掺磷四面体非晶碳膜的结构性能及作为生物电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型生物电极材料是目前材料科学和电化学领域研究开发的重点和热点之一。四面体非晶碳(ta-C)以其优异的机械性能、良好的生物相容性、高耐磨损能力、长期的稳定性和化学惰性、低成膜温度等特性成为制备生物电极的优选材料。但是ta-C薄膜的电阻率高、内应力大,限制了其作为半导体薄膜电极材料的使用。本文在ta-C沉积过程中掺入磷元素,通过控制工艺参数研究薄膜中磷含量的变化对薄膜的结构、机械性能、应力、光电性能、电化学性能、生物相容和耐腐蚀性能的影响,并研究其对生化物质的催化检测能力。
     采用过滤阴极真空电弧技术以磷烷(PH3)为掺杂气体,通过调整磷烷流量和基底负偏压制备了不同磷含量的掺磷四面体非晶碳(ta-C:P)薄膜。利用X射线光电子谱、拉曼光谱、红外吸收光谱、原子力显微镜研究了ta-C:P薄膜的成分和微观结构。XPS分析表明ta-C:P薄膜中磷主要以C-P和C=P形式与碳结合,二者随着磷含量的增加而增加。Raman结果显示磷的掺入增加了薄膜中sp2杂化含量和sp2团簇尺寸,随着磷含量的增加sp2杂化构型由链状向芳香环状转化,拟合的G峰峰位下移,半高宽减小,D峰和G峰强度比增大。红外吸收光谱分析表明,在1000~1800 cm-1之间的吸收带是CP伸缩振动与CC骨架振动共同作用的结果,2800~3100 cm-1的区域为CH的伸缩振动带。H的含量随着PH3流量的增加而增加,H能增加薄膜中sp3-C的含量并饱和=C键为=CHx基团,从而增加了荧光效率。原子力显微镜的观察证实ta-C:P薄膜表面出现不规则分布的纳米团簇,高能量等离子体的撞击也增大了薄膜的表面粗糙度,薄膜更加疏松多孔。
     利用纳米压痕和基底曲率法研究了ta-C:P薄膜的机械性能和内应力。磷的引入降低了碳的配位数,局部键长和键角的变形减小,导致杨氏模量和压应力降低。sp2含量的增加和sp3含量的减小使薄膜硬度降低。ta-C:P薄膜中磷含量从0增加到6.8 at.%时,薄膜的硬度从50 GPa下降至22 GPa,杨氏模量从400 GPa下降为230 GPa。
     通过对ta-C:P薄膜光电性能参数的测定,较低磷含量的ta-C:P薄膜E04带隙减小,表现出大量“n型”带尾态的电子结构,薄膜中磷含量达到6.8 at. %时导电性最好。较高磷含量的ta-C:P薄膜中H的饱和作用使E04带隙增加,定域态距离增大,薄膜导电能力降低。在293 K到573 K的温度范围内ta-C:P薄膜中的载流子表现出跳跃式传导和热激活传导两种导电机制。
     利用接触角实验和血液相容性实验研究ta-C:P薄膜在生物环境下的表面、界面行为和血液相容性。ta-C:P薄膜表面亲水性提高,表面能和极化分量与色散分量的比值增大,薄膜与水之间的界面张力减小。ta-C:P薄膜对红细胞几乎没有破坏作用,溶血率小于1 %。白蛋白和纤维蛋白原在ta-C:P薄膜表面的吸附能力降低,且白蛋白择优吸附于ta-C:P薄膜表面。ta-C:P薄膜表面吸附血小板的数量少于钛合金和ta-C薄膜,血小板团聚、变形情况减弱,抗凝血能力提高。借助动电位极化实验研究ta-C:P薄膜的化学稳定性和耐腐蚀性。ta-C:P薄膜在含有氯离子的生物体液中具有高的腐蚀电势和低的腐蚀电流密度。磷使ta-C薄膜的腐蚀电阻增大,孔隙率降低,对钛合金的保护效率提高。
     采用电化学工作站研究ta-C:P薄膜电极的电化学活性,ta-C:P薄膜在硫酸溶液中的电势窗口为~2 V,背景电流密度为~1μAcm-2。硫酸的预处理暴露了ta-C:P电极表面的CP活性点,加快了电极表面电荷的传输速度,扩宽了ta-C:P电极的电势窗口,改善了电极的可逆性。ta-C:P表面金纳米粒子的修饰进一步提高了ta-C:P电极的催化活性。金在ta-C:P表面的成核生长符合渐近成核和扩散控制的生长过程。金核的存在减小了能量势垒,利于金核的逐渐长大。通过控制金粒子在电极表面的沉积时间可有效的调节金纳米粒子的尺寸和分布,从而调节ta-C:P/Au电极的催化行为。
     通过循环伏安和差分脉冲伏安法研究ta-C:P薄膜作为生物电极的检测能力。ta-C:P可以对铜、铅、镉重金属离子共存体系进行检测,溶出曲线在约-0.9、-0.6和-0.2 V处先后出现镉、铅和铜的溶出峰且不互相干扰。金纳米粒子修饰的ta-C:P/Au电极对H2O2有很高的催化活性,电极表面H2O2氧化信号和H2O2浓度在0.2μM~1 mM范围内满足线性关系,信噪比为3时的检测限为0.08±0.01μM,比相同条件下ta-C:P电极的检测限低1个数量级。ta-C:P/Au电极对神经递质多巴胺和抗坏血酸有催化活性,二者的氧化峰信号明显分离0.2 V,可以在大量抗坏血酸存在的条件下有效的检测多巴胺的浓度。磷和金纳米粒子提高了ta-C薄膜的导电性,促进了带正电的多巴胺的氧化而限制了带负电的抗坏血酸的氧化。
Great attention has been given to the development of new bioelectrode materials in the field of material and electrochemistry sciences. Tetrahedral amorphous carbon (ta-C) is suggested to be a preponderant material due to its excellent mechanical properties, good biocompatibility, high wear resistant, long-term stability, chemical inertness against aggressive media and ambient temperature growth on virtually any substrate. However, the high resistance and intrinsic compressive stress of ta-C film limit its practical application as a semiconductor electrode. In this paper, phosphorus impurity was incorporated into the carbon network during ta-C film preparation. The effect of phosphorus content in the film on the microstructure, mechanical properties, compressive stress, photoelectrical and electrochemical behaviors, haemocompatibility and corrosion resistance was investigated, and the catalytic and analytical abilities of the resulted film towards biochemical matters were estimated.
     Phosphorus incorporated tetrahedral amorphous carbon (ta-C:P) films were deposited on conductive silicon wafers by filtered cathodic vacuum arc system with PH3 gas as the dopant source at varying flow rate of PH3 and substrate bias. The chemical compositions and microstructures of ta-C:P films were examined by the analyses of X-ray photoemission spectroscopy (XPS), Raman spectroscopy, Fourier Transform infrared (FTIR) spectrometer and atomic force spectroscope. The XPS results show that phosphorus is bonded with carbon as C-P and C=P forms and the contents of these bonds increase with phosphorus level in ta-C:P films. Phosphorus incorporation results in an increased content of sp2-hybridized carbon atoms in the film and the clustering of sp2 groups, especially, an evolution of sp2 configurations from olefinic groups to rings. The downshift of G peak, the fall in the full width at half maximum of G peak and the increase of the intensity ratio of D and G peaks, ID/IG, are related to the increase of phosphorus fraction in ta-C:P films. The IR absorption band in the range of 1000-1800 cm-1 contains both CC skeleton modes and CP stretching species, and the spectrum at 2800-3100 cm-1 is attributed to C-H stretching modes. Hydrogen content increases with PH3 flow rate varying from 3 to 30 sccm, which modifies the carbon network by saturating isolated sp3 dangling bonds and =C bonds as =CHx groups. This contributes to the increase in photoluminescence efficiency of ta-C:P film. Some isolated and irregular nanoclusters induced by phosphorus impurities are dispersed on the film surfaces. High bombardment energy (-2000 V bias) increases the surface roughness of ta-C:P films, which makes the films more loose and porous.
