectrochemical hydrogen evolution using Si microwire arrays. Journal of theAmerican Chemical Society,2011,133(5),1216.
    [7] Maiolo III J. R., Atwater H. A., Lewis N. S., Macroporous silicon as a model forsilicon wire array solar cells. The Journal of Physical Chemistry C,2008,112(15),6194.
    [8] Rosenbluth M., Lieber C., Lewis N.,630mV open circuit voltage,12%efficientn-Si liquid junction. Applied Physics Letters,1984,45,423.
    [9] Welton T., Room-temperature ionic liquids. Solvents for synthesis and catalysis.Chemical reviews,1999,99(8),2071.
    [10] Zakeeruddin S., Gratzel M., Solvent-free ionic liquid electrolytes for mesoscopicdye-sensitized solar cells. Advanced Functional Materials,2009,19(14),2187.
    [11] Singh P., Rajeshwar K., DuBow J., Job R., Photoelectrochemical behavior ofn-Ga-As electrodes in ambient-temperature molten-salt electrolytes. Journal of theAmerican Chemical Society,1980,102,4676.
    [12] Peng K., Xu Y., Wu Y., Yan Y., Lee S. T., Zhu J., Aligned single-crystalline Sinanowire arrays for photovoltaic applications. Small,2005,1(11),1062.
    [13] Peng K., Wu Y., Fang H., Zhong X., Xu Y., Zhu J., Uniform, axial-orientationalignment of one-dimensional single-crystal silicon nanostructure arrays.Angewandte Chemie International Edition,2005,44(18),2737.
    [14] Hu L., Chen G., Analysis of optical absorption in silicon nanowire arrays forphotovoltaic applications. Nano letters,2007,7(11),3249.
    [15] Zhu J., Yu Z., Burkhard G., Hsu C., Connor S., Xu Y., Wang Q., McGehee M., FanS., Cui Y., Optical absorption enhancement in amorphous silicon nanowire andnanocone arrays. Nano letters,2009,9(1),279.
    [16] Garnett E., Yang P., Silicon Nanowire radial p-n junction solar cells. Journal of theAmerican Chemical Society,2008,130(29),9224.
    [17] Cao L., Fan P., Vasudev A., White J., Yu Z., Cai W., Schuller J., Fan S.,Brongersma M., Semiconductor nanowire optical antenna solar absorbers. NanoLetters,2010,10(2),439.
    [18] Sivakov V., Andra G., Gawlik A., Berger A., Plentz J., Falk F., Christiansen S. H.,Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cellparameters. Nano letters,2009,9(4),1549.
    [19] Goodey A., Eichfeld S., Lew K., Redwing J., Mallouk T., Silicon nanowire arrayphotoelectrochemical cells. Journal of the American Chemical Society,2007,129(41),12344.
    [20] Maiolo III J., Kayes B., Filler M., Putnam M., Kelzenberg M., Atwater H., LewisN., High aspect ratio silicon wire array photoelectrochemical cells. Journal of theAmerican Chemical Society,2007,129(41),12346.
    [21] Tian B., Zheng X., Kempa T. J., Fang Y., Yu N., Yu G., Huang J., Lieber C. M.,Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature,2007,449(7164),885.
    [22] Boettcher S. W., Spurgeon J. M., Putnam M. C., Warren E. L., Turner-Evans D. B.,Kelzenberg M. D., Maiolo J. R., Atwater H. A., Lewis N. S., Energy-conversionProperties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science,2010,327(5962),185.
    [23] Peng K., Yan Y., Gao S., Zhu J., Synthesis of large-area silicon nanowire arrays viaself-assembling nanoelectrochemistry. Advanced Materials,2002,14(16),1164.
    [24] Royea W., Juang A., Lewis N., Preparation of air-stable, low recombinationvelocity Si (111) surfaces through alkyl termination. Applied Physics Letters,2000,77,1988.
    [25] Bansal A., Li X., Lauermann I., Lewis N., Yi S., Weinberg W., Alkylation of Sisurfaces using a two-step halogenation/Grignard route. Journal of the AmericanChemical Society,1996,118(30),7225.
    [26] Bansal A., Lewis N., Electrochemical properties of (111)-oriented n-Si surfacesderivatized with covalently-attached alkyl chains. The Journal of PhysicalChemistry B,1998,102(7),1067.
