晶硅薄膜的制备及其在太阳电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统化石能源的日益减少以及由其造成的环境的污染迫使我们必须开发清洁的可再生能源。太阳能光伏发电是一种直接将太阳能转化为电能的能源利用方式,具有广阔的应用前景。目前市场上占主导地位的太阳电池为体硅电池,由于硅片本身成本较高,导致太阳电池的发电成本仍然无法和传统发电成本相抗衡。利用晶硅薄膜代替体硅材料可以有效的降低太阳电池成本,从而降低太阳能发电成本。
     本文以太阳电池使用的晶硅薄膜作为研究对象,针对当前晶硅薄膜制备方法的不足,提出了一系列新颖的制备方法,并详细研究了不同参数对制备的薄膜性能的影响及影响机理。通过优化材料性能,制备了晶硅薄膜太阳电池器件并对器件制备工艺参数进行优化,制备了光电转换效率较高的晶硅薄膜太阳电池。
     系统研究了热丝温度、H2稀释比、衬底温度及衬底类型等对热丝CVD沉积硅薄膜性能的影响。研究发现适当的提高热丝温度可以有效的提高硅薄膜的结晶性能,而过高的热丝温度反而会使硅薄膜的结晶性能降低。H2稀释比对薄膜性能的影响表现出类似的趋势,即:适当的H2稀释比有利于硅薄膜结晶性能的提高,同时随H2稀释比的升高薄膜的沉积速率急剧下降。随衬底温度的升高,薄膜的结晶性能有一定的提高。通过优化硅薄膜的制备参数,制备了硅薄膜p-n结,发现其最高工作温度可达280oC。此外,不同类型的衬底对多晶硅薄膜的结晶性能也有一定的影响。研究发现,Si(111)衬底对热丝CVD制备多晶硅薄膜具有很强的诱导作用,Si(100)衬底次之,AZO衬底对多晶硅薄膜也具有一定的诱导作用,而普通玻璃则没有表现出对硅薄膜生长的诱导作用。
     对非晶硅薄膜进行固相晶化处理可以制备结晶性能优异的多晶硅薄膜,如固相晶化法(SPC)、金属诱导晶化法(MIC)等。然而长达数小时甚至数十小时的晶化时间使这种方法制备的多晶硅薄膜成本很高。本文对热丝CVD沉积的非晶硅薄膜进行快速热退火晶化处理,研究了不同处理参数对所制备薄膜性能的影响。研究发现,利用快速热退火可以在极短时间(<20s)内得到晶化率超过95%的多晶硅薄膜。在上述研究基础上,制备了硅薄膜p-n结,最高工作可达300oC。此外,通过优化工艺,有效抑制了厚度为微米级的非晶硅薄膜在快速热退火晶化过程中可能出现的微裂纹及脱落现象。
     通过双层多孔硅层转移技术,利用自行设计的电化学腐蚀装置实现对待腐蚀单晶硅片全面积腐蚀制备双层多孔硅,并以此为模板采用LPCVD技术外延高质量准单晶硅薄膜。同时,采用热丝CVD低温沉积非晶硅薄膜作为电池的发射极,形成薄膜型HIT (Heterojunction withIntrinsic Thin layer)结构太阳电池。这种技术一方面使用外延高质量晶硅薄膜作为吸收层可以有效降低硅材料用量,并且可以将制备的太阳电池转移至廉价衬底上,同时用于制备双层多孔硅的单晶硅片可以重复利用,从而降低电池的制备成本。另一方面,利用热丝CVD沉积发射极与传统的高温制备发射极工艺相比,具有能耗低、速度快的优点,在200oC的温度下,仅需要50s即可以完成发射极的制备,因此可以进一步降低太阳电池的制备成本。通过优化工艺,利用层转移技术制备了光电转换效率为9.6%的薄膜型HIT太阳电池。
     在掌握热丝CVD制备不同形态的Si薄膜参数的基础上,通过在沉积腔室内引入衬底偏压,研究衬底偏压对沉积硅薄膜性能的影响。研究发现,在较低H2稀释比下通过施加衬底偏压可以有效提高所沉积薄膜的结晶性能与致密度,因此可以实现在较低H2稀释比下高速沉积高质量微晶硅薄膜。另外,在较低H2稀释比下衬底偏压对不同衬底上沉积的微晶硅薄膜结晶性能提高的程度也有所区别,具体表现为:在不锈钢衬底上沉积的硅薄膜与玻璃衬底上的具有更优异的结晶性能。与之相反,在高H2稀释比条件下,不锈钢衬底上沉积的硅薄膜结晶性能随衬底偏压的升高逐渐降低,而玻璃衬底上的微晶硅薄膜结晶性能则先变好后降低。分析衬底偏压对所沉积硅薄膜影响的机理主要与热丝在高温下发射的电子在电场中加速运动有关,这些高速运动的电子与反应基元相互碰撞,而引起的沉积过程的变化。而两种衬底上沉积薄膜的结晶性能差异主要与衬底表面在电场中的电位有关。不锈钢衬底电位与石墨衬底盘相同,因此受衬底偏压影响更明显。在优化衬底偏压对热丝CVD沉积微晶硅薄膜性能的基础上,制备了n+nipp+结构的微晶硅薄膜太阳电池。研究发现适当的衬底偏压有利于微晶硅薄膜太阳电池转换效率的提高,通过优化参数,在不锈钢柔性衬底上采用单腔室热丝CVD技术制备了转换效率为6.07%的微晶硅薄膜太阳电池,而不加衬底偏压时同类太阳电池的转换效率仅为3.86%,可见衬底加偏压使转换效率相对提高了57.25%。
The finite supply of the fossil fuels and the pollution caused by the consumption of these fuelsmake it urgent to develop the clean renewable energy. Photovoltaic (PV) technology is a promisingtechnology which can convert the solar radiation directly into electricity. The dominant products inthe PV industry are the c-Si wafer based solar cells. However, high cost of the c-Si wafers blocks thedevelopment of the PV industry. Replacing the c-Si wafer by crystalline silicon films is an alternativeway to reduce the cost of the solar cells.