     The mechanical properties and intrinsic stress of ta-C:P films were investigated by nanoindentation and substrate curvature measurements. Phosphorus incorporation results in a decreased coordination number of carbon and a released local distortion, which reduces the Young’s modulus and compressive stress of the films. The increase of sp2 content and the decrease of sp3 content lead to the loss of hardness of ta-C:P films. When phosphorus content of ta-C:P films increases from 0 to 6.8 at.%, the hardness of the films varies from 50 GPa to 22 GPa, and Young’s modulus from 400 GPa to 230 GPa.
     By measuring the photoelectricial performances of ta-C:P films, the results show that low-phosphorus ta-C:P films have smaller E04 and represent an electronic structure with a large number of‘n-type’band tail states. The film with 6.8 at.% phosphorus shows the best conductive ability. Progressive saturation of sp2 sites by excessive H induced by high flow rate of PH3 is responsible for the slight narrowing of E04 and the loss of conductivity for the high-phosphorus ta-C:P films. The carriers represent hopping conduction and thermally activated conduction mechanisms in the temperature range from 293 to 573 K.
     The surface and interface behaviors, and the haemocompatibility of ta-C:P films in the biological environment were evaluated using contact angle and blood compatibility measurements. ta-C:P films represent more hydrophilic surfaces, and the interfacial tensions between the films and water are more closer to the cell-medium interface tension (1-3 mJ/m2). Phosphorus incorporation also increases the surface energy and the ratio of the polar component to dispersive component. There is little destruction action of ta-C:P films to red blood cells and the haemolytic effect is lower than 1 %. The adsorption of albumin and fibrinogen on ta-C:P surfaces is weak and the adsorption ability of albumin is stronger than that of fibrinogen. The numbers of adhered platelets on ta-C:P films are significantly lower than those attached to Ti alloy and ta-C surfaces. Platelet adhesion tests show that ta-C:P films with less spreading area and circularity index represent lower adhesion and activation of platelets, and therefore lower thrombosis risk. The stability and corrosion resistance of ta-C:P films were studied via potentiodynamic polarization experiments. ta-C:P films in 0.89 wt. % NaCl solution have high corrosion potential and low corrosion current density. Phosphorus incorporation increases the polarization resistance, decreases the porosity of ta-C film and provides efficient protection to Ti alloy.
     The electrochemical activity of ta-C:P films was investigated by an electrochemical workstation. ta-C:P electrodes show a wide potential window around 2.0 V and low background current density of 1μAcm-2 in H2SO4 solution. Acid pre-treatments with different concentrations develop active CP sites and remove inactive PO sites, accelerate the electron exchange between ta-C:P electrode and aqueous solution, widen the potential window of ta-C:P electrodes, and improve the reversibility of the electrodes. The modification of gold nanoparticles to ta-C:P surfaces further favors the electrochemical reaction on ta-C:P electrodes. The progressive nucleation and diffusion-controlled growth of Au on ta-C:P surface are confirmed. The existed Au sites decrease the energy barrier and favor the growth of Au nuclei. The size and coverage of Au nanoparticles can be adjusted by controlling the deposition time, which dominates the electrochemical properties of ta-C:P/Au electrodes.
     The detection capability of ta-C:P films as bioelectrodes was evaluated by cyclic voltammetry and differential pulse voltammetry. ta-C:P electrodes can determine Cu2+, Pb2+ and Cd2+ simultaneously. The stripping peak positions of these three ions are about -0.9, -0.6 and -0.2 V, respectively, with no interference. ta-C:P/Au electrode reveals high electrocatalytic ability towards the electrooxidation of hydrogen peroxide because the three-dimensional Au nanoparticles accelerate the electron exchange between ta-C:P electrode and H2O2 in aqueous solution. The current of H2O2 at ta-C:P/Au electrode is linear within a wider concentration range from 0.2μM to 1 mM with a sensitivity of 20.0±0.2 nA/μM (n=6). The detection limit at signal-to-noise ratio of 3 to 1 is calculated to be 0.08±0.01μM. The value is one order lower than that obtained at ta-C:P electrode under the same conditions. The neurotransmitter of dopamine (DA) and ascorbic acid (AA) can be oxidized on ta-C:P/Au electrodes and the oxidation peaks of those are separated by 0.2 V. Therefore, ta-C:P/Au electrodes can provide effective detection to DA in the presence of large amount of AA. Phosphorus and Au nanoparticles increase the conductivity of ta-C, which attracts positive DA and repulses negative AA due to the electrostatic repulsion.
引文
1 C. Agra-Gutierrez, J. L. Hardcastle, J. C. Ball, R. G. Compton. Anodic Stripping Voltammetry of Copper at Insonated Glassy Carbon-Based Electrodes: Application to the Determination of Copper in Beer. Analyst. 1999,124(7):1053~1057
    2 M. Iwaki, S. Sato, K. Takahashi, H. Sakairi. Nucl. Instrum. Methods Phys. Res. 1983,209-210:1129
    3 Y. V. Pleskov, A. Ya. Sakharova, M. Krotova, L. L. Bouilov, B. V. Spitsyn. Photoelectrochemical Properties of Semiconductor Diamond. J. Electroanal. Chem. 1987,228(1-2):19~27
    4 G. M. Swain. The Use of Cvd Diamond Thin-Films in Electrochemical Systems. Adv. Master. 1994,6(5):388~392
    5 N. Spataru, B. V. Sarada, E. Popa, D. A. Tryk, A. Fujishima. Voltammetric Determination of L-cysteine at Conductive Diamond Electrodes. Anal. Chem. 2001,73 (3):514~519
    6 S. Haymond, G. T. Babcock, G. M. Swain. Direct Electrochemistry of Cytochrome c at Nanocrystalline Boron-Doped Diamond. J. Am. Chem. Soc. 2002,124(36):10634~10635
    7 N. Spataru, B. V. Sarada, D. A. Tryk, A. Fujishima. Anodic Voltammetry of Xanthine, Theophylline, Theobromine and Caffeine at Conductive Diamond Electrodes and Its Analytical Application. Electroanalysis. 2002,14(11):721~728
    8 X. B. Ji, C. E. Banks, R. G. Compton. The Electrochemical Oxidation of Ammonia at Boron-Doped Diamond Electrodes Exhibits Analytically Useful Signals in Aqueous Solutions. Analyst. 2005,130(10):1345~1347
    9 R. Schlesinger, M. Bruns, H. J. Ache. Development of Thin Film Electrodes Based on Sputtered Amorphous Carbon. J. Electrochem. Soc. 1997,144(1):6~15