    [27] Yablonovitch E., Gmitter T., A contactless minority lifetime probe ofheterostructures, surfaces, interfaces and bulk wafers. Solid-state electronics,1992,35(3),261.
    [28] Eades W. D., Swanson R. M., Calculation of surface generation and recombinationvelocities at the Si-SiO2interface. Journal of Applied Physics,1985,58(11),4267.
    [29] Zhang G. X., Electrochemistry of Silicon and its Oxide. Kluwer Academic/PlenumPublishers: New York,2001.
    [30] Legg K., Ellis A., Bolts J., Wrighton M., N-Type Si-based photoelectrochemicalcell: New liquid junction photocell using a nonaqueous ferricenium/ferroceneelectrolyte. Proceedings of the National Academy of Sciences of the United Statesof America USA,1977,74(10),4116.
    [31] Hunger R., Fritsche R., Jaeckel B., Jaegermann W., Webb L. J., Lewis N. S.,Chemical and electronic characterization of methyl-terminated Si (111) surfaces byhigh-resolution synchrotron photoelectron spectroscopy. Physical Review B,2005,72(4),045317.
    [32] Maldonado S., Plass K. E., Knapp D., Lewis N. S., Electrical properties ofjunctions between Hg and Si (111) surfaces functionalized with short-chain alkyls.The Journal of Physical Chemistry C,2007,111(48),17690.
    [33] Nakato Y., Tsubomura H., Silicon photoelectrodes modified with ultrafine metalislands. Electrochimica Acta,1992,37(5),897.
    [34] Zhang F., Sun B., Song T., Zhu X., Lee S., Air Stable, Efficient hybrid photovoltaicdevices based on poly(3-hexylthiophene) and silicon nanostructures. Chemistry ofMaterials,2011,23(8),2084.
    [35] Ueda K., Nakato Y., Suzuki N., Tsubomura H., Silicon electrodes coated withextremely small platinum islands for efficient solar energy conversion. Journal ofThe Electrochemical Society,1989,136,2280.
    [36] Nakato K., Takabayashi S., Imanishi A., Murakoshi K., Nakato Y., Stabilization ofn-Si electrodes by surface alkylation and metal nano-dot coating for use in efficientphotoelectrochemical solar cells. Solar Energy Materials and Solar Cells,2004,83(4),323.
    [37] Gronet C., Lewis N., Cogan G., Gibbons J., n-Type silicon photoelectrochemistryin methanol: Design of a10.1%efficient semiconductor/liquid junction solar cell.Proceedings of the National Academy of Sciences of the United States of America,1983,80(4),1152.
    [38] Lieber C., Gronet C., Lewis N., Evidence against surface state limitations onefficiency of p-Si/CH3CN junctions. Nature,1984,307,533.
    [39] Bard A. J., Bocarsly A. B., Fan F. R. F., Walton E. G., Wrighton M. S., The conceptof Fermi level pinning at semiconductor/liquid junctions. Consequences for energyconversion efficiency and selection of useful solution redox couples in solardevices. Journal of the American Chemical Society,1980,102(11),3671
    [40] Horowitz G., Allongue P., Cachet H., Quantitative comparison of Fermi levelpinning at GaAs/metal and GaAs/liquid junctions. Journal of The ElectrochemicalSociety,1984,131(11),2563.
    [41] Yablonovitch E., Skromme B., Bhat R., Harbison J., Gmitter T., Band bending,Fermi level pinning, and surface fixed charge on chemically prepared GaAssurfaces. Applied Physics Letters,1989,54(6),555.
    [42] Weitering H., Ettema A., Hibma T., Surface states and Fermi-level pinning atepitaxial Pb/Si (111) surfaces. Physical Review B,1992,45(16),9126.
    [43] Bocarsly A. B., Bookbinder D. C., Dominey R. N., Lewis N. S., Wrighton M. S.,Photoreduction at illuminated p-type semiconducting silicon photoelectrodes.Evidence for Fermi level pinning. Journal of the American Chemical Society,1980,102(11),3683.
    [44] Scharber M. C., Muhlbacher D., Koppe M., Denk P., Waldauf C., Heeger A. J.,Brabec C. J., Design Rules for Donors in Bulk\Heterojunction Solar Cells-Towards10%Energy-Conversion Efficiency. Advanced Materials,2006,18(6),789.