     In this paper, we promoted some novel methods to fabricate high-quality crystalline silicon filmswith lower fabrication cost than the commonly used fabrication technologies. We have studied theinfluence of the fabrication parameters on the property of crystalline silicon films and discussed itsmechanism in detail. Based on the property optimization of the crystalline silicon films, we fabricatedcrystalline silicon thin film solar cells with relative high conversion efficiency.
     The influence of the temperature of hot-wires and substrates, H2dilution ratio, and type ofsubstrates on the properties of the Si films deposited by hot-wire chemical vapor deposition (HWCVD)was systematically studied. We found that properly high temperature of the hot-wires was beneficialto the enhancement of the crystallinity of the Si films. However, too high temperature of hot-wireswill deteriorate the crystallinity. The H2dilution ratio exhibits similar tendency, proper high H2dilution ratio is helpful for enhancing the crystallinity of the Si films, but the deposition rate isrelatively low. As the increasing of the temperature of the substrate, the crystallinity of the Si filmswas gradually improved. By optimizing the parameters, we fabricated the silicon film p-n junctions.We found that the highest working temperature of the junction was as high as280oC. Different type ofsubstrates also has an effective impact on the crystallinity of the poly-Si films. We found that thepoly-Si films deposited on Si (111) obtained the best crystallinity, while the following were on the Si(100), AZO and glass substrates. This may be caused by the substrate induction effect.
     An effective method to fabricate the poly-Si films is to crystallize the a-Si:H films, which alwaysrefers to solid phase crystallization (SPC) or metal induced crystallization (MIC). However, a quitelong duration which always took several or several tens hours is usually necessary for these processes.In this paper, the rapid thermal annealing was applied to crystallize the a-Si:H films. Influence ofdifferent parameters on the properties of the poly-Si films was studied. We have found that poly-Sifilms with high crystalline fraction (>95%) were obtained in a very short time (<20s). Based on the optimization above, p-n junctions have been fabricated by this technique. The working temperaturewas as high as300oC, which was greatly higher than that of silicon wafer based junctions. Byoptimizing the fabrication process, the micro-cracks and the peeling-off phenomenons of whichappeared in the fabrication of micrometer-order poly-Si films were effectively avoided.
     Through the double-layer porous silicon layer transfer technique, thin film based HIT(Heterojunction with Intrinsic Thin layer) solar cells was fabricated. The double-layer porous siliconwas formed on the whole area of the Si wafer by electrochemical etching process in the self-designedetch tank. This double-layer porous silicon can act as the template for the epitaxial growth ofhigh-quality crystalline silicon film by LPCVD. After the formation of this film, the emitter layer ofthe solar cell was deposited by HWCVD at low substrate temperature. By using the high-quanlitycrystalline film as the absorber layer, the consumption of the Si material can be effectively reduced.Besides, the fabricated solar cells can be attached to the cost-effective substrates and the Si wafer forfabricating double-layer porous silicon can be reused, which can also reduce the cost of the solar cell.Morever, compared to the trainditional emitter fabrication process, emitter layers fabricated byHWCVD have the advantages of low temperature and high growth rate (only50s in this paper), whichcan further reduce the cost of the solar cells. By optimizing the parameters during the fabricationprocess, solar cell with the conversion efficiency of9.6%was obtained.
     After mastering the parameters for depositing different type of Si films by HWCVD, a dc substratebias was introduced into the HWCVD system to investigate the influence of substrate bias on theproperties of the deposited Si films. The results show that the substrate bias can effectively improvethe crystallinity of the films deposited at low H2dilution ratio. And this improvement is moreeffective for the films deposited on stainless steel (SS) than that on glass, which make it possible todeposited high crystallinity microcrystalline Si (μc-Si:H) films at high growth rate. On the other hand,however, at high H2dilution ratio, the crystallinity of the Si films deposited on SS was graduallydeteriorated as the increasing of the negative substrate bias, while that on glass was firstly improvedand then deteriorated. The mechanism of the influence of substrate bias on the crystallinity of theμc-Si:H films is related to the electrons emitted from the hot wires. These electrons are accelerated inthe electrical field and collide with the reactant radicals make the deposition process different with thetraditional HWCVD. The differences of the crystallinity of the films deposited on SS and glass aremostly attributed to the different electrical potentials between these two kinds of substrates. Afteroptimizing the properties of the μc-Si:H films deposited with substrate bias by HWCVD, solar cellswith the n+nipp+structure were fabricated on SS. By optimizing the parameters during its fabrication,the solar cell with a conversion efficiency of6.07%was obtained. Compared to that fabricated without the applying substrate bias, which attained the conversion efficiency of3.86%, the solar celldeposited with applying substrate bias showed a57.25%higher efficiency.