    10 J. Robertson. Diamond-Like Amorphous Carbon. Mater. Sci. Eng. R. 2002,37(4-6):129~281
    11 A. Zeng, E. Liu, I. F. Annergren, S. N. Tan, S. Zhang, R. Hing, J. Gao. EISCapacitance Diagnosis of Nanoporosity Effect on the Corrosion Protection of ta-C Films. Diamond Relat. Mater. 2002,11(2):160~168
    12 K. S. Yoo, B. Miller, R. Kalish, X. Shi. Electrodes of Nitrogen-Incorporated Tetrahedral Amorphous Carbon - A Novel Thin-Film Electrocatalytic Material with Diamond-Like Stability. Electrochem. Solid-State Lett. 1999,2(5):233~235
    13 Y. V. Pleskov, Y. E. Evstefeeva, M. D. Krotova, V. V. Elkin, A. M. Baranov, A. P. Dement'ev. Electrochemical Behavior of Amorphous Carbon Films: Kinetic and Impedance Spectroscopy Studies. Diamond Relat. Mater. 1999,8(1):64~72
    14 D. Sopchak, B. Miller, R. Kalish, Y. Avyigal, X. Shi. Dopamine and Ascorbate Analysis at Hydrodynamic Electrodes of Boron Doped Diamond and Nitrogen Incorporated Tetrahedral Amorphous Carbon. Electroanalysis. 2002,14(7-8):473~478
    15 A. Lagrini, C. Deslouis, H. Cachet, M. Benlahsen, S. Charvet. Elaboration and Electrochemical Characterization of Nitrogenated Amorphous Carbon Films. Electrochem. Commun. 2004,6(3):245~248
    16 H. Cachet, C. Deslouis, M. Chouiki, B. Saidani, N. M. J. Conway, C. Godet. Electrochemistry of Nitrogen-Incorporated Hydrogenated Amorphous Carbon Films. J. Electrochem. Soc. 2002,149(7):E233~E241
    17 M. Benlahsen, H. Cachet, S. Charvet, C. Debiemme-Chouvy, C. Deslouis, A. Lagrini, V. Vivier. Improvement and Characterization of the Electrochemical Reactivity of Amorphous Carbon Nitride Electrodes. Electrochem. Commun. 2005,7(5):496~ 499
    18 A. Zeng, E. Liu, S. N. Tan, S. Zhang, J. Gao. Cyclic Voltammetry Studies of Sputtered Nitrogen Doped Diamond-Like Carbon Film Electrodes. Electroanalysis. 2002,14(15-16):1110~1115
    19 A. Zeng, V. Samper, S. N. Tan, D. P. Poenar, T. M. Lim, C. K. Heng. Potentiostatic Deposition and Detection of DNA on Conductive Nitrogen Doped Diamond-Like Carbon Film Electrode. The 12th International Conference on Solid State Sensors, Actuators and Microsystem. Boston, 2003:222~225
    20刘姝,王广甫,汪正浩. taC:N电极的制备及其电化学行为初步研究.电化学. 2006,12(3):338~340
    21 S. Aissenberg, R. Chabot. Ion-Beam Deposition of Thin Films of Diamond-Like Carbon. J. Appl. Phys. 1971,42(7):2953~2958
    22 E. I. Meletis, V. Palshin, S. Ves, S. Logothetidis. Characterization of Ion-Beam-Deposition Diamond-Like Carbon Films. Thin Solid Films. 1995,270(1-2):165~172
    23 Z. Y. Chen, Y. H. Yu, J. P. Zhao, C. X. Ren, X. Z. Ding, T. S. Ding, T. S. Shi, X. H. Liu. Optical Study of Low Energy Ion-Beam-Assisted Deposited Diamond-Like Carbon Films. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms. 1998,141(1-4):144~147
    24 J. Schwan, S. Ulrich, H. Roth, H. Ehrhardt, S. R. P. Silva, J. Robertson, R. Samlenski, R. Brenn. Tetrahedral Amorphous Carbon Films Prepared by Magnetron Sputtering and Dc Ion Plating. J. Appl. Phys. 1996,79(3):1416~1422
    25 S. Logothetidis. Hydrogen-Free Amorphous Carbon Films Approaching Diamond Prepared by Magnetron Sputtering. Appl. Phys. Lett. 1996,69(2):158~160
    26 J. Kulik, G. D. Lempert, E. Grossman, D. Marton, J. W. Rabalais, Y. Lifshitz. sp3 Content of Mass-Selected Ion-Beam-Deposited Carbon Films Determined by Inelastic and Elastic Electron Scattering. Phys. Rev. B. 1995,52(22):15812~15822
    27 D. Schneider, C. F. Meyer, H. Mai, B. Schoneich, H. Ziegele, H. J. Scheibe, Y. Lifshitz. Non-destructive Characterization of Mechanical and Structural Properties of Amorphous Diamond-Like Carbon Films. Diamond Relat. Mater. 1998,7(7):973~980
    28 D. L. Pappas, K. L. Saenger, J. Bruley, W. Krakow, J. J. Cuomo, T. Gu, R. W. Collins. Pulsed Laser Deposition of Diamond-Like Carbon Films. J. Appl. Phys. 1992,71(1):5675~5684
    29 M. P. Siegal, J. C. Barbour, P. N. Provencio, D. R. Tallant, T. A. Friedmann. Amorphous-Tetrahedral Diamondlike Carbon Layered Structures Resulting from Film Growth Energetics. Appl. Phys. Lett. 1998,73(6):759~761
    30 M. Chhowalla, J. Robertson, C. W. Chen, S. R. P. Silva, C. A. Davis, G. A. J. Amaratunga, W. I. Milne. Influence of Ion Energy and Substrate Temperatureon the Optical and Electronic Properties of Tetrahedral Amorphous Carbon (ta-C) Films. J. Appl. Phys. 1997,81(1):139~145
    31 M. C. Polo, J. L. Andujar, A. Hart, J. Robertson, W. I. Milne. Preparation of Tetrahedral Amorphous Carbon Films by Filtered Cathodic Vacuum Arc Deposition. Diamond Relat. Mater. 2000,9(3-6):663~667
    32 V. I. Gorokhovsky, D. G. Bhat, R. Shivpuri, K. Kulkarni, R. Bhattacharya, A. K. Rai. Characterization of Large Area Filtered Arc Deposition Technology: PartⅡ- Coating Properties and Applications. Surf. Coat. Technol. 2001,140(3):215~224
    33 H. J. Scheibe, D. Drescher, B. Schultrich, M. Alz, G. Leonhardt, R. Wilberg. The Laser-Arc: A New Industrial Technology for Effective Deposition of Hard Amorphous Carbon Films. Surf. Coat. Technol. 1996,85(3):209~214
    34 A. X. Wei, D. H. Chen, S. Q. Peng, N. Ke, S. P. Wong. Optical and Electrical Characteristics of Amorphous Diamond Films. Diamond Relat. Mater. 1997,6(8):983~986
    35 P. J. Fallon, V. S. Veerasamy, C. A. Davis, J. Robertson, G. A. J. Amaratunga, W. I. Milne, J. Koshinen. Properties of Filtered-Ion-Beam-Deposited Diamondlike Carbon as a Function of Ion Energy. Phys. Rev. B. 1993,48(7):4777~4782
    36 P. Merel, M. Tabbal, M. Chaker, S. Moias, J. Margot. Direct Evaluation of the sp3 Content in Diamond-Like-Carbon Film by XPS. Appl. Surf. Sci. 1998,136(1-2):105~110
    37 P. Yang, N. Huang, Y. X. Leng, J. Y. Chen, R. K. Y. Fu, S. C. H. Kwok, Y. Leng, P. K. Chu. Activation of Platelets Adhered on Amorphous Hydrogenated Carbon (ta-C:H) Films Synthesized by Plasma Immersion Ion Implantation-Deposition (PIII-D). Biomaterials. 2003, 24(17):2821~2829
    38 H. G. Kim, S. H. Ahn, J. G. Kim, S. J. Park, K. R. Lee. Corrosion Performance of Diamond-Like Carbon (ta-C)-Coated Ti Alloy in the Simulated Body Fluid Environment. Diamond Relat. Mater. 2005,14(1):35~41
    39 H. G. Kim, S. H. Ahn, J. G. Kim, S. J. Park, K. R. Lee. Electrochemical Behavior of Diamond-Like Carbon Films for Biomedical Applications. Thin Solid Films. 2005,475(1-2):291~297
    40 L. Lu, M. W. Jones, R. L. C. Wu. ta-C as A Biological Compatible Material for Cell Culture and Medical Applications. Bio-Med. Mater. Eng. 1993, 3(4):223~228