    [45] Schmidt M., Korte L., Laades A., Stangl R., Schubert C., Angermann H., Conrad E.,Maydell K., Physical aspects of a-Si: H/c-Si hetero-junction solar cells. Thin SolidFilms,2007,515(19),7475.
    [46] Schulze T., Beushausen H., Leendertz C., Dobrich A., Rech B., Korte L., Interplayof amorphous silicon disorder and hydrogen content with interface defects inamorphous/crystalline silicon heterojunctions. Applied Physics Letters,2010,96(25),252102.
    [47] Chen T.G., Huang B.Y., Chen E.C., Yu P., Meng H. F., Micro-textured conductivepolymer/silicon heterojunction photovoltaic devices with high efficiency. AppliedPhysics Letters,2012,101(3),033301.
    [1] Hoffmann W., PV solar electricity industry: Market growth and perspective. SolarEnergy Materials and Solar Cells,2006,90(18-19),3285.
    [2] Lu Y., Lal A., High-efficiency ordered silicon nano-conical-frustum array solar cellsby Self-powered parallel electron lithography. Nano letters,2010,10(11),4651.
    [3] Boettcher S. W., Spurgeon J. M., Putnam M. C., Warren E. L., Turner-Evans D. B.,Kelzenberg M. D., Maiolo J. R., Atwater H. A., Lewis N. S., Energy-conversionproperties of vapor-liquid-solid¨grown silicon wire-array photocathodes. Science,2010,327(5962),185.
    [4] Garnett E. C., Yang P., Silicon nanowire radial p-n junction solar cells. Journal ofthe American Chemical Society.,2008,130(29),9224.
    [5] Jung J. Y., Guo Z., Jee S. W., Um H. D., Park K. T., Hyun M. S., Yang J. M., Lee J.H., A waferscale Si wire solar cell using radial and bulk p-n junctions.Nanotechnology,2010,21(44),445303.
    [6] Sivakov V., Andr G., Gawlik A., Berger A., Plentz J., Falk F., Christiansen S.,Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cellparameters. Nano letters,2009,9(4),1549.
    [7] Yoon H. P., Yuwen Y. A., Kendrick C. E., Barber G. D., Podraza N. J., Redwing J. M.,Mallouk T. E., Wronski C. R., Mayer T. S., Enhanced conversion efficiencies forpillar array solar cells fabricated from crystalline silicon with short minority carrierdiffusion lengths. Applied Physics Letters,2010,96(21),213503.
    [8] Yuan G., Zhao H., Liu X., Hasanali Z. S., Zou Y., Levine A., Wang D., Synthesis andphotoelectrochemical study of vertically aligned silicon nanowire arrays.Angewandte Chemie International Edition,2009,121(51),9860.
    [9] Zhu J., Yu Z., Burkhard G. F., Hsu C. M., Connor S. T., Xu Y., Wang Q., McGeheeM., Fan S., Cui Y., Optical absorption enhancement in amorphous silicon nanowireand nanocone arrays. Nano letters,2008,9(1),279.
    [10] Putnam M. C., Boettcher S. W., Kelzenberg M. D., Turner-Evans D. B., Spurgeon J.M., Warren E. L., Briggs R. M., Lewis N. S., Atwater H. A., Si microwire-arraysolar cells. Energy&Environmental Science,2010,3(8),1037.
    [11] Peng K., Xu Y., Wu Y., Yan Y., Lee S. T., Zhu J., Aligned Single crystalline Sinanowire arrays for photovoltaic applications. Small,2005,1(11),1062.
    [12] Peng K. Q., Wang X., Wu X. L., Lee S. T., Platinum nanoparticle decorated siliconnanowires for efficient solar energy conversion. Nano letters,2009,9(11),3704.
    [13] Kelzenberg M. D., Boettcher S. W., Petykiewicz J. A., Turner-Evans D. B., PutnamM. C., Warren E. L., Spurgeon J. M., Briggs R. M., Lewis N. S., Atwater H. A.,Enhanced absorption and carrier collection in Si wire arrays for photovoltaicapplications. Nature materials,2010,9(3),239.
    [14] Kayes B. M., Atwater H. A., Lewis N. S., Comparison of the device physicsprinciples of planar and radial pn junction nanorod solar cells. Journal of AppliedPhysics,2005,97(11),114302.
    [15] Peng K., Wang X., Li L., Wu X., Lee S., High-Performance Silicon Nanohole SolarCells. Journal of the American Chemical Society.,2010,132(20),6872-6873.