引文
[1] Pachauri R K, Reisinger A. Climate Change2007, the fourth Assessment report of the UnitedNations Intergovernmental Panel on Climate Change[R]. Swissland: Intergovernmental Panel onClimate Change,2007:1~13.
    [2] Aberle A G. Progress with polycrystalline silicon thin-film solar cells on glass at UNSW[J].Journal of Crystal Growth,2006,287(2):386~390.
    [3] Hermann W A. Quantifying global energy resources[J]. Energy,2006,31(12):1685~1702.
    [4] EPIA. Photovoltaic energy electricity from the sun[R]. Belgium: European Photovoltaic IndustryAssociation,2009:3~16.
    [5] EPIA. Global market outlook for photovoltaics until2014[R]. Belgium: European PhotovoltaicIndustry Association,2010:5~6.
    [6] Luque A. Will we exceed50%efficiency in photovoltaics?[J]. Journal of Applied Physics,2011,110:031301.
    [7] Green M A. Third generation photovoltaics: solar cells for2020and beyond[J]. Physica E:Low-dimensional Systems and Nanostructures,2002,14(1-2):65~70.
    [8] Petermann J H, Zielke D, Schmidt J, et al.19%efficient and43μm-thick crystalline Si solar cellfrom layer transfer using porous silicon[J]. Progress in Photovoltaics: Reasearch and Applications,2012,20:1~5.
    [9] Gr tzel M. Recent advances in sensitized mesoscopic solar cells[J]. Accounts of ChemicalReasearch,2009,42(11):1788~1798.
    [10] Prathap P, Tuzun O, Madi D, et al. Thin film silicon solar cells by AIC on foreign substrates[J].Solar Energy Materials and Solar Cells,2011,95: S44~S52.
    [11] Mao H Y, Wuu D S, Wu B R, et al. Hot-wire chemical vapor deposition and characterization ofpolycrystalline silicon thin films using a two-step growth method[J]. Materials Chemistry andPhysics,2011,126(3):665~668.
    [12] Qi L M, Hu Z J, Li W, et al. Influence of substrate on the growth of microcrystalline silicon thinfilms deposited by plasma enhanced chemical vapor deposition[J]. Materials Science inSemiconductor Processing,2012,15(4):412~420.
    [13] Layek A, Middya S, Ray P P. Deposition of device quality amorphous silicon and solar cell fromargon dilution of silane[J]. Journal of the Physics and Chemistry of Solids,2012,73(11):1358~1361.
    [14] Benagli S, Borrello D, Vallat-Sauvain E, et al. High-efficiency amorphous silicon devices onLPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor[C].24thEuropean photovoltaicSolar Energy Conference, Hamburg,2009.
    [15] Wang Q. Hot-wire CVD amorphous Si materials for solar cell application[J]. Thin Solid Films,2009,517:3570~3574.
    [16] Rath J K, Hardeman A J, van der Werf, et al. Deposition of HWCVD poly-Si films at a highgrowth rate[J]. Thin Solid Films,2003,430(1-2):67~72.
    [17] Wang J H, Lien S Y, Chen C F, et al. Large-grain polycrystalline silicon solar cell on epitaxialthickening of AIC seed layer by hot wire CVD[J]. IEEE Electron Device Letters,2010,31(1):38~40.
    [18] Sai H, Saito K and Kondo M. Enhanced photocurrent and conversion efficiency in thin-filmmicrocrystalline silicon solar cells using periodically textured back reflectors with hexagonaldimple arrays[J]. Applied Physics Letters,2012,101:173901.
    [19] Yan B J, Yue G Z, Sivec L, et al. Correlation of texture of Ag/ZnO back reflector andphotocurrent in hydrogenated nanocrystalline silicon solar cells[J]. Solar Energy Materials andSolar Cells,2012,104:13~17.
    [20] Yue G Z, Yan B J, Sivec L, et al. Effect of impurities on performance of hydrogenatednanocrystalline silicon solar cells[J]. Solar Energy Materials and Solar Cells,2012,104:109~112.
    [21] Green M A, Basore P A, Chang N, et al. Crystalline silicon on glass(CSG) thin-film solar cellmodules[J]. Solar Energy,2004,77:857~863.
    [22] Basore P A. Pilot production of thin-film crystalline silicon on glass modules[C].29th IEEEPhotovoltaic Specialists Conference, New Orleans,2002;49~52.
    [23] Reehal H S, Thwaites M J, Bruton T M. Thin film polycrystalline silicon solar cells prepared byplasma CVD[J]. Physica Status Silidi (a),1996,154(2):623~633.
    [24] Yamamoto K, Yoshimi M, Tawada Y, et al. Thin-film poly-Si solar cells on glass substratefabricated at low temperature[J]. Applied Physics A: Materials Science&Processing,1999,69(2):179~185.
    [25] Meier J, Kepp-ner H, Dubail S, et al. Microcrystalline p-i-n cells: a drift-controlled device?[J].Journal of Non-crystalline Solids,1998,227:1272~1276.