    41 H. S. Tran, M. M. Puc, C. W. Hewitt. Diamond-Like Carbon Coating and Plasma or Glow Discharge Treatment of Mechanical Heart Valves. J. Invest. Surg. 1999, 12(3):133~140
    42 S. Bhattacharyya, S. J. Henley, E. Mendoza, L. Gomez-Rojas, J. Allam, S. R. P. Silva. Resonant Tunnelling and Fast Switching in Amorphous-Carbon Quantum-Well Structures. Nat. Mater. 2006,5(1):19~22
    43 D. P. Liu, G. Benstetter, W. Frammelsberger. Nanoscale Electron Field Emissions from the Bare, Hydrogenated, and Graphitelike-Layer-Covered Tetrahedral Amorphous Carbon Films. J. Appl. Phys. 2006,99(4):044303
    44 C. Ronning, U. Griesmeier, M. Gross, H. C. Hofsass, R. G. Downing, G. P. Lamaze. Conduction Processes in Boron- and Nitrogen-Doped Diamond-Like Carbon Films Prepared by Mass-Separated Ion Beam Deposition. Diamond Relat. Mater. 1995,4(5-6):666~672
    45 F. Claeyssens, G. M. Fuge, N. L. Allan, P. W. May, S. R. J. Pearce, M. N. R. Ashfold. Phosphorus Carbide Thin Films Experiment and Theory. Appl. Phys. A-Mater. Sci. Proc. 2004,79(4-6):1237~1241
    46 T. Hasebe, A. Shimada, T. Suzuki, Y. Matsuoka, T. Saito, S. Yohena, A. Kamijo, N. Shiraga, M. Higuchi, K. Kimura, H. Yoshimura, S. Kuribayashi. Fluorinated Diamond-Like Carbon as Antithrombogenic Coating for Blood-Contacting Devices. J. Biomed. Mater. Res. A. 2006,76A(1):86~94
    47 H. G. Kim, S. H. Ahn, J. G. Kim, S. J. Park, K. R. Lee. Effect of Si-Incorporation on Wear Corrosion Properties of Diamond-Like Carbon Films. Thin Solid Films. 2005,482(1-2):299~304
    48 M. Allon-Alaluf, L. Klibanov, N. Croitoru. Iodine Doping of Amorphous Diamond-Like Carbon Films. Diamond Relat. Mater. 1996,5(12):1497~1502
    49 K. Baba, R. Hatada. Deposition and Characterization of Ti- and W-containing Diamond-Like Carbon Films by Plasma Source Ion Implantation. Surf. Coat. Technol. 2003,169-170:287~290
    50 W. J. Yang, T. Sekino, B. K. Shim. Deposition and Microstructure of Ti-containing Diamond-Like Carbon Nanocomposite Films. Thin Solid Films.2005,473(2):252~258
    51 Y. V. Pleskov, Y. E. Evstefeeva, A. M. Baranov. Amorphous Diamond-Like Carbon Electrodes: The Catalytic Effect of Platinum Admixture. Russ. J. Electrochem. 2001,37(6):644~646
    52 G. Chen, J. Y. Zhang, S. R. Yang. A Novel Method for the Synthesis of Au Nanoparticles Incorporated Amorphous Hydrogenated Carbon Films. Electrochem. Commun. 2007,9(5):1053~1056
    53 V. Singh, J. C. Jiang, E. I. Meletis. Cr-Diamondlike Carbon Nanocomposite Films Synthesis, Characterization and Properties. Thin Solid Films. 2005,489(1-2):150~158
    54 V. S. Veerasamy, G. A. J. Amaratunga, C. A. Davis, A. E. Timbs, W. I. Milne, D. R. McKenzie. N-type Doping of Highly Tetrahedral Diamond-Like Amorphous Carbon. J. Phys.: Condens. Matter. 1993,5(13):Ll69~L174
    55 M. M. Golzan, D. R. McKenzie, D. J. Miller, S. J. Collocott, G. A. J. Amaratunga. Magnetic and Spin Properties of Tetrahedral Amorphous-Carbon. Diamond Relat. Mater. 1995,4(7):912~916
    56 K. M. Krishna, M. Umeno, Y. Nukaya, T. Soga, T. Jimbo. Photovoltaic and Spectral Photoresponse Characteristics of N-C/p-C Solar Cell on A P-Silicon Substrate. Appl. Phys. Lett. 2000,77(10):1472~1474
    57 C. L. Tsai, C. F. Chen, C. L. Lin. Characterization of Phosphorus-Doped and Boron-Doped Diamond-Like Carbon Emitter Arrays. J. Appl. Phys. 2001,90(9):4847~4851
    58 S. R. J. Pearce, P. W. May, R. K. Wild, K. R. Hallam, P. J. Heard. Deposition and Properties of Amorphous Carbon Phosphide Films. Diamond Relat. Mater. 2002,11(3-6):1041~1046
    59 F. Claeyssens, G. M. Fuge, N. L. Allan, P. W. May, M. N. R. Ashfold. Phosphorus Carbides: Theory and Experiment. Dalton. T. 2004,19:3085~3092
    60 M. Rusop, T. Soga, T. Jimbo. The Physical Properties of Xecl Excimer Pulsed Laser Deposited N-C:P/p-Si Photovoltaic Solar Cells. Surf. Rev. Lett. 2005,12(2):167~172
    61 M. Rusop, T. Soga, T. Jimbo. Properties of An N-C:P/p-Si Carbon-Based Photovoltaic Cell Grown by Radio Frequency Plasma-Enhanced ChemicalVapor Deposition at Room Temperature. Sol. Energ. Mat. Sol. C. 2006,90(3):291~300
    62 S. C. H. Kwok, P. C. T. Ha, D. R. McKenzie, M. M. M. Bilek, P. K. Chu. Biocompatibility of Calcium and Phosphorus Doped Diamond-like Carbon Thin Films Synthesized by Plasma Immersion Ion Implantation and Deposition. Diamond Relat. Mater. 2006,15(4-8):893~897
    63 S. C. H. Kwok, G. J. Wan, J. P. Y. Ho, P. K. Chu, M. M. M. Bilek, D. R. McKenzie. Characteristics of Phosphorus-Doped Diamond-Like Carbon Films Synthesized by Plasma Immersion Ion Implantation and Deposition (PIII and D). Surf. Coat. Technol. 2007,201(15):6643~6646
    64 S. C. H. Kwok, W. Jin, P. K. Chu. Surface Energy, Wettability, and Blood Compatibility Phosphorus Doped Diamond-Like Carbon Films. Diamond Relat. Mater. 2005,14(1):78~85
    65王进, S. C. H. Kwok,陈俊英,杨萍,黄楠, P. K. Chu.磷掺杂四面体非晶碳薄膜的制备与性能研究.真空科学与技术学报. 2005,25(2):123~126
    66 S. H. Wan, H. Y. Hu, G. Chen, J. Y. Zhang. Synthesis and Characterization of High Voltage Electrodeposited Phosphorus Doped ta-C Films. Electrochem. Commun. 2008,10(3):461~465
    67高巍.四面体非晶碳及其掺杂结构的第一性原理研究.哈尔滨工业大学博士论文. 2008:98~99
    68 R. G. Compton, J. S. Foord, F. Marken. Electroanalysis at Diamond-Like and Doped-Diamond Electrodes. Electroanalysis. 2003,15(17):1349~1363
    69 T. A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga. Electrochemical Detection of Arsenic(III) Using Iridium-Implanted Boron-Doped Diamond Electrodes. Anal. Chem. 2006,78(18):6291~6298
    70 J. Park, V. Quaiserova-Mocko, B. A. Patel, M. Novotny, A. H. Liu, X. C. Bian, J. J. Galligan, G. M. Swain. Diamond Microelectrodes for in Vitro Electroanalytical Measurements: Current Status and Remaining Challenges. Analyst. 2008,133(1):17~24
    71 Y. V. Pleskov. Electrochemistry of Diamond: A Review. Russ. J. Electrochem. 2002,38(12):1275~1291
    72赵国华,李明利,吴薇薇.金刚石膜电极对有机污染物的电催化特性.环境科学. 2004,25(5):163~167
    73只金芳,田如海.金刚石薄膜电化学.化学进展. 2005,17(1):55~63
    74陶映初,陶举洲.环境电化学.化学工业出版社, 2003:124
    75 J. Weng, J. M. Xue, J. Wang. Gold-Cluster Sensor Formed Electrochemically at Boron-Doped-Diamond Electrodes: Detection of Dopamine in the Presence of Ascorbic Acid and Thiols. Avd. Funct. Mater. 2005,15(4):639~647
    76 F. Marken, C. A. Paddon, D. Asogan. Direct Cytochrome c Electrochemistry at Boron-Doped Diamond Electrodes. Electrochem. Commun. 2002,4(1):62~66
    77 T. Tatsuma, H. Mori, A. Fujishima. Electron Transfer from Diamond Electrodes to Heme Peptide and Peroxidase. Anal. Chem. 2000,72(13):2919~2924