    [16] Gunawan O., Wang K., Fallahazad B., Zhang Y., Tutuc E., Guha S., Highperformance wire-array silicon solar cells. Progress in Photovoltaics: Research andApplications,2011,19,307.
    [17] Peng K. Q., Lee S. T., Silicon Nanowires for Photovoltaic Solar Energy Conversion.Advanced Materials,2011,23(2),198.
    [18] Oh J., Yuan H.-C., Branz H. M., An18.2%-efficient black-silicon solar cellachieved through control of carrier recombination in nanostructures. NatureNanotechnology,2012,7(11),743.
    [19] Shiu S. C., Chao J. J., Hung S. C., Yeh C. L., Lin C. F., Morphology dependence ofsilicon nanowire/poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate)heterojunction solar cells. Chemistry of Materials,2010,22(10),3108.
    [20] Kim D. R., Lee C. H., Rao P. M., Cho I. S., Zheng X., Hybrid Si microwire andplanar solar cells: passivation and characterization. Nano Lett,2011,11(7),2704.
    [21] Dan Y. P., Seo K., Takei K., Meza J. H., Javey A., Crozier K. B., Dramaticreduction of surface recombination by in situ surface passivation of siliconNanowires. Nano letters,2011,11(6),2527.
    [22] Kim D. R., Lee C. H., Rao P. M., Cho I. S., Zheng X., Hybrid Si microwire andplanar solar cells: passivation and characterization. Nano letters,2011,11(7),2704.
    [23] Lin D. H., Shiu S. C., Huang J. S., Lin C. F. In Effect of nanowire lengths onpolymer-Si nanowire hybrid solar cells, Photovoltaic Specialists Conference(PVSC),201035th IEEE, Hawaii, IEEE: Hawaii,2010; p000949.
    [24] Zhang F., Sun B., Song T., Zhu X., Lee S., Air stable, efficient hybrid photovoltaicdevices based on poly(3-hexylthiophene) and silicon nanostructures. Chemistry ofMaterials,2011,23(8),2084.
    [25] Gowrishankar V., Scully S. R., McGehee M. D., Wang Q., Branz H. M., Excitonsplitting and carrier transport across the amorphous-silicon/polymer solar cellinterface. Applied Physics Letters,2006,89(25),252102.
    [26] Alet P. J., Palacin S., Cabarrocas P. R. I., Kalache B., Firon M., de Bettignies R.,Hybrid solar cells based on thin-film silicon and P3HT. The European PhysicalJournal Applied Physics,2006,36(3),231.
    [27] Garnett E. C., Peters C., Brongersma M., Cui Y., McGehee M. In Silicon nanowirehybrid photovoltaics, Photovoltaic Specialists Conference (PVSC),201035thIEEE, Hawaii,20-25June2010IEEE: Hawaii,2010; p000934.
    [28] Ding I. K., Tetreault N., Brillet J., Hardin B. E., Smith E. H., Rosenthal S. J.,Sauvage F., Gratzel M., McGehee M. D., Pore-filling of Spiro-OMeTAD insolid-state dye Sensitized solar cells: quantification, mechanism, and consequencesfor device performance. Advance Function Material,2009,19(15),2431
    [29] Poplavskyy D., Nelson J., Nondispersive hole transport in amorphous films ofmethoxy-spirofluorene-arylamine organic compound. Journal of Applied Physics,2003,93(1),341
    [30] R.A. S., Hydrogenated amorphous silicon. cambridge university press, Cambridge,1991.
    [31] Bashouti M. Y., Paska Y., Puniredd S. R., Stelzner T., Christiansen S., Haick H.,Silicon nanowires terminated with methyl functionalities exhibit stronger Si-Cbonds than equivalent2D surfaces. Physical Chemistry Chemical Physics,2009,11(20),3845.
    [32] Haick H., Hurley P. T., Hochbaum A. I., Yang P., Lewis N. S., Electricalcharacteristics and chemical stability of non-oxidized, methyl-terminated siliconnanowires. Journal of the American Chemical Society.,2006,128(28),8990.
    [33] Bansal A., Li X., Lauermann I., Lewis N. S., Yi S. I., Weinberg W. H., Alkylationof Si surfaces using a two-step halogenation/grignard route. Journal of theAmerican Chemical Society.,1996,118(30),7225.