    [26]张晓丹,白立沙,刘伯飞,等.基于微晶硅的双结和三结叠层薄膜太阳电池的研究[C].第十二届中国光伏大会暨国际光伏展览会,北京,2012.
    [27] Li Y, Xu S Z, Wei C C et al. Microcrystalline silicon solar cells deposited at high rates in a singlechamber[J]. Physics Procedia,2012,32:272~278.
    [28] Zhang X D, Wang G H, Zheng X H, et al. A pre-hydrogen glow method to improve thereproducibility of intrinsic microcrystalline silicon thin film depositions in a single chambersystem[J]. Solar Energy Materials&Solar Cells,2011,95:2448~2453.
    [29] Zhang X D, Zheng X X, Xu S Z, et al. Micromorph tandem solar cells: optimization of themicrocrystalline silicon bottom cell in a single chamber system[J]. Chinese Physics B,2011,20(10):108801.
    [30] Zheng X X, Zhang X D, Yang S S, et al. Study of a-Si:H/a-Si:H/μc-Si:H PIN type triple junctionsolar cells in a single chamber system[J]. Physics Procedia,2012,32:308~313.
    [31] Alexandrovich Filonovich A, Aacuteguas H, Busani T, et al. Hydrogen plasma treatment of verythin p-type nanocrystalline Si films grown by rf-PECVD in the presence of B(CH3)3[J]. Scienceand Technology of Advanced Materials,2012,13(4):045004.
    [32] Qi L M, Hu Z J, Li W, et al. Influence of substrate on the growth of microcrystalline silicon thinfilms deposited by plasma enhanced chemical vapor deposition[J]. Materials Science inSemiconductor Processing,2012,15(4):412~420.
    [33] Wu B R, Lo S Y, Wuu D S, et al. Direct growth of large grain polycrystalline silicon films onaluminum-induced crystallization seed layer using hot-wire chemical vapor deposition[J]. ThinSolid Films,2012,520(18):5860~5866.
    [34] Hsueh T J, Chen Y H, Weng W Y, et al. Nanocrystalline Si-based resistive humidity sensorsprepared via HWCVD at various filament temperature[J]. IEEE Electron Device Letters,2012,33(6):905~907.
    [35] Mao H Y, Lo S Y, Wuu D S, et al. Hot-wire chemical vapor deposition and characterization ofp-type nanocrystalline Si films for thin film photovoltaic applications[J]. Thin Solid Films,2012,520(16):5200~5205.
    [36] Branz H M, Teplin C W, Young D L, et al. Recent advances in hot-wire CVD R&D at NREL:from18%silicon heterojunction cells to silicon epitaxial at glass-compatible temperatures[J].Thin Solid Films,2008,516(5):743~746.
    [37] Schuttauf J W A, van der Werf C H M, van Sark W G J H M, et al. Comparison of surfacepassivation of crystalline silicon by a-Si:H with and without atomic hydrogen treatment usinghot-wire chemical vapor deposition[J]. Thin Solid Films,2011,519(14):4476~4478.
    [38] Duan C Y, Ai B, Lai J J, et al. APCVD deposition of Si film on SiO2patterned Si(111) substratesfor solar cells[J]. Advanced Materials Research,2011,295-297:1211~1216.
    [39] Modreanu M, Bercu M, Cobianu C. Physical properties of polycrystalline silicon films related toLPCVD conditions[J]. Thin Solid Films,2001,383(1-2):212~215.
    [40] Teixeira R C, Doi I, Zakia M B P, et al. Micro-Raman stress characterization of polycrystallinesilicon films grown at high temperature[J]. Materials Science and Engineering: B,2004,112(2-3):160~164.
    [41] Tayanaka H, Yamauchi K, Matsushita T. Proceedings of the Second World Conference onPhotovoltaic Solar Energy Conversion[C], Vienna, Austria,1998:156~160.
    [42] Matsuyama T, Terada N, Baba T, et al. High-quality polycrystalline silicon thin film prepared bya solid phase crystallization method[J]. Journal of Non-crystalline Solids,1996,198:940~944.
    [43] Wiesmann H J, Ghosh A K, McMahon T, et al. a-Si:H produced by high-temperature thermaldecomposition of silane[J]. Journal of Applied Physics,1979,50:3752~3754.
    [44] Wiesmann H J, Wantagh N Y. Method of producing hydrogenated amorphous silicon film[P].America, Invention, Appl. No.30974. December2,1980.
    [45] Matsumura H. Catalytic chemical vapor deposition method producing high quality hydrogenatedamorphous silicon[J]. Japanese Journal of Applied Physics,1986,25: L949~L951.
    [46] Doyle R, Robertson R, Lin G H, et al. Production of high-quality amorphous silicon films byevaporative silane surface decomposition[J]. Journal of Applied Physics,1988,64(6):3215~3223.
    [47] Mahan A H, Carapella J, Nelson B P, et al. Deposition of device quality, low H contentamorphous silicon[J]. Journal of Applied Physics,1991,69:6728~6730.
    [48] Matsumura H. Formation of polysilicon films by catalytic chemical vapor deposition (cat-CVD)method[J]. Japanese Journal of Applied Physics,1991,30(8B): L1522~L1524.