    78 P. Bouamrane, A. Tadjeddine, J. E. Butler, R. Tenne, C. LevyClement. Electrochemical Study of Diamond Thin Films in Neutral and Basic Solutions of Nitrate. J. Electroanal. Chem. 1996,405(1-2):95~99
    79 M. C. Granger, M. Witek, J. S. Xu, J. Wang, M. Hupert, A. Hanks, M. D. Koppang, J. E. Butler, G. Lucazeau, M. Mermoux, J. W. Strojek, G. M. Swain. Standard Electrochemical Behavior of High-Quality, Boron-Doped Polycrystalline Diamond Thin-Film Electrodes. Anal. Chem. 2000,72(16):3793~3804
    80 S. Haymond, G. T. Babcock, G. M. Swain. Electron Transfer Kinetics of Ferrocene at Microcrystalline Boron-Doped Diamond Electrodes: Effect of Solvent and Electrolyte. Electroanalysis. 2003,15(4):249~253
    81 J. Z. Xu, G. M. Swain. Oxidation of Azide Anion at Boron-Doped Diamond Thin-Film Electrodes. Anal. Chem. 1998,70(8):1502~1510
    82 N. Spataru, T. N. Rao, D. A. Tryk, A. Fujishima. Determination of Nitrite and Nitrogen Oxides by Anodic Voltammetry at Conductive Diamond Electrodes. J. Electrochem. Soc. 2001,148(3):E112~E117
    83 N. S. Lawrence, M. Thompson, C. Prado, L. Jiang, T. G. J. Jones, R. G. Compton. Amperometric Detection of Sulfide at A Boron Doped Diamond Electrode: The Electrocatalytic Reaction of Sulfide with Ferricyanide in Aqueous Solution. Electroanalysis. 2002,14(7-8):499~504
    84 B. V. Sarada, T. N. Rao, D. A. Tryk, A. Fujishima. Electrochemical Oxidationof Histamine and Serotonin at Highly Boron Doped Diamond Electrodes. Anal. Chem. 2000,72(7):1632~1638
    85 J. B. Cooper, S. Pang, S. Albin, J. L. Zheng, R. M. Johnson. Fabrication of Boron-Doped CVD Diamond Microelectrodes. Anal. Chem. 1998,70(3):464~467
    86 G. W. Muna, V. Quaiserova-Mocko, G. M. Swain. The Analysis of Chlorinated Phenol Solutions by Capillary Electrophoresis Coupled with Direct and Indirect Amperometric Detection using A Boron-Doped Diamond Microelectrode. Electroanalysis. 2005,17(13):1160~1170
    87 J. Park, Y. Show, V. Quaiserova, J. J. Galligan, G. D. Fink, G. M. Swain. Diamond Microelectrodes for Use in Biological Environments. J. Electroanal. Chem. 2005,583(1):56~68
    88 N. G. Ferreira, L. L. G. Silva, E. J. Corat. Electrochemical Activity of Boron-Doped Diamond Electrodes Grown on Carbon Fiber Cloths. Diamond Relat. Mater. 2002,11(3-6):657~661
    89 A. Hartl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmuller, M. Stutzmann. Protein-Modified Nanocrystalline Diamond Thin Films for Biosensor Applications. Nat. Mater. 2004,3(10):736~742
    90 A. J. Saterlay, F. Marken, J. S. Foord, R. G. Compton. Sonoelectrochemical Investigation of Silver Analysis at A Highly Boron-Doped Diamond Electrode. Talanta. 2000,53(2):403~415
    91 Y. C. Tsai, B. A. Coles, K. Holt, J. S. Foord, F. Marken, R. G. Compton. Microwave-Enhanced Anodic Stripping Detection of Lead in A River Sediment Sample. A Mercury-Free Procedure Employing A Boron-Doped Diamond Electrode. Electroanalysis. 2001,13(10):831~835
    92 C. Prado, S. J. Wilkins, F. Marken, R. G. Compton. Simultaneous Electrochemical Detection and Determination of Lead and Copper at Boron-Doped Diamond Film Electrodes. Electroanalysis. 2002,14(4):262~272
    93 T. N. Rao, B. V. Sarada, D. A. Tryk, A. Fujishima. Electroanalytical Study of Sulfa Drugs at Diamond Electrodes and Their Determination by HPLC with Amperometric Detection. J. Electroanal. Chem. 2000,491(1-2):175~181
    94 N. Wangfuengkanagul, O. Chailapakul. Electrochemical Analysis of D-penicillamine Using A Boron-Doped Diamond Thin Film Electrode Applied to Flow Injection System. Talanta. 2002,58(6):1213~1219
    95 N. Wangfuengkanagul, O. Chailapakul. Electrochemical Analysis of Acetaminophen Using A Boron-Doped Diamond Thin Film Electrode Applied to Flow Injection System. J. Pharm. Biomed. Anal. 2002,28(5):841~847
    96 M. Panizza, P. A. Michaude, G. Cerisola, C. Comninellis. Anodic Oxidation of 2-naphthol at Boron-Doped Diamond Electrodes. J. Electroanal. Chem. 2001,507(1-2):206~214
    97 C. Terashima, T. N. Rao, B. V. Sarada, D. A. Tryk, A. Fujishima. Electrochemical Oxidation of Chlorophenols at A Boron-Doped Diamond Electrode and Their Determination by High-Performance Liquid Chromatography with Amperometric Detection. Anal. Chem. 2002,74(4):895~902
    98 F. Montilla, P. A. Michaud, E. Morallon, J. L. Vazquez, C. Comninellis. Electrochemical Oxidation of Benzoic Acid at Boron-Doped Diamond Electrodes. Electrochim. Acta. 2002,47(21):3509~3513
    99 A. M. Polcaro, M. Mascia, S. Palmas, A. Vacca. Electrochemical Degradation of Diuron and Dichloroaniline at BDD Electrode. Electrochim. Acta. 2004,49(4):649~656
    100 K. Serrano, P. A. Michaud, C. Comninellis, A. Savall. Electrochemical Preparation of Peroxodisulfuric Acid Using Boron Doped Diamond Thin Film Electrodes. Electrochim. Acta. 2002,48(4):431~436
    101 A. Zeng, E. Liu, S. N. Tan, S. Zhang, J. Gao. Stripping Voltammetric Analysis of Heavy Metals at Nitrogen Doped Diamond-Like Carbon Film Electrodes. Eletroanalysis. 2002,14(18):1294~1298
    102 M. Florescu, C. M. A. Brett. Development and Evaluation of Electrochemical Glucose Enzyme Biosensors Based on Carbon Film Electrodes. Talanta. 2005,65(2):306~312
    103 S. P. J. Higson, P. M. Vadgama. Diamond-Like Carbon-Coated Films for Enzyme Electrodes - Characterization of Biocompatibility and Substrate Diffusion Limiting Properties. Anal. Chim. Acta. 1995,300(1-3):77~83
    104 H. Voigt, F. Schitthelm, T. Lange, T. Kullick, R. Ferretti. Diamond-LikeCarbon-Gate pH-ISFET. Sensor. Actuat. B-Chem. 1997,44(1-3):441~445
    105 X. L. Gao, Q. Z. Xue, L. Z. Hao, Q. B. Zheng, Q. Li. Ammonia Sensitivity of Amorphous Carbon Film/Silicon Heterojunctions. Appl. Phys. Lett. 2007,91(12):122110
    106 S. Liu, G. F. Wang, Z. H. Wang. Study of the Conductivity of Nitrogen Doped Tetrahedral Amorphous Carbon Films. J. Non-Cryst. Solids. 2007,353(29):2796~2798
    107 L. X. Liu, E. Liu. Nitrogenated Diamond-Like Carbon Films for Metal Tracing. Surf. Coat. Tech. 2005,198 (1-3):189~193
    108 M. C. Daniel, D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004,104(1):293~346
    109 Y. W. C. Cao, R. C. Jin, C. A. Mirkin. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science. 2002,297(5586):1536~1540
    110 Y. Xiao, F. Patolsky, E. Katz, J. F. Hainfeld, I. Willner. "Plugging into Enzymes": Nanowiring of Redox Enzymes by A Gold Nanoparticle. Science. 2003,299(5614):1877~1881
