碳基和类碳超硬材料的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寻找既能满足刀具和耐磨涂层等工业要求,又能弥补金刚石和立方氮化硼应用局限性的新型超硬材料一直是材料科学研究的热点。在众多新合成和潜在的超硬材料中,碳基和类碳单质或化合物占据了很大比重。其中材料的维度、尺寸、组分、密度以及键的杂化状态对碳基和类碳材料的硬度等力学性能至关重要,对它们的研究,可以加深人们对超硬材料硬度起源的理解,并为设计和预言超硬相提供可靠的理论依据。为了探讨这些参数与力学性能的关系,本论文提出从第一性原理弹性模量估算硬度的经验公式,并系统讨论从自组装碳新相,到类碳P-BN相和富硼的AlMgB14晶体,再到非晶态的玻璃碳、二元CNx和B-C-N三元体系,最后到低维度的纳米金刚石、金刚石纳米线以及碳的新层状结构等碳基和类碳基材料的结构、力学性能以及电子结构。
     首先,利用密度泛函理论(DFT)输出的弹性模量或者简单的原子结构参数估算固体硬度,对于理解和从理论上预测超硬材料至关重要。论文统计了常见共价晶体化合物的弹性模量与维氏硬度的实验值,并分别拟合维氏硬度与体弹性模量、剪切模量和杨氏模量的关系。基于第一性原理计算和上述E-Hv和G-Hv关系,估算目前被普遍认为的几种超硬材料的维氏硬度。我们拟合的经验G-Hv和E-Hv线性关系建立了从第一性原理弹性常数到材料微观硬度之间的桥梁。
     从二维石墨烯片层出发,我们构造了两类空隙尺寸、手性和成键比率可调的,具有较大比表面积的三维共价石墨烯聚合物,它们拥有良好的稳定性、优异的力学和电学性能。与它们的母体二维石墨烯和三维石墨相比,本文提出的三维石墨烯自组装聚合物表现出高的杨氏模量、理想强度以及可调的半导体能隙,因而在许多领域具有潜在的应用,例如半导体器件、能量存储、分子筛等。除了高密度的ZGM-12,zigzag系列的石墨烯自组装网络结构还具有负的线性压缩率,即这些材料的体积压缩时,沿某个方向的晶格常数膨胀,从而在压力敏感器件、无线电通讯以及光学材料方向有广泛的应用前景。各向异性的力学性能和特殊的洒架型通道构型是造成石墨烯聚合物表现出负的线性压缩率的主要原因。
     通过第一性原理计算预言了新的正交BN相(命名为P-BN;空间群为Pmn21),它的理论硬度和体弹性模量分别为60.5GPa和403GPa,可能是位于h-BN到w-BN过渡路径上的超硬亚稳相。而对于三元硼化物AlMgB14材料,我们从理论和实验上探讨了影响其硬度的因素并解释了硬度的起源。在实验上,我们得到了AlMgB14非晶薄膜材料并关注到其硬度随着B元素含量的增加而增加。同时在理论上,通过对AlMgB14和一系列基于B12二十面体材料的电子结构分析表明共同具有的B12二十面体骨架是决定硬度的主要因素。而Al和Mg等金属元素主要通过向B12单元的电荷转移对材料硬度进行微调。这类材料在工具、模具、微机械制造及航空航天关键零部件等领域具有重要的应用价值。
     受类金刚石薄膜的高硬度和良好力学性能的启发,本文研究了包含sp2和sp3杂化形式的一元无定形玻璃碳、二元的CN非晶和三元的B-C-N非晶薄膜的力学性能,它们自身或其在特定条件下可能具有较高的硬度,在许多领域有潜在应用。首先,我们提出了压力导致的玻璃碳相变的理论图像,并建立了玻璃碳的力学性能与成键类型之间的关系。在此基础上,预测了一个被命名为R3碳新的晶体相,并证实了它可以看作是非晶玻璃碳的雏形,提出了在快速冷凝熔融液体或者气体之外非晶化的另外一条路径。其次,应用第一性原理分子动力学模拟退火方法产生了四种不同化学计量比的CNx超原胞结构,进一步表征了它们的结构参数、键长和成键类型。事实上,在研究中并没有发现硬度超过6-C3N4的化合物,但是通过上述研究我们揭示出增强碳氮薄膜硬度的参数,这对实验上合成CN超硬材料有所启迪。另外,基于ta-C的结构和随机固溶体模型,本文绘出了形成能(Ef)、杨氏模量(E)以及韧性(B/G)在三元B-C-N相图中的分布图,并且预言原子百分比位于B:15-30at.%;C:50-60at.%;N:20-30at.%区间的B-C-N化合物同时拥有优异的力学性能、良好的延展性以及高的形成能力,上述理论结果为实验制备超硬非晶薄膜提供了很好的理论指导。
     最后,我们考察了维度和压力(应变)对低维金刚石或石墨烯同素异形体的力学和电学性能的影响。发现纳米金刚石的杨氏模量随颗粒尺寸的增加而增加,但低于体相金刚石值。根据理论计算结果,我们进一步拟合了纳米金刚石杨氏模量与尺寸的经验函数,为实验上制备出的不同尺寸的纳米金刚石提供了估算硬度的公式。金刚石纳米线的杨氏模量和理想强度随截面积的减小而降低,并表现出很强各向异性。除此之外,金刚石纳米线的带隙强烈依赖于它的尺寸、晶体取向和拉伸应变,这也说明了金刚石纳米线具有可调的能隙。我们还构建了平面结构的(4,8)石墨烯新型二维同素异形体,并通过第一性原理总能计算和分子动力学模拟证明其室温稳定性。上述石墨烯二维同素异形体是小带隙的半导体,具有可比拟石墨烯的力学性能。
The search for superhard materials is motivated by the need of industrial applications, e.g., cutting tool and resistant coatings, which might make up for the limitations of the traditionally known superhard materials such as diamond and c-BN. Recent experimental synthesis and theoretical design have mostly focused on the carbon-based and carbon-like covalent compounds formed by light weight elements such as boron (B), carbon (C), nitrogen (N), and oxygen (O). The mechanical properties and hardness of those materials strongly depend on their dimension, size, composition, density and bonding types, which are important for investigating the origin of hardness and further providing the reasonable proof for predicting and designing superhard materials. In this thesis, we propose an empirical formula to build up a bridge between Vickers hardness and first-principles calculations, and discuss the structural parameters, mechanical, and electronical properties of carbon-related materials, including sp2and sp3mixed graphene monolith, crystalline P-BN and AlMgB14, amorphous glassy carbon, CNX and ternary B-C-N, and low-dimensional nanodiamond, nanowires, and new graphene allotrope.
     From a statistical manner, we collect and correlate experimental bulk (B), shear (G), Young's modulus (E), and ductility (G/B) with Vickers hardness (Hv) for a number of covalent materials and fit quantitative Hv-G and Hv-E relationships in Chapter2. Using these experimental formulas and first-principles calculations, we further predict the microhardness of some novel potential hard/superhard covalent compounds (BC2N, AlMgB14, TiO2, ReC, and PtN2). None of them belong to superhard materials (Hv≥40GPa) except BC2N. The present empirical formula builds up a bridge between Vickers hardness and first-principles calculations that is useful to evaluate and design promising hard/sup erhard materials.
     One of great challenges in the field of graphene applications is to fabricate three dimensional graphene products which could inherit its excellent intrinsic properties and overcome its shortcomings. In Chapter3, we construct two classes of3-D graphene monoliths (GMs) with high surface area based on width-adjustable zigzag and armchair graphene nanoribbons as building blocks and sp3carbon linkers. Such design goes beyond previous widely used physical interaction and shows favorable cohesive energy and appreciable mechanical/dynamic stability. On account of their tailored motifs, wine rack pores and rigid sp3linkers, both two classes of GMs have high specific surface area, strong mechanical strengths, tunable band gap, and subtle negative or positive linear compressibility. By solving the zero band gap and dimensional problems of single layer nanosheet simultaneously, these new GM materials offer a viable strategy for realizing many promising applications, including semiconductor devices, energy storage, molecular sieves, sensitive pressure detectors, telecommunication line systems, and environment and biological field.