    [49] Harks P P R M L, Houweling Z S, Jong M, et al. Metallic tungsten nanostructures and highlynanostructured thin films by deposition of tungsten oxide and subsequent reduction in a singlehot-wire CVD process[J]. Chemical Vapor Deposition,2012,18:70~75.
    [50] Reso D, Silinskas M, Kalkofen B, et al. Hot-wire chemical vapor deposition of Ge2Sb2Te5thinfilms[J]. Journal of Electrochemical Society,2011,158(3):D187~D190.
    [51] Wang T H, Iwaniczko E, Page M R, et al. Effect of emitter deposition temperature on surfacepassivation in hot-wire chemical vapor deposited silicon heterojunction solar cells[J].Thin SolidFilms,2006,501:284~287.
    [52] Teplin C W, Wang Q, Iwaniczko E, et al. Low-temperature silicon homoepitaxy by hot-wirechemical vapor deposition with a Ta filament[J]. Journal of Crystal Growth,2006,287:414~418.
    [53] Young D L, Williamson D L, Stradins P, et al. Rapid solid-phase crystallization of high-rate,hot-wire chemical-vapor-deposited hydrogenated amorphous silicon[J]. Applied Physics Letters,2006,89:161910.
    [54] Wang Q, Teplin C W, Stradins P, et al. Significant improvement in silicon chemical vapordeposition epitaxy above the surface dehydrogenation temperature. Journal of Applied Physics,2006,100:93520.
    [55] Schropp R E I. Frontiers in HWCVD[J]. Thin Solid Films,2009,517:3415~3419.
    [56] van Veenendaal P A T T, Schropp R E I. Processes in silicon deposition by hot-wire chemicalvapor deposition[J]. Current Opinion in Solid State and Materials Science,2002,6:465~470.
    [57] Bink A, Brinza M, Jongen J P H, et al. Continuous hot-wire chemical vapor deposition onmoving glass substrates[J]. Thin Solid Films,2009,517:3588~3590.
    [58] Schropp R E I, van der Werf C H M, Verlaan V, et al. Ultrafast deposition of silicon nitride andsemiconductor silicon thin films by hot wire chemical vapor deposition[J]. Thin Solid Films,2009,517:3039~3042.
    [59] Schropp R E I, Rath J K, Li H. Growth mechanism of nanocrystalline silicon at the phasetransition and its application in thin film solar cells[J]. Journal of Crystal Growth,2009,311:760~764.
    [60] Honda N, Masuda A, Matsumura H. Transport mechanism of deposition precursors in catalyticchemical vapor deposition studied using a reactor tube[J]. Journal of Non-Crystalline Solids,2000,266-269:100~104.
    [61] Kamesaki K, Masuda A, Izumi A, et al. Proposal of catalytic chemical sputtering method and itsapplication to prepare large grain size poly-Si[J]. Thin Solid Films,2001,395:169~172.
    [62]张群芳,朱美芳,刘丰珍,等.热丝化学气相沉积n型nc-Si:H薄膜及nc-Si:H/c-Si异质结太阳电池[J].太阳能学报,2006,27(7):691~694.
    [63]谷锦华,周玉琴,朱美芳,等.低温制备微晶硅薄膜生长机制的研究[J].物理学报,2005,54(4):1890~1894.
    [64]张志明,莘海维,戴永兵,等.热丝CVD法生长纳米金刚石薄膜的研究[J].细微加工技术,1(1):27~33.
    [65]王丽春,张贵峰,侯晓多,等.热丝法低温制备多晶硅薄膜微结构的研究[J].人工晶体学报,2007,36(6):1372~1398.
    [66]柴展,张贵峰.热丝法制备多晶硅薄膜的研究进展[J].太阳能学报,2008,29(12):1538~1545.
    [67]王丽春,张贵峰,侯晓多,等.金属Cu诱导层对热丝法制备多晶硅薄膜微结构的影响[J].功能材料与器件学报,2009,15(3):217~222.
    [68] Schroder B, Kupich M, Kumar P, et al. Recent contribution of the Kaiserslautern research groupto thin silicon solar cell R&D applying the HW(Cat) CVD[J]. Thin Solid Films,2008,516:722~727.
    [69] Kumar P, Kupich M, Bock W et al. Microcrystalline single and double junction silicon basedsolar cells entirely prepared by HWCVD on textured zinc oxide substrate[J]. Journal ofNon-crystalline Solids,2006,352:1855~1858.
    [70] Reuter M, Brendle W, Tobail O, et al.50μm thin solar cells with17.0%effiviency[J]. SolarEnergy Materials and Solar Cells,2009,93:704~706.
    [71] Wolf A, Terheiden B, Brendel R. Autodiffusion: a novel method for emitter formation incrystalline silicon thin-film solar cells[J]. Progress in Photovoltaics: Research and Applications,2007,15:199~210.
    [72] Tobail O, Yan Z, Reuter M, et al. Lateral homogemeity of porous silicon for large area transfersolar cells[J]. Thin Solid Films,2008,516:6959~6962.
    [73] Becker C, Ruske F, Sontheimer T, et al. Microstructure and photovoltaic performance ofpolycrystalline silicon thin films on temperature-stable ZnO:Al layers[J]. Journal of AppliedPhysics,2009,106:084506.
    [74] Paillard V, Puech P, Laguna M A. Resonant Raman scattering in polycrystalline silicon thinfilm[J]. Applied Physics Letters,1998,73(2):1718~1720.