    111 D. J. Maxwell, J. R. Taylor, S. M. Nie. Self-Assembled Nanoparticle Probes for Recognition and Detection of Biomolecules. J. Am. Chem. Soc. 2002,124(32):9606~9612
    112 C. R. Raj, T. Okajima, T. Ohsaka. Gold Nanoparticle Arrays for the Voltammetric Sensing of Dopamine. J. Electroanal. Chem. 2003,543(2):127~133
    113 C. Zhang, Z. Y. Zhang, B. B. Yu, J. J. Shi, X. R. Zhang. Application of the Biological Conjugate between Antibody and Colloid Au Nanoparticles as Analyte to Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2002,74(1):96~99
    114 J. F. Hicks, F. P. Zamborini, R. W. Murray. Dynamics of Electron Transfers Between Electrodes and Monolayers of Nanoparticles. J. Phys. Chem. B. 2002,106(32):7751~7757
    115 M. Chikae, K. Idegami, K. Kerman, N. Nagatani, M. Ishikawa, Y. Takamura, E. Tamiya. Direct Fabrication of Catalytic Metal Nanoparticles onto theSurface of A Screen-Printed Carbon Electrode. Electrochem. Commun. 2006,8(8):1375~1380
    116 Y. R. Zhang, S. Asahina, S. Yoshihara, T. Shirakashi. Oxygen Reduction on Au Nanoparticle Deposited Boron-Doped Diamond Films. Electrochim. Acta. 2003,48(6):741~747
    117 I. Yagi, T. Ishida, K. Uosaki. Electrocatalytic Reduction of Oxygen to Water at Au Nanoclusters Vacuum-Evaporated on Boron-Doped Diamond in Acidic Solution. Electrochem. Commun. 2004,6(8):773~779
    118 E. Thune, E. Carpene, K. Sauthoff, M. Seibt, P. Reinke. Gold Nanoclusters on Amorphous Carbon Synthesized by Ion-Beam Deposition. J. Appl. Phys. 2005,98(3):034304
    119 B. El Roustom, G. Foti, C. Comninellis. Preparation of Gold Nanoparticles by Heat Treatment of Sputter Deposited Gold on Boron-Doped Diamond Film Electrode. Electrochem. Commun. 2005,7(4):398~405
    120 S. Szunerits, C. Jama, Y. Coffinier, B. Marcus, D. Delabouglise, R. Boukherroub. Direct Amination of Hydrogen-Terminated Boron Doped Diamond Surfaces. Electrochem. Commun. 2006,8(7):1185~1190
    121 R. H. Tian, T. N. Rao, Y. Einaga, J. F. Zhi. Construction of Two-Dimensional Arrays Gold Nanoparticles Monolayer onto Boron-Doped Diamond Electrode Surfaces. Chem. Mater. 2006,18(4):939~945
    122 M. S. El-Deab, T. Okajima, T. Ohsaka. Electrochemical Reduction of Oxygen on Gold Nanoparticle-Electrodeposited Glassy Carbon Electrodes. J. Electrochem. Soc. 2003,150(7):A851~A857
    123 X. G. Hu, T. Wang, X. H. Qu, S. J. Dong. In Situ Synthesis and Characterization of Multiwalled Carbon Nanotube/Au Nanoparticle Composite Materials. J. Phys. Chem. B. 2006,110(2):853~857
    124潘承璜,赵良仲.电子能谱基础.科学出版社, 1981:164~170
    125 S. R. J. Pearce, J. Filik, P. W. May, R. K. Wild, K. R. Hallam, P. J. Heard. The Effect of Ion Energy on the Deposition of Amorphous Carbon Phosphide Films. Diam. Relat. Mater. 2003,12 (3-7):979~982
    126 Y. Yamamoto, H. Konno. Ylide-Metal Complexes. X. An X-Ray Photoelectron Spectroscopic Study of Triphenylmethylenephosphorane and Gold- and Copper-Phosphorane Complexes. Bull. Chem. Soc. Jpn.1986,59(5):1327~1330
    127 C. Battistoni, G. Mattogno, R. Zanoni, L. Naldini. Characterisation of Some Gold Clusters by X-ray Photoelectron Spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 1982,28(1):23~31
    128 E. Fluck, D. Weber. Z. Naturforsch. B. 1974,29:603
    129 D. Dasgupta, F. Demichellis, C. F. Pirri, A. Tagliaferro.πBands and Gap States from Optical Absorption and Electron-Spin-Resonance Studies on Amorphous Carbon and Amorphous Hydrogenated Carbon Films. Phys. Rev. B. 1991,43(3):2131~2135
    130 A. C. Ferrari, J. Robertson. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B. 2000,61(20):14095~14107
    131 G. Messina, A. Paoletti, S. Santangelo, A. Tagliaferro, A. Tucciarone. Nature of Non-D and Non-G Bands in Raman Spectra of ta-C:H(N) Films Grown by Reactive Sputtering. J. Appl. Phys. 2001,89(2):1053~1058
    132 M. Tabbal, T. Christidis, S. Isber, P. Merel, M. A. El Khakani, M. Chaker, A. Amassian, L. Martinu. Correlation between the Sp(2)-Phase Nanostructure and the Physical Properties of Unhydrogenated Carbon Nitride. J. Appl. Phys. 2005,98(4):044310
    133 R. Loudon. The Raman Effect in Crystals. Adv. Phys. 2001,50(7):813~864
    134 M. K. Fung, W. C. Chan, Z. Q. Gao, I. Bello, C. S. Lee, S. T. Lee. Effect of Nitrogen Incorporation into Diamond-Like Carbon Films by ECR-CVD. Diamond Relat. Mater. 1999,8(2-5):472~476
    135 Y. J. Lee. The Second Order Raman Spectroscopy in Carbon Crystallinity. J. Nucl. Mater. 2004,325(2-3):174~179
    136 R. J. Nemanich, S. A. Solin. First- and Second-Order Raman Scattering from Finite-Size Crystals of Graphite. Phys. Rev. B. 1979,20(2):392~401
    137 G. Adamopoulos, J. Robertson, N. A. Morrison, C. Godet. Hydrogen Content Estimation of Hydrogenated Amorphous Carbon by Visible Raman Spectroscopy. J. Appl. Phys. 2004,96(11):6348~6352
    138 A. C. Ferrari, S. E. Rodil, J. Robertson. Interpretation of Infrared and Raman Spectra of Amorphous Carbon Nitrides. Phys. Rev. B. 2003,67(15):155306
    139 E. Kurita, Y. Tomonaga, S. Matsumoto, K. Ohno, H. Matsuura. Quantum Chemical Calculations and Vibrational Analysis of Compounds ContainingCarbon-Phosphorus Multiple and Single Bonds. J. Mol. Struc. Theochem. 2003,639:53~67
    140 J. Ristein, R. T. Stief, L. Ley, W. Beyer. A Comparative Analysis of ta-C:H by Infrared Spectroscopy and Mass Selected Thermal Effusion. J. Appl. Phys. 1998,84(7):3836~3847
    141 Y. Lifshitz, S. R. Kasi, J. W. Rabalais, W. Eckstein. Subplantation Model for Film Growth from Hyperthermal Species. Phys. Rev. B. 1990,41(15):10468~10480
    142 C. A. Davis. A Simple Model for the Formation of Compressive Stress in Thin Films by Ion Bombardment. Thin Solid Films. 1993,226(1):30~34
    143黎明,温诗铸.纳米压痕技术及其应用.中国机械工程. 2002,13(16):1437~1440
    144 J. J. Vlassak, W. D. Nix. J. Mech. Phys. Solids. 1994,42:1223
    145 S. Sattel, J. Robertson, H. Ehrhardt. Effects of Deposition Temperature on the Properties of Hydrogenated Tetrahedral Amorphous Carbon. J. Appl. Phys. 1997,82(9):4566~4576
    146 J. C. Phillips. Topology of Covalent Non-Crystalline Solids I: Short-Range Order in Chalcogenide Alloys. J. Non Crysta. Solids. 1979,34(2):153~181
    147 M. F. Thorpe. Continuous Deformations in Random Networks. J. Non Crysta. Solids. 1983,57(3):355~370
    148 A. S. Argon, V. Gupta, H. S. Landis, J. A. Cronie. Intrinsic Toughness of Interfaces. Mater. Sci. Eng. A. 1989,107:41~47
    149 F. L. Freire, D. F. Franceschini. Structure and Mechanical Properties of Hard Amorphous Carbon-Nitrogen Films Obtained by Plasma Decomposition of Methane-Ammonia Mixtures. Thin Solid Films. 1997,293(1-2):236~243