    [34] Bashouti M., Stelzner T., Berger A., Christiansen S., Haick H., Surface chemistryof non-oxidized, molecule-terminated silicon nanowires: monolayer formation,kinetic and oxidation resistance. The Journal of Physical Chemistry C.,2009,113,14823.
    [35] Bashouti M. Y., Stelzner T., Berger A., Christiansen S., Haick H., Chemicalpassivation of silicon nanowires with C1-C6alkyl chains through covalent Si-Cbonds. The Journal of Physical Chemistry C.,2008,112(49),19168
    [36] Shen X., Sun B., Yan F., Zhao J., Zhang F., Wang S., Zhu X., Lee S.,High-performance photoelectrochemical cells from ionic liquid electrolyte inmethyl-terminated silicon nanowire arrays. ACS Nano,2010,4(10),5869.
    [37] Snaith H. J., Schmidt-Mende L., Advances in liquid-electrolyte and solid-statedye-sensitized solar cells. Advanced Materials,2007,19(20),3187.
    [38] Shiu S. C., Chao J. J., Hung S. C., Yeh C. L., Lin C. F., Morphology dependence ofSilicon nanowire/Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)heterojunction solar cells. Chemistry of Materials,2010,22(10),3108.
    [39] Roman L. S., Mammo W., Pettersson L., Andersson M., Inganas O., High quantumefficiency polythiophene/C60photodiodes. Advanced Materials,1998,10(10),774.
    [40] Price M. J., Foley J. M., May R. A., Maldonado S., Comparison of majority carriercharge transfer velocities at Si/polymer and Si/metal photovoltaic heterojunctions.Applied Physics Letters,2010,97(8),083503.
    [41] Garnett E., Yang P., Light trapping in silicon nanowire solar cells. Nano letters,2010,10(3),1082.
    [42] Eades W. D., Swanson R. M., Calculation of surface generation and recombinationvelocities at the Si\SiO2interface. Journal of Applied Physics,1985,58(11),4267.
    [43] Huang J. S., Miller P. F., Wilson J. S., de Mello A. J., de Mello J. C., Bradley D. D.C., Investigation of the effects of doping and post-deposition treatments on theconductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) films. Advance FunctionMaterial,2005,15(2),290.
    [44] Taguchi M., Terakawa A., Maruyama E., Tanaka M., Obtaining a higher Voc in HITcells. Progress in Photovoltaics: Research and Applications,2005,13(6),481.
    [1] Little R. G., Nowlan M. J., Crystalline silicon photovoltaics: The hurdle for thinfilms. Progress in Photovoltaics,1997,5(5),309.
    [2] Fthenakis V. M., Kim H. C., Photovoltaics: Life-cycle analyses. Solar Energy,2011,85(8),1609.
    [3] Zhang F., Han X., Lee S.T., Sun B., Heterojunction with organic thin layer for threedimensional high performance hybrid solar cells. Journal of Materials Chemistry,2012,22(12),5362.
    [4] Chen T. G., Huang B. Y., Liu H. W., Huang Y. Y., Pan H. T., Meng H. F., Yu P.,Flexible Silver Nanowire Meshes for High-efficiency microtexturedOrganic-silicon hybrid photovoltaics. ACS Applied Materials&Interfaces,2012,6857.
    [5] He L., Rusli, Jiang C., Wang H., Lai D., Simple approach of fabricating highefficiency Si nanowire/conductive polymer hybrid solar cells. Ieee Electron deviceLetters,2011,32(10),1406.
    [6] Shen X., Sun B., Yan F., Zhao J., Zhang F., Wang S., Zhu X., Lee S.,High-performance photoelectrochemical cells from ionic liquid electrolyte inmethyl-terminated silicon nanowire arrays. Acs Nano,2010,4(10),5869.
    [7] Chen T. G., Huang B. Y., Chen E. C., Yu P., Meng H.-F., Micro-textured conductivepolymer/silicon heterojunction photovoltaic devices with high efficiency. AppliedPhysics Letters,2012,101(3),033313.
    [8] He L., Jiang C., Rusli, Lai D., Wang H., Highly efficient Si-nanorods/organic hybridcore-sheath heterojunction solar cells. Applied Physics Letters,2011,99(2),3610469.
    [9] He L. N., Jiang C. Y., Wang H., Lai D., Rusli, High efficiency planar Si/organicheterojunction hybrid solar cells. Applied Physics Letters,2012,100(7),073503.