    [75] Klein S, Finger F, Carius R, et al. Deposition of microcrystalline silicon prepared by hot-wirechemical-vapor deposition: the influence of the deposition parameters on the material propertiesand solar cell performance[J]. Journal of Applied Physics,2005,98:024905.
    [76] Song C, Xu J, Wang Q B, et al. Carrier transport of doped nano crystalline Si formed byannealing of amorphous Si films at various temperatures[J]. Solid State Communications,2011,151:697~700.
    [77] van der Werf C H M, van Veen P A T T, Hardeman A J, et al. The influence of the filamenttemperature on the structure of hot-wire deposited silicon[J]. Thin Solid Films,2003,430:46~49.
    [78] Wu A M, Deng W T, Qin F W. Fabrication and its characteristics of low-temperaturepolycrystalline silicon thin films[J]. Science in China Series E-Technological Sciences,2009,52(1):260~263.
    [79] Rath J K. Low temperature polycrystalline silicon: a review on deposition, physical properties andsolar cell applications[J]. Solar Energy Materials and Solar Cells,2003,76(4):431-487.
    [80]潘广问,徐彦斌.提高硅功率器件使用温度的探讨[J].半导体杂志,1996,21(1):14~17.
    [81]何宇亮.纳米硅二极管的独特性能[J].微纳电子技术,2002,39(1):33~36.
    [82]何宇亮,王因生,桂德成,等.纳米硅异质结二极管[J].固体电子学研究与进展,2010,20(1):34~39.
    [83] Kimura M. Extraction of trap densities in poly-Si thin-film transistors fabricated by solid-phasecrystallization and dependence on temperature and time of post annealing[J]. Solid-StateElectronics,2010,54(12):1500~1504.
    [84] Ahrenkiel S P, MahanA H, Ginley D S, et al. Solid-phase crystallization kinetics and grainstructure during thermal annealing of a-Si:H grown by chemical vapor deposition[J]. MaterialsScience and Engineering: B,2011,176(13):972~977.
    [85] Peng S L, Hu D K, He D Y. Low-temperature preparation of polycrystalline germanium thinfilms by Al-induced crystallization[J]. Applied Surface Science,2012,258(16):6003~6006.
    [86] Lin C W, Lee S C, Lee Y S. Crystallization of silicon films by new metal mediated mechanism[J].Journal of Materials Science: Materials in Electronics,2010,21(3):270~277.
    [87] Fornarini L, Conde J C, Chiussi S, et al. Analysis of excimer laser annealing of amorphous SiGeon La2O3/Si structure[J]. Applied Surface Science,2007,253(19):7957~7963.
    [88] Kuo C C. Dynamical resolidification behavior of silicon thin films during frontside and backsideexcimer laser annealing[J]. Optcs and Lasers in Engineering,2011,49(7):804~810.
    [89] Nishikawa T, Ohdaira K, Matsumura H. Electrical properties of polycrystalline silicon filmsformed from amorphous silicon films by flash lamp annealing[J]. Current Applied Physics,2011,11(3):604~607.
    [90] Ohdaira K, Ishii S, Tomura N, et al. Microstructure of polycrystalline silicon films formedthrough explosive crystallization induced by flash lamp annealing[J]. Japanese Journal ofApplied Physics,2011,50(4):04DP01.
    [91] Ohdaira K, Takemoto H, Nishikawa T, et al. Flash-lamp-crystallized polycrystalline silicon filmswith remarkably long minority carrier lifetimes[J]. Current Applied Physics,2010,10(3):S402~S405.
    [92] Ohdaira K, Nishikawa T, Shiba K, et al. Drastic suppression of the optical reflection offlash-lamp-crystallized poly-Si films with spontaneously formed periodic microstructures[J].Thin Solid Films,2010,518(21):6061~6065.
    [93] Ohdaira K, Nishikawa T, Matsumura H. Variation of crystallization mechanisms inflash-lamp-irradiated amorphous silicon films[J]. Journal of Crystal Growth,2010,312(19):2834~2839.
    [94]林成鲁.离子注入多晶硅的快速热退火研究[J].微电子学与计算机,1987,4:1~4.
    [95] Ohdaira K, Fujiwara T, Endo Y, et al. Selection of material for the back electrodes of thin-filmsolar cells using polycrystalline silicon films formed by flash lamp annealing[J]. JapaneseJournal of Applied Physics,2010,49(4):04DP04.
    [96] Endo Y, Fujiwara T, Ohdaira K,et al. Thin-film polycrystalline silicon solar cells formed by flashlamp annealing of a-Si films[J]. Thin Solid Films,2010,518(17):5003~5006.
    [97] Venable J A, Spiller G D T, Hanrbucken M. Nucleation and growth of thin film[J]. Report onProgress in Physics,1984,47(4):399~459.
    [98] Venables J A. Nucleation calculation in a pair-binding model[J]. Physical Review B,1987,36(8):4153~4162.
    [99] van Cleef N W M, Rath J K, Rubinelli F A, et al. Performance of heterojunction p(+)microcrystalline silicon n crystalline silicon solar cells[J]. Journal of Applied Physics,1997,82(12):6089~6095.