    150 A. C. Ferrari, S. E. Rodil, J. Robertson, W. I. Milne. Is Stress Necessary to Stabilise Sp(3) Bonding in Diamond-Like Carbon? Diamond Relat. Mater. 2002,11(3-6):994~999
    151 X. Shi, H. Fu, J. R. Shi, L. K. Cheah, B. K. Tay, P. Hui. Electronic Transport Properties of Nitrogen Doped Amorphous Carbon Films Deposited by the Filtered Cathodic Vacuum Are Technique J. Phys.: Condens. Matter. 1998,10(41):9293~9302
    152 N. F. Mott, Philos. Mag. 1969,19:835
    153 M. Koos, S. H. S. Moustafa, E. Szilagyi, I. Pocsik. Non-Arrhenius Temperature Dependence of Direct-Current Conductivity in Amorphous Carbon (ta-C:H) above Room Temperature. Diamond Relat. Mater. 1999,8(10):1919~1926
    154 G. Lazar, K. Zellama, M. Clin, C. Godet. Band Tail Hopping Conduction Mechanism in Highly Conductive Amorphous Carbon Nitride Thin Films. Appl. Phys. Lett. 2004,85(25):6176~6178
    155 C. Godet. Physics of Bandtail Hopping in Disordered Carbons. Diamond Relat. Mater. 2003,12(2):159~165
    156 J. J. Hauser, J. R. Patel. Hopping Conductivity in C-Implanted Amorphous Diamond, or How to Ruin A Perfectly Good Diamond. Solid State. Commun. 1976,18(7):789~790
    157 S. Kumar, C. Godet, A. Goudovskikh, J. P. Kleider, G. Adamopoulos, V. Chu. High-Field Transport in Amorphous Carbon and Carbon Nitride Films. J. Non-Cryst. Solids. 2004,338-340:349~352
    158 W. L. Zhang, Y. B. Xia, J. H. Ju, L. J. Wang, Z. J. Fang, M. L. Zhang. Electrical Conductivity of Nitride Carbon Films with Different Nitrogen Content. Solid State Commun. 2003,126(3):163~166
    159 J. L. Freeouf, J. M. Woodall. Schottky Barriers: An Effective Work Function Model. Appl. Phys. Lett. 1981,39(9):727~729
    160 H. B. Suffredini, V. A. Pedrosa, L. Codognoto, S. A. S. Machado, R. C. Rocha-Filho, L. A. Avaca. Enhanced Electrochemical Response of Boron-Doped Diamond Electrodes Brought on by A Cathodic Surface Pre-treatment. Electrochim. Acta. 2004,49(22-23):4021~ 4026
    161 G. R. Salazar-Banda, L. S. Andrade, P. A. P. Nascente, P. S. Pizani, R. C. Rocha, L. A. Avaca. On the Changing Electrochemical Behaviour of Doron-Doped Diamond Surfaces with Time After Cathodic Pre-treatments. Electrochim. Acta. 2006,51(22):4612~4619
    162 R. Hauert. A Review of Modified ta-C Coatings for Biological Applications. Diamond Relat. Mater. 2003,12(3-7):583~589
    163 A. Grill. Diamond-Like Carbon Coatings as Biocompatible Materials - An Overview. Diamond Relat. Mater. 2003,12(2):166~170
    164 R. J. Narayan. Nanostructured Diamondlike Carbon Thin Films for MedicalApplications. Mat. Sci. Eng. C. 2005,25(3):405~416
    165 R. Maalouf, A. Soldatkin, O. Vittori, M. Sigaud, Y. Saikali, H. Chebib, A. S. Loir, F. Garrelie, C. Donnet, N. Jaffrezic-Renault. Study of Different Carbon Materials for Amperometric Enzyme Biosensor Development. Mat. Sci. Eng. C. 2006,26(2-3):564~567
    166 N. J. Ianno, R. O. Dillon, A. Ahbad, A. Ali. Deposition of Diamond-Like Carbon on A Titanium Biomedical Alloy. Thin Solid Films. 1995,270(1-2):275~278
    167 V. Novotny, N. Staud. Correlation Between Environmental and Electrochemical Corrosion of Thin Film Magnetic Recording Media. J. Electrochem. Soc. 1988,135(12):2931~2938
    168 P. K. Chu, J. Y. Chen, L. P. Wang, N. Huang. Plasma-Surface Modification of Biomaterials. Mater. Sci. Eng. R. 2002, 36(5-6):143~206
    169 C. L. Liu, D. P. Hu, J. Xu, D. Z. Yang, M. Qi. In Vitro Electrochemical Corrosion Behavior of Functionally Graded Diamond-Like Carbon Coatings on Biomedical Nitinol Alloy. Thin solid films. 2006,496(2):457~462
    170 T. Saito, T. Hasebea, S. Yohena, Y. Matsuoka, A. Kamijo, K. Takahashi, T. Suzuki. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films. Diamond Relat. Mater. 2005,14(3-7):1116~1119
    171 T. I. T. Okpalugo, A. A. Ogwu, P. D. Maguire, J. A. D. McLaughlin. Platelet Adhesion on Silicon Modified Hydrogenated Amorphous Carbon Films. Biomaterials. 2004,25(2):239~245
    172 S. Zhang, H .J. Du, S. E. Ong, K. N. Aung, H. C. Too, X. G. Miao. Bonding Structure and Haemocompatibility of Silicon-Incorporated Amorphous Carbon. Thin Solid Films. 2006,515(1):66~72
    173 G. J. Wan, P. Yang, R. K. Y. Fu, Y. F. Mei, T. Qiu, S. C. H. Kwok, J. P. Y. Ho, N. Huang, X. L. Wu, P. K. Chu. Characteristics and Surface Energy of Silicon-Doped Diamond-Like Carbon Films Fabricated by Plasma Immersion Ion Implantation and Deposition. Diamond Relat. Mater. 2006,15(9):1276~1281
    174 F. Z. Cui, X. L. Qing, D. J. Li, J. Zhao. Biomedical Investigations on CNx Coating. Surf. Coat. Tech. 2005,200(1-4):1009~1013
    175 S. C. H. Kwok, P. Yang, J. Wang, X. Y. Liu, P. K. Chu. Hemocompatibility ofNitrogen-Doped, Hydrogen-Free Diamond-Like Carbon Prepared by Nitrogen Plasma Immersion Ion Implantation-Deposition. J. Biomed. Mater. Res. A. 2004,70A(1):107~114
    176 M. K. Fung, K. H. Lai, C. Y. Chan, I. Bello, C. S. Lee, S. T. Lee, D. S. Mao, X. Wang. Mechanical Properties and Corrosion Studies of Amorphous Carbon on Magnetic Disks Prepared by ECR Plasma Technique. Thin Solid Films. 2000,368(1-2):198~202
    177 B. Tomcik, T. Osipowicz, J. Y. Lee. Diamond-Like Film as A Corrosion Protective Layer on the Hard Disk. Thin Solid Films. 2000,360(1-2):173~180
    178 P. Papakonstantinou, J. F. Zhao, A. Richardot, E. T. McAdams, J. A. McLaughlin. Evaluation of Corrosion Performance of Ultra-Thin Si-ta-C Overcoats with Electrochemical Impedance Spectroscopy. Diamond Relat. Mater. 2002,11(3-6):1124~1129
    179 D. Y. Wang, Y. Y. Chang, C. L. Chang, Y. W. Huang. Deposition of Diamond-Like Carbon Films Containing Metal Elements on Biomedical Ti Alloys. Surf. Coat. Tech. 2005,200(7):2175~2180
    180 M. L. Morrison, R. A. Buchanan, P. K. Liaw, C. J. Berry, R. L. Brigmon, L. Riester, H. Abernathy, C. Jin, R. J. Narayan. Electrochemical and Antimicrobial Properties of Diamondlike Carbon-Metal Composite Films. Diamond Relat. Mater. 2006,15(1):138~146
    181 T. Young. Philos. Trans. R. Soc. Lond. 1805,95:65
    182 C. J. Van Oss, M. K. Chaudhury, R. J. Good. Interfacial Lifshitz-Van Der Waals and Polar Interactions in Macroscopic Systems. Chem. Rev. 1988,88(6):927~941
    183 K. Park, F. W. Mao, H. Park. Morphological Characterization of Surface-Induced Platelet Activation. Biomaterials. 1989,11(1):24~31
    184 S. L. Goodman, M. D. Lelah, L. K. Lambrecht, S. L. Cooper, R. M. Albrecht. In Vitro vs. Ex Vivo Platelet Deposition on Polymer Surfaces. Scan. Electron. Microsc. 1984,1:279