    [10] Liu Q., Ono M., Tang Z., Ishikawa R., Ueno K., Shirai H., Highly efficientcrystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells.Applied Physics Letters,2012,100(18),183901.
    [11] Ozdemir B., Kulakci M., Turan R., Unalan H. E., Silicon nanowire-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) heterojunction solar cells.Applied Physics Letters,2011,99(11),113501.
    [12] Shiu S.C., Chao J.J., Hung S.C., Yeh C.L., Lin C.-F., Morphology dependence ofSilicon nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)heterojunction Solar Cells. Chemistry of Materials,2010,22(10),3108.
    [13] Zhang F., Sun B., Song T., Zhu X., Lee S., Air stable, efficient hybrid photovoltaicdevices based on poly(3-hexylthiophene) and silicon nanostructures. Chemistry ofMaterials,2011,23(8),2084.
    [14] Lu W., Wang C., Yue W., Chen L., Si/PEDOT:PSS core/shell nanowire arrays forefficient hybrid solar cells. Nanoscale,2011,3(9),3631.
    [15] Jeong S., Garnett E. C., Wang S., Yu Z., Fan S., Brongersma M. L., McGehee M.D., Cui Y., Hybrid silicon nanocone-polymer solar cells. Nano Letters,2012,12(6),2971.
    [16] Bashouti M. Y., Stelzner T., Berger A., Christiansen S., Haick H., Chemicalpassivation of silicon nanowires with C1-C6alkyl chains through covalent Si-Cbonds. The Journal of Physical Chemistry C,2008,112(49),19168.
    [17] Royea W. J., Juang A., Lewis N. S., Preparation of air-stable, low recombinationvelocity Si(111) surfaces through alkyl termination. Applied Physics Letters,2000,77(13),1988.
    [18] Garnett E. C., Peters C., Brongersma M., Cui Y., McGehee M. In Silicon nanowirehybrid photovoltaics, Photovoltaic Specialists Conference (PVSC),201035thIEEE, Hawaii,20-25June2010IEEE: Hawaii,2010; p000934.
    [19] Yablonovitch E., Gmitter T., A contactless minority lifetime probe ofheterostructures, surfaces, interfaces and bulk wafers. solid-state electronics,1992,35(3),261.
    [20] Eades W. D., Swanson R. M., Calculation of surface generation and recombinationvelocities at the Si‐SiO2interface. Journal of Applied Physics,1985,58(11),4267.
    [21] Bansal A., Lewis N. S., Electrochemical properties of (111)-oriented n-Si surfacesderivatized with covalently-attached alkyl chains. Journal of Physical Chemistry B,1998,102(7),1067.
    [22] Jonsson S. K. M., Birgerson J., Crispin X., Greczynski G., Osikowicz W., van derGon A. W. D., Salaneck W. R., Fahlman M., The effects of solvents on themorphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films.Synthetic Metals,2003,139(1),1.
    [23] Koch N., Kahn A., Ghijsen J., Pireaux J. J., Schwartz J., Johnson R. L., Elschner A.,Conjugated organic molecules on metal versus polymer electrodes: Demonstrationof a key energy level alignment mechanism. Applied Physics Letters,2003,82(1),70.
    [24] Koch N., Vollmer A., Elschner A., Influence of water on the work function ofconducting poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). AppliedPhysics Letters,2007,90(4),0435122.
    [25] Koch N., Vollmer A., Electrode-molecular semiconductor contacts:Work-function-dependent hole injection barriers versus Fermi-level pinning.Applied Physics Letters,2006,89(16),162107.
    [26] Huang J., Miller P. F., de Mello J. C., de Mello A. J., Bradley D. D. C., Influence ofthermal treatment on the conductivity and morphology of PEDOT/PSS films.Synthetic Metals,2003,139(3),569.
    [27] Huang J. S., Miller P. F., Wilson J. S., de Mello A. J., de Mello J. C., Bradley D. D.C., Investigation of the effects of doping and post-deposition treatments on theconductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) films. Advanced FunctionalMaterials,2005,15(2),290.
    [28] Pysch D., Mette A., Glunz S. W., A review and comparison of different methods todetermine the series resistance of solar cells. Solar Energy Materials and SolarCells,2007,91(18),1698.
    [29] Sze S. M., Physics of Semiconductor Devices,. John Wiley and Sons: New York,,1981.