    [100] Lien S Y, Wuu D S. Simulation and Fabrication of Heterojunction Silicon Solar Cells fromNumerical Computer and Hot-Wire CVD[J]. Progress in Photovoltaics: Research andApplication,2009,17(7):489~501.
    [101] Tsunomura Y, Yoshimine Y, Taguchi M, et al. Twenty-two percent efficiency HIT solar cell[J].Solar Energy Materials and Solar Cells,2009,93(6-7):670~673.
    [102] Sakata I, Yamanaka M, Kawanami H. Characterization of heterojunctions incrystalline-silicon-based solar cells by internal photoemission[J]. Solar Energy Materials andSolar Cells,2009,93(6-7):737~741.
    [103] Mishima T, Taguchi M, Sakata H, et al. Development status of high-efficiency HIT solar cells[J].Solar Energy Materials and Solar Cells,2011,95(1):18~21.
    [104] Matsumura H, Miyamoto M, Koyama K, et al. Drastic reduction in surface recombinationvelocity of crystalline silicon by surface treatment using catalytically-generated radicals[J].Solar Energy Materials and Solar Cells,2011,95(2):797~799.
    [105] Seung J L, Se H K, Dae W K, et al. Effect of hydrogen plasma passivation on performance ofHIT solar cell[J]. Solar Energy Materials and Solar Cells,2011,95(1):81~83.
    [106] Zhao L, Diao H W, Zeng X B, et al. Comparative study of the surface passivation on crystallinesilicon by silicon thin films with different structures[J]. Physica B: Condensed Matter,2010,405(1):61~64.
    [107] Rahmouni M, Datta A, Chatterjee P, et al. Carrier transport and sensitivity issues inheterojunction with intrinsic thin layer solar cells on N-type crystalline silicon: A computersimulation study[J]. Journal of Applied Physics,2010,107(5):054521.
    [108] Zhao L, Li H L, Zhou C L, et al. Optimized resistivity of p-type Si substrate for HIT solar cellwith Al back surface field by computer simulation[J]. Solar Energy,2009,83(6):812~816.
    [109] Lien, S Y, Wu B R, Liu J C, et al. Fabrication and characteristics of n-Si/c-Si/p-Siheterojunction solar cells using hot-wire CVD[J]. Thin Solid Films,2008,516(5):747~750.
    [110] Lien S Y, Mao H Y, Wu B R, et al. Incubation effects upon polycrystalline silicon on glassdeposited by hot-wire CVD[J]. Chemical Vapor Deposition,2007,13(5):247~252.
    [111] Sawada T, Terada N, Tsuge S, et al. High-efficiency a-Si/c-Si heterojunction solar cell[C]. TheTwenty Fourth. IEEE Photovoltaic Specialists Conference, Tokyo,1994;1219~1226.
    [112] Fujiwara H, Kondo M. Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solarcells[J]. Applied Physics Letters,2007,90(1):013613.
    [113] Hernández-Como N, Morales-Acevedo A, Matsumoto Y. I–V characteristics of a-Si–c-Sihetero-junction diodes made by hot wire CVD[J]. Solar Energy Materials and Solar Cells,2011,95(8):1996~2000.
    [114] Langford A A, Fleet M L, Nelson B P. Infrared absorption strength and hydrogen content ofhydrogenated amorphous silicon[J]. Physical Review B,1992,45(23):13367~13377.
    [115] Terakawa A. Hydrogen elimination model of the formation of hydrogen bonding structuresduring the growth of hydrofenated amorphous silicon by plasma CVD[J]. Physical Review B,2000,62(24):16808~16814.
    [116] Smets A H M, Kessels W M M, van der Sanden M C M. Vacancies and voids in hydrogenatedamorphous silicon[J]. Applied Physics Letters,2003,82(10):1547~1549.
    [117] van Veen M K, Schropp R E I. Beneficial effect of a low deposition temperature of hot-wiredeposited intrinsic amorphous silicon for solar cells[J]. Journal of Applied Physics,2003,93(1):121~125.
    [118] Feng M S, Liang C W. Effects of pressure on the formation of phosphorus dopedmicrocrystalline silicon films deposited by radiofrequency glow discharge[J]. Journal ofApplied Physics,1995,77(9):4471~4776.
    [119] Papaconstantopoulos D A, Economou E N. Calculations of the electronic properties ofhydrogenated silicon[J]. Physical Review B,1981,24:7233~7246.
    [120] Veschetti Y, Muller, J C, Damon-Lacoste, et al. Optimisation of amorphous and polymorphousthin silicon layers for the formation of the front-side of heterojunction solar cells on p-typecrystalline silicon substrates[J]. Thin Solid Films,2006,511-512:543~547.
    [121] Zhou B Q, Liu F Z, Zhang Q F, et al. Fabrication of c-Si: H(p)/c-Si(n) heterojunction solarcells with microcrystalline emitters[J]. Chinese Physics Letters,2006,23(6):1638~1640.
    [122] Gudovskikh A S, Ibrahim S, Kleider J P, et al. Determination of band offsets in a-Si: H/c-Siheterojunctions from capacitance-voltage measurements: Capabilities and limits[J]. Thin SolidFilms,2007,515(19):7481~7485.
    [123] Datta A, Damon-Lacoste J, Roca I C P, et al. Defect states on the surfaces of a P-type c-Siwafer and how they control the performance of a double heterojunction solar cell[J]. SolarEnergy Materials and Solar Cells,2008,92(11):1500~1507.