    185 B. D. Ratner, A. B. Johnston, T. J. Lenk. Tissue Biocompatibility of Kevlar Aramid Fibers and Polymethylmethacrylate, Composites in Rabbits. J. Biomed. Mater. Res. 1987,21(1):59~64
    186 L. J. Yu. Haemocompatibility of Tetrahedral Amorphous Carbon Films. Surf.Coat. Tech. 2000,128-129(1):484~488
    187 B. Matthes, E. Brozeit, J. Aromaa, H. Ronkainen, S. P. Hannula, A. Leyland, A. Matthews. Corrosion Performance of Some Titanium-Based Hard Coatings. Surf. Coat. Technol. 1991,49(1-3):489~495
    188 L. Y. Ostrovskaya. Studies of Diamond and Diamond-Like Film Surfaces using XAES, AFM and Wetting. Vacuum. 2003,68(3):219~238
    189 A. D. Reisel, C. Schurer, G. Irmer, E. Muller. Electrochemical Corrosion Behaviour of Uncoated and ta-C Coated Medical Grade Co28Cr6Mo. Surf. Coat. Tech. 2004,177-178:830~837
    190张晓梅,熊嘉骢,雷闽昆,卢军,朱鹰.金诺芬薄层色谱分析.贵金属. 1999,20(4):31~34
    191邓永沛,赵红秋,江龙.纳米金颗粒在仿生工程中的应用.中国基础利学. 2000,9:11~17
    192 U. Schmidt, M. Donten, J. G. Osteryoung. Gold Electrocrystallization on Carbon and Highly Oriented Pyrolytic Graphite from Concentrated Solutions of LiCl. J. Electrochem. Soc. 1997,144 (6):2013~2021
    193 S. X. Huang, H. Y. Ma, X. K. Zhang, F. F. Yong, X. L. Feng, W. Pan, X. N. Wang, Y. Wang, S. H. Chen. Electrochemical Synthesis of Gold Nanocrystals and Their 1D and 2D Organization. J. Phys. Chem. B. 2005,109(42):19823~19830
    194 A. C. Hill, R. E. Patterson, J. P. Sefton, M. R. Columbia. Effect of Pb(II) on the Morphology of Platinum Electrodeposited on Highly Oriented Pyrolytic Graphite. Langmuir. 1999,15(11):4005~4010
    195 L. Y. Zhao, A. C. L. Siu, J. A. Petrus, Z. H. He, K. T. Leung. Interfacial Bonding of Gold Nanoparticles on A H-terminated Si(100) Substrate Obtained by Electro- and Electroless Deposition. J. Am. Chem. Soc. 2007,129(17):5730~5734
    196 A. J. Bard, L. R. Faulkner. Electrochemical Methods: Fundamentals and Application. 2nd ed. John Wiley and Sons: 2000.
    197 B. Scharifker, G. Hills. Theoretical and Experimental Studies of Multiple Nucleation. Electrochimica. Acta. 1983,28(7):879~889
    198 B. R. Scharifker, J. Mostany. Three-Dimensional Nucleation with Diffusion Controlled Growth: Part I. Number Density of Active Sites and NucleationRates Per Site. J. Electroanal. Chem. 1984,177(1-2):13~23
    199 G. Trejo, A. F. Gil, I. Gonzalez. Temperature Effect on the Electrocrystallization Processes of Gold in Ammoniacal Medium. J. Electrochem. Soc. 1995,142(10):3404~3408
    200 G. Oskam, P. C. Searson. Electrochemistry of Gold Deposition on N-Si(100). J. Electrochem. Soc. 2000,147(6):2199~2205
    201 J. W. Lee, J. D. Helmann. The PerR Transcription Factor Senses H2O2 by Metal-Catalysed Histidine Oxidation. Nature. 2006,440(7082):363~367
    202 G. Wang, S. T. Yau. Enzyme-Immobilized SiO2-Si Electrode: Fast Interfacial Electron Transfer with Preserved Enzymatic Activity. Appl. Phys. Lett. 2005,87(25):253901
    203 X. H. Wang, Y. Chen, K. A. Gibney, S. Erramilli, P. Mohanty. Silicon-Based Nanochannel Glucose sensor. Appl. Phys. Lett. 2008,92(1):013903
    204 L. Wang, E. K. Wang. A Novel Hydrogen Peroxide Sensor Based on Horseradish Peroxidase Immobilized on Colloidal Au Modified ITO Electrode. Electrochem. Commun. 2004,6(2):225~229
    205 N. Labat-Allietta, D. R. Thevenot. Influence of Calcium on Glucose Biosensor Response and on Hydrogen Peroxide Detection. Biosens. Bioelectron. 1998,13(1):19~29
    206 W. W. Chen, H. Yao, C. H. Tzang, J. J. Zhu, M. S. Yang, S. T. Lee. Silicon Nanowires for High-Sensitivity Glucose Detection. Appl. Phys. Lett. 2006,88(21):213104
    207 G. Wang, K. Mantey, M. H. Nayfeh, S. T. Yau. Enhanced Amperometric Detection of Glucose using Si29 Particles. Appl. Phys. Lett. 2006,89(24):243901
    208 B. S. Kang, H. T. Wang, F. Ren, S. J. Pearton, T. E. Morey, D. M. Dennis, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum. Enzymatic Glucose Detection using ZnO Nanorods on the Gate Region of AlGaN/GaN High Electron mobility Transistors. Appl. Phys. Lett. 2007,91(25):252103
    209 N. V. Kulagina, A. C. Michael. Monitoring Hydrogen Peroxide in the Extracellular Space of the Brain with Amperometric Microsensors. Anal. Chem. 2003,75(18):4875~4881
    210 T. You, O. Niwa, M. Tomita, S. Hirono. Characterization of Platinum Nanoparticle-Embedded Carbon Film Electrode and Its Detection of Hydrogen Peroxide. Anal. Chem. 2003,75(9):2080~2085
    211 X. L. Gao, Q. Z. Xue, L. Z. Hao, Q. B. Zheng, Q. Li. Ammonia Sensitivity of Amorphous Carbon Film/Silicon Heterojunctions. Appl. Phys. Lett. 2007,91(12):122110
    212 R. Maalouf, H. Chebib, Y. Saikali, O. Vittori, M. Sigaud, F. Garrelie, C. Donnet, N. Jaffrezic-Renault. Characterization of Different Diamond-Like Carbon Electrodes for Biosensor Design. Talanta. 2007,72(1):310~314
    213 R. Martins, P. Baptista, L. Raniero, G. Doria, L. Silva, R. Franco, E. Fortunato. Amorphous/Nanocrystalline Silicon Biosensor for the Specific Identification of Unamplified Nucleic Acid Sequences using Gold Nanoparticle Probes. Appl. Phys. Lett. 2007,90(2):023903
    214 T. Selvaraju, R. Ramaraj. Simultaneous Determination of Ascorbic Acid, Dopamine and Serotonin at Poly(phenosafranine) Modified Electrode. Electrochem. Commun. 2003,5(8):667~672
    215 Y. X. Li, X. Q. Lin. Simultaneous Electroanalysis of Dopamine, Ascorbic Acid and Uric Acid by Poly(vinyl alcohol) Covalently Modified Glassy Carbon Electrode. Sens. Actuat. B. 2006,115(1):134~139
    216 S. M. Chen, W. Y. Chzo. Simultaneous Voltammetric Detection of Dopamine and Ascorbic Acid using Didodecyldimethylammonium Bromide (DDAB) Film-Modified Electrodes. J. Electroanal. Chem. 2006,587(2):226~234
    217 O. Arrigoni, M. Tullio. Ascorbic Acid: Much More Than Just An Antioxidant. Biochim. Biophys. Acta. 2002,1569:1~9
    218 G. A. Gerhardt, A. F. Oke, F. Nagy, B. Moghaddam, R. N. Adams. Nafion-Coated Electrodes with High Selectivity for CNS Electrochemistry. Brain Res. 1894,290(2):390~395
    219 J. M. Zen, Y. J. Chen, C. T. Hsu, Y. S. Ting. Poly(4-vinylpyridine)-Coated Chemically Modified Electrode for the Detecion of Uric Acid in the Presemce of A High Concentration of Ascorbic Acid. Electroanalysis. 1997,9(13):1009~1012
    220 C. Aleksander, M. Grzegorz. Polyeugenol-Modified Platinum Electrode for Selective Detecetion of Dopamine in the Presence of Ascorbic Acid. Anal.Chem. 1997,71:1055~1061

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700