     Using first-principles calculations, we identify a new orthorhombic BN phase (namely, P-BN; space group:Pmn21), whose theoretical hardness and bulk modulus are403GPa and60.5GPa, respectively, comparable to those of c-BN. This P-BN phase, along with Bct-BN and Z-BN, is suggested as possible intermediate phases between h-BN and w-BN. For Al-Mg-B amorphous film, we discuss and explain the origin of hardness from both the theoretical and experimental sides. For the Al-Mg-B films along the AlMg isocontent line, nanoindentation test indicates that the hardness of films increases with increasing boron contents. Meanwhile, based on the electron density of states and Mulliken population analysis, the crystal hardness is primarily determined by the B12icosahedral skeleton, whereas the contributions of metal atoms manifest as the electron donor to boron atoms. These materials may be useful in the fields of mechanical, aerospace and military.
     Motivated by the superior hardness and Young's modulus of diamond-like carbon (DLC) films, in Chapter5, we investigate the mechanical properties of sp2and sp3mixed glassy carbon, carbon nitride and ternary B-C-N films. We provide the theoretical picture of pressure-induced phase transfonnation in glassy carbon (GC) and correlation the hardness and bond types. Moreover, we predict a new crystalline carbon allotrope possessing R3symmetry (R3-carbon) using the stochastic quenching (SQ) method. The present results indicate that R3-carbon can be regarded as an allotrope similar to that of amorphous GC. A very small energy difference and the similarity of GC and the R3-carbon structures imply that small perturbations to this crystalline carbon allotrope may provide another possible pathway to amorphization of carbon besides quenching the liquid melt or gas by ultra-fast cooling. Based on ab initio molecular dynamics method, four amorphous CNX structures with different stoichiometries (CN0.47, CN0.67, CN0.92, and CN1.3) were generated within a100-atom supercell. Unfortunately, there is no superhard composition whose hardness can be comparable to those of diamond and P-C3N4. Characterizations of the pair correlation functions, bond length and the fraction of bond types of the amorphous carbon nitrides reveals that the N content in such structures plays a key role in determining the structural networks. Based on the structures of ta-C and random solution model, we present the distributions of mechanical properties and formation ability of amorphous BxCyNz solids on the ternary B-C-N phase diagram and predicted that on the phase area (B:15-30at.%; C:50-60at.%; N: 20-30at.%), B-C-N solids possess both excellent hardness and good formation ability. These theoretical results provide valuable guidance for intentionally synthesizing BxCyN7materials with desirable mechanical properties.
     In Chapter6, mechanical and electronic properties of selected low dimensional carbon-based materials under different dimensionals, pressure, and strain have been investigated by means of density functional theory calculations. The computed Young's moduli of nanodiamonds are lower than the bulk value and increase with size, which can be fitted to an empirical function of diameter. For thinner diamond nanowires (area of cross section less than0.6tim2), the Young's modulus and ideal strength of these diamond nanowires decrease with decreasing cross section and show anisotropic effects. Moreover, the band gap of diamond nanowires is sensitive to the size, crystallographic orientation and tensile strain, implying the possibility of a tunable gap. Then, from first-principles calculations, we predict a planar stable graphene allotrope composed of a periodic array of tetragonal and octagonal (4,8) carbon rings. The stability of this sheet is examined by the room-temperature molecular dynamics simulation and the electronic structure is studied using state-of-the-art calculations such as the hybrid density functional and the GW approach. We find a stable planar semiconducting carbon sheet with a band gap between0.43and1.01eV with excellent mechanical properties as good as graphene's.
引文
[1]Sung C. M., Sung M. Carbon nitride and other speculative superhard materials [J]. Materials Chemistry and Physics,1996,43:1-18.
    [2]Wentorf R. H., DeVries R. C., Bundy F. P. Sintered superhard materials [J]. Science, 1980,280:873-880.
    [3]Veprek S. The search for novel, superhard materials [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,1999,17:2401-2420.