    [124] Jia H J, Saha J, Ohse N, et al. Effect of substrate bias on high-rate synthesis of microcrystallinesilicon films using a high-density microwave SiH4/H2plasma[J]. Journal of Physics D:Applied Physics,2006.39(17):3844~3848.
    [125] Jia H J, Shirai H, Kondo M. Control of the gas phase and the surface reactions during the highrate synthesis of high quality microcrystalline silicon films: effects of the source gas supplymethod and the substrate bias[J]. Journal of Applied Physics,2007,101(11):114912.
    [126] Raha D, Das D. Controlling the growth of nanocrystalline silicon by tuning negative substratebias[J]. Solar Energy Materials and Solar Cells,2011,95(12):3181~3188.
    [127] Furuta M, Hiramatsu T, Hirao T. Enhanced nucleation of microcrystalline silicon thin filmsdeposited by inductively coupled plasma chemical vapor deposition with low-frequency pulsesubstrate bias[J]. Japanese Journal of Applied Physics,2010,49(5):050202.
    [128] Lebib S, Roca i Cabarrocas P. Effects of ion energy on the crystal size and hydrogen bonding inplasma-deposited nanocrystalline silicon thin films[J]. Journal of Applied Physics,2005,97(10):104334.
    [129] Tae H S, Hwang S H, Park S J, et al. Effects of process parameters on low-temperature siliconhomoepitaxy by ultrahigh-vacuum electron-cyclotron-resonance chemical-vapor deposition[J].Journal of Applied Physics,1995,78(6):4112~4117.
    [130] Nozawa R, Takeda H, Ito M, et al. Substrate bias effects on low temperature polycrystallinesilicon formation using electron cyclotron resonance SiH4/H2plasma[J]. Journal of AppliedPhysics,1997,81(12):8035~8039.
    [131] Tabata A, Fukaya K, Mizutani T. Influence of substrate direct current bias voltage onmicrocrystalline silicon growth during radio-frequency magnetron sputtering[J]. Vacuum,2008,82(8):777~781.
    [132] Johnson E, Kherani N, Zukotynski S. Raman scattering characterization of SF-PECVD-grownhydrogenated microcrystalline silicon thin films using growth surface electrical bias[J]. Journalof Materials Science: Materials in Electronics,2006,17(10):801~813.
    [133] Zhang X D, Zhang F R, Amanatides E, et al. Effect of substrate bias on the plasma enhancedchemical vapor deposition of microcrystalline silicon thin films[J]. Thin Solid Films,2008,516(20):6912~6918.
    [134] Bu I Y Y. Room temperature synthesis of nanocrystalline silicon by aluminium inducedcrystallization for solar cell applications[J]. Vacuum,2011,86(1):106~110.
    [135] Kosku N, Murakami H, Higashi S, et al. Influence of substrate dc bias on crystallinity of siliconfilms grown at a high rate from inductively-coupled plasma CVD[J]. Applied Surface Science,2005,244(1-4):39~42.
    [136] Zhou X T, Lai H L, Peng H Y, et al. Heteroepitaxial nucleation of diamond on Si(100) viadouble bias-assisted hot filament chemical vapor deposition[J]. Diamond and Related Materials,2000,9:134~139.
    [137] Sanchez G, Wang W L, Polo M C, et al. Nucleation of diamond on silicon by biased HFCVD: acomparative study[J]. Diamond and Related Materials,1998,7:200~204.
    [138] Cojocaru C S, Larijani M, Misra D S, et al. A new polarized hot filament chemical vapordeposition process for homogeneous diamond nucleation on Si(100)[J]. Diamond and RelatedMaterials,2004,13:270~276.
    [139] Chen Q J, Yang J, Lin Z D. Synthesis of oriented textured diamond films on silicon via hotfilament chemical vapor deposition[J]. Applied Physics Letters,1995,67(13):1853~1855.
    [140] Chen Q J, Lin Z D. Electron-emission-enhanced diamond nucleation on Si by hot filamentchemical vapor deposition[J]. Applied Physics Leters,1996,68(17):2450~2452.
    [141] Janischowsky K, Ebert W, Kohn E. Bias enhanced nucleation of diamond on silicon (100) in aHFCVD system[J]. Diamond and Related Materials,2003,12:336~339.
    [142] Zhu W, Sivazlian F R, Stoner B R, et al. Nucleation and selected area deposition of diamond bybiased hot filament chemical vapor deposition[J]. Journal of Materials Research,1995,10(2):425~430.
    [143] Cherry R I, Whitmore T. Experimental apparatus for determining charge exchange betweenhydrogen and hydrocarbon groups in the hot filament deposition of diamond[J]. AppliedPhysics Letters,1995,67(20):3040~3042.
    [144] Lee J C, Kang K H, Kim S K, et al. Structural and electrical properties of polycrystalline siliconfilms deposited by hot-wire CVD[J]. Solar Energy Materials and Solar Cells,2002,74(1-4):233~245.
    [145] Liu F, Zhu M, Liu J, et al. Poly-crystalline silicon thin films prepared by plasma-assistedhot-wire chemical vapor deposition[J]. Thin Solid Films,2003,430(1-2):182~185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700