    [30] Li X., Zhu H., Wang K., Cao A., Wei J., Li C., Jia Y., Li Z., Li X., Wu D.,Graphene-On-Silicon Schottky Junction Solar Cells. Advanced Materials,2010,22(25),2743.
    [31] Werner J. H., Schottky-barried and PN-junction1/V plot-small-signal-evaluation.Applied Physics a-Materials Science&Processing,1988,47(3),291.
    [32] Li Z., Gao F., Greenham N. C., McNeill C. R., Comparison of the operation ofpolymer/fullerene, polymer/polymer, and polymer/nanocrystal solar cells: Atransient photocurrent and photovoltage study. Advanced Functional Materials,2011,21(8),1419-1431.
    [33] Shuttle C. G., O'Regan B., Ballantyne A. M., Nelson J., Bradley D. D. C., de MelloJ., Durrant J. R., Experimental determination of the rate law for charge carrierdecay in a polythiophene: Fullerene solar cell. Applied Physics Letters,2008,92(9),093311.
    [34] Zhang F., Song T., Sun B., Conjugated polymer-silicon nanowire array hybridSchottky diode for solar cell application. Nanotechnology,2012,23(19),162107.
    [1] Zhang F., Han X., Lee S.T., Sun B., Heterojunction with organic thin layer for threedimensional high performance hybrid solar cells. Journal of Materials Chemistry,2012,22(12),5362.
    [2] Liu Q., Ono M., Tang Z., Ishikawa R., Ueno K., Shirai H., Highly efficientcrystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells.Applied Physics Letters,2012,100(18),183901.
    [3] Jeong S., Garnett E. C., Wang S., Yu Z., Fan S., Brongersma M. L., McGehee M. D.,Cui Y., Hybrid Silicon Nanocone-Polymer Solar Cells. Nano Letters,2012,12(6),2971.
    [4] He L. N., Jiang C. Y., Wang H., Lai D., Rusli, High efficiency planar Si/organicheterojunction hybrid solar cells. Applied Physics Letters,2012,100(7),073507
    [5] Chen T. G., Huang B. Y., Liu H. W., Huang Y. Y., Pan H. T., Meng H. F., Yu P.,Flexible Silver Nanowire Meshes for High-Efficiency MicrotexturedOrganic-Silicon Hybrid Photovoltaics. ACS Applied Materials&Interfaces,2012,6857.
    [6] Shen X., Sun B., Liu D., Lee S.T., Hybrid Heterojunction Solar Cell Based onOrganic-Inorganic Silicon Nanowire Array Architecture. Journal of the AmericanChemical Society,2011,133(48),19408.
    [7] Lu W., Wang C., Yue W., Chen L., Si/PEDOT:PSS core/shell nanowire arrays forefficient hybrid solar cells. Nanoscale,2011,3(9),3631.
    [8] He L., Jiang C., Rusli, Lai D., Wang H., Highly efficient Si-nanorods/organic hybridcore-sheath heterojunction solar cells. Applied Physics Letters,2011,99(2),3610469.
    [9] Garnett E. C., Peters C., Brongersma M., Cui Y., McGehee M. In Silicon nanowirehybrid photovoltaics, Photovoltaic Specialists Conference (PVSC),201035thIEEE, Hawaii,20-25June2010IEEE: Hawaii,2010; p000934.
    [10] He L., Rusli, Jiang C., Wang H., Lai D., Simple Approach of Fabricating HighEfficiency Si Nanowire/Conductive Polymer Hybrid Solar Cells. Ieee ElectronDevice Letters,2011,32(10),1406.
    [11] Ozdemir B., Kulakci M., Turan R., Unalan H. E., Silicon nanowire-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) heterojunction solar cells.Applied Physics Letters,2011,99(11),113510.
    [12] Little R. G., Nowlan M. J., Crystalline silicon photovoltaics: The hurdle for thinfilms. Progress in Photovoltaics,1997,5(5),309.
    [13] Wang A., Zhao J., Green M. A.,24-percent efficincy silicon solar cells. AppliedPhysics Letters,1990,57(6),602.
    [14] Shiu S. C., Chao J. J., Hung S.-C., Yeh C.-L., Lin C.-F., Morphology dependenceof Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)heterojunction solar cells. Chemistry of Materials,2010,22(10),3108.