    [4]Kaner R. B., Gilman J. J., Tolbert S. H. Designing Superhard Materials [J]. Science,2005, 308:1268-1269.
    [5]Brazhkin V. V., Lyapin A. G., Hemley R. J. Harder than diamond:Dreams and reality [J]. Philosophical Magazine A,2002,82:231-253.
    [6]Kurakevych O. O. Superhard phases of simple substances and binary compounds of the B-C-N-O system:from diamond to the latest results (a Review) [J]. Journal of Superhard Materials,2009,31:139-157.
    [7]Wentorf J. R. H. Cubic Form of Boron Nitride [J]. The Journal of Chemical Physics,1957,26:956-956.
    [8]Tian Y., et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature,2013,493:385-388.
    [9]Cohen M. L. Predicting Useful Materials [J]. Science,1993,261:307-308.
    [10]Miller E. D., Nesting D. C., Badding J. V. Quenchable Transparent Phase of Carbon [J]. Chemistry of Materials,1997,9:18-22.
    [11]Titantah J. T., Lamoen D. Energy-loss near-edge structure changes with bond length in carbon systems [J]. Physical Review B,2005.72:193104.
    [12]Wang X. C., Li Z. Q., Wu P., et al. Structural and mechanical properties of facing-target sputtered amorphous CNx films [J]. Diamond and Related Materials,2006,15:1732-1737.
    [13]Iwasa Y., Arima T., Fleming R. M., et al. New Phases of C60 Synthesized at High Pressure [J]. Science,1994,264:1570-1572.
    [14]Bundy F. P. Direct Conversion of Graphite to Diamond in Static Pressure Apparatus [J]. Science,1962, 137:1057-1058.
    [15]Irifune T., Kurio A., Sakamoto S., et al. Materials:Ultrahard polycrystalline diamond from graphite [J]. Nature,2003,421:599-600.
    [16]Chung H.-Y., Weinberger M. B., Levine J. B., et al. Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure [J]. Science,2007,316:436-439.
    [17]Cumberland R. W., Weinberger M. B., Gilman J. J., et al. Osmium Diboride, An Ultra-Incompressible, Hard Material [J]. Journal of the American Chemical Society,2005,127:7264-7265.
    [18]Gregoryanz E., Sanloup C., Somayazulu M., et al. Synthesis and characterization of a binary noble metal nitride [J]. Nat Mater,2004,3:294-297.
    [19]Crowhurst J. C, Goncharov A. F., Sadigh B., et al. Synthesis and Characterization of the Nitrides of Platinum and Iridium [J]. Science,2006,311:1275-1278.
    [20]Young A. F., Sanloup C., Gregoryanz E., et al. Synthesis of Novel Transition Metal Nitrides IrN2 and OsN2 [J]. Physical Review Letters,2006,96:155501.
    [21]Gu Q., Krauss G., Steurer W. Transition Metal Borides:Superhard versus Ultra-incompressible [J]. Advanced Materials,2008,20:3620-3626.
    [22]Kaner R. B., Kouvetakis J., Warble C. E., et al. Boron-carbon-nitrogen materials of graphite-like structure [J]. Materials Research Bulletin,1987,22:399-404.
    [23]Kouvetakis J., Todd M., Wilkens B., et al. Novel Synthetic Routes to Carbon-Nitrogen Thin Films [J]. Chemistry Of Materials,1994,6:811-814.
    [24]Shirasaki T., Derre A., Menetrier M., et al. Synthesis and characterization of boron-substituted carbons [J]. Carbon,2000,38:1461-1467.
    [25]Solozhenko V. L. Synthesis of Novel Superhard Phases in the B-C-N System [J]. High Pressure Research,2002,22:519-524.
    [26]Solozhenko V. L., Andrault D., Fiquet G., et al. Synthesis of superhard cubic BC2N [J]. Applied Physics Letters,2001,78:1385-1387.
    [27]Solozhenko V. L., Kurakevych 0.0., Andrault D., et al. Ultimate Metastable Solubility of Boron in Diamond:Synthesis of Superhard Diamondlike BC5 [J]. Physical Review Letters,2009,102:015506.
    [28]Endo T., Sato T., Shimada M. High-pressure synthesis of B2O with diamond-like structure [J]. Journal of Materials Science Letters,1987,6:683-685.
    [29]Ming L. C., Zinin P., Meng Y., et al. A cubic phase of C3N4 synthesized in the diamond-anvil cell [J]. Journal of Applied Physics,2006,99:033520-033526.
    [30]Solozhenko V. L., Kurakevych O. O., Oganov A. R. On the hardness of a new boron phase, orthorhombic y-B28 [J]. Journal of Superhard Materials,2008,30:428-429.
    [31]Bullett D. W. Structure and bonding in crystalline boron and B12C3 [J]. Journal of Physics C:Solid State Physics,1982,15:415.
    [32]Kurakevych O. O., Solozhenko V. L. Rhombohedral boron subnitride, B13N2, by X-ray powder diffraction [J]. Acta Crystallographica Section C,2007,63:i80-i82.
    [33]H. F. Rizzo, Simmons W. C., Bielstein H. O. The Existence and Formation of the Solid B6O [J]. Journal of the electrochemical society,1962,109:1079-1082.
    [34]Lundstro'm T., Andreev Y. G. Superhard boron-rich borides and studies of the BCN system [J]. Materials Science and Engineering:A,1996,209:16-22.
    [35]Teter D. M., hemley R. J. Low-Compressibility carbon nitrides [J]. Science,1996,271:53-55.
    [36]Mukhanov V. A., Kurakevych O. O., Solozhenko V. L. Thermodynamic aspects of materials'hardness: prediction of novel superhard high-pressure phases [J]. High Pressure Research,2008,28:531-537.
    [37]Veprek S., Argon A. S., Zhang R. F. Design of ultrahard materials:Go nano! [J]. Philosophical Magazine,2010.90:4101-4115.
    [38]Tian Y., Xu B., Zhao Z. Microscopic theory of hardness and design of novel superhard crystals [J]. International Journal of Refractory Metals and Hard Materials,2012,33:93-106.
    [39]Dubrovinskaia N., Solozhenko V. L., Miyajima N., et al. Superhard nanocomposite of dense polymorphs of boron nitride:Noncarbon material has reached diamond hardness [J]. Applied Physics Letters, 2007,90:101912-101913.
    [40]Oganov A. R., Chen J., Gatti C, et al. Ionic high-pressure form of elemental boron [J]. Nature,2009, 457:863-867.
    [41]Aisenberg S., Chabot R. Ion-Beam Deposition of Thin Films of Diamondlike Carbon [J]. Journal Of Applied Physics,1971,42:2953-2958.
    [42]Chhowalla M. Thick, well-adhered, highly stressed tetrahedral amorphous carbon [J]. Diamond And Related Materials,2001,10:1011-1016.
    [43]Lossy R., Pappas D. L., Roy R. A., et al. Filtered arc deposition of amorphous diamond [J]. Applied Physics Letters,1992,61:171-173.
    [44]Ferrari A. C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Physical Review B,2000,61:14095-14107.
    [45]Lin Y., Zhang L., Mao H. K., et al. Amorphous Diamond:A High-Pressure Superhard Carbon Allotrope [J]. Physical Review Letters,2011,107:175504.
    [46]S. R. R., L. R. A. Is C60 Stiffer than Diamond? [J]. Nature,1991,350:663-664.
    [47]Yu M.-F., Files B. S., Arepalli S., et al. Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties [J]. Physical Review Letters,2000,84:5552-5555.
    [48]Ivanovskaya V. V., Ivanovskii A. L. Simulation of novel superhard carbon materials based on fullerenes and nanotubes [J]. Journal of Superhard Materials,2010,32:67-87.
    [49]Duclos S. J.. Brister K., Haddon R. C, et al. Effects of pressure and stress on C60 fullerite to 20 GPa [J]. Nature,1991,351:380-382.
    [50]Moseler M., Riedel H., Gumbsch P., et al. Understanding of