    [15] Chen T. G., Huang B. Y., Chen E. C., Yu P., Meng H. F., Micro-textured conductivepolymer/silicon heterojunction photovoltaic devices with high efficiency. AppliedPhysics Letters,2012,101(3),033301.
    [16] Huang J., Miller P. F., de Mello J. C., de Mello A. J., Bradley D. D. C., Influence ofthermal treatment on the conductivity and morphology of PEDOT/PSS films.Synthetic Metals,2003,139(3),569.
    [17] Huang J. S., Miller P. F., Wilson J. S., de Mello A. J., de Mello J. C., Bradley D. D.C., Investigation of the effects of doping and post-deposition treatments on theconductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) films. Advanced FunctionalMaterials,2005,15(2),290.
    [18] Koch N., Vollmer A., Elschner A., Influence of water on the work function ofconducting poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). AppliedPhysics Letters,2007,90(4),043512.
    [19] Yeo J. S., Yun J. M., Kim D.Y., Park S., Kim S. S., Yoon M. H., Kim T.W., Na S.-I.,Significant vertical phase separation in solvent-vapor-annealed poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) composite films leading tobetter conductivity and work function for high-performance indium tin oxide-freeoptoelectronics. ACS Applied Materials&Interfaces,2012,4(5),2551.
    [20] Fung D. D., Qiao L., Choy W. C., Wang C., Wei E., Xie F., He S., Optical andelectrical properties of efficiency enhanced polymer solar cells with Aunanoparticles in a PEDOT–PSS layer. Journal of Materials Chemistry,2011,21(41),16349.
    [21] Shao S., Liu J., Bergqvist J., Shi S., Veit C., Würfel U., Xie Z., Zhang F., In SituFormation of MoO3in PEDOT: PSS Matrix: A facile way to produce a smooth andless hygroscopic hole transport layer for highly stable polymer bulk heterojunctionsolar cells. Advanced Energy Materials,2012,3(3),349.
    [22] Bashouti M. Y., Stelzner T., Berger A., Christiansen S., Haick H., Chemicalpassivation of silicon nanowires with C1-C6alkyl chains through covalent Si-Cbonds. The Journal of Physical Chemistry C,2008,112(49),19168.
    [23] Royea W. J., Juang A., Lewis N. S., Preparation of air-stable, low recombinationvelocity Si(111) surfaces through alkyl termination. Applied Physics Letters,2000,77(13),1988.
    [24] Bansal A., Lewis N. S., Electrochemical properties of (111)-oriented n-Si surfacesderivatized with covalently-attached alkyl chains. Journal of Physical Chemistry B,1998,102(7),1067.
    [25] Stangl R., Kriegel M., Schmidt M. In AFORS-HET, Version2.2, a numericalcomputer program for simulation of heterojunction solar cells and measurements,Photovoltaic Energy Conversion, Conference Record of the2006IEEE4th WorldConference on, IEEE:2006; pp1350.
    [26] Takeuchi I., Chang H., Gao C., Schultz P., Xiang X.-D., Sharma R., Downes M.,Venkatesan T., Combinatorial synthesis and evaluation of epitaxial ferroelectricdevice libraries. Applied physics letters,1998,73(7),894.
    [27] Wang J., Meng F., Fang Z., Ye Q., Investigation of a‐Si (N+)/c‐Si (P)hetero‐junction solar cell through AFORS-HET simulation. Surface and InterfaceAnalysis,2011,43(9),1211.
    [28]邸明东,周骏,孙铁囤,孙永堂,基于P型晶体硅异质结太阳电池的结构设计与性能分析.太阳能学报,2010,31(010),1343.
    [29] Lee C. P., Chen P. Y., Vittal R., Ho K. C., Enhanced performance of adye-sensitized solar cell with the incorporation of titanium carbide in the TiO2matrix. Physical Chemistry Chemical Physics,2010,12(32),9249.
    [30] Zhou H., Shi Y., Qin D., An J., Chu L., Wang C., Wang Y., Guo W., Wang L., Ma T.,Printable fabrication of Pt-and-ITO free counter electrodes for completely flexiblequasi-solid dye-sensitized solar cells. Journal of Materials Chemistry A,2013,1,3932.
    [31] Wu M., Lin X., Hagfeldt A., Ma T., Low-cost molybdenum carbide and tungstencarbide counter electrodes for dye-sensitized solar cells. Angewandte ChemieInternational Edition,2011,50(15),3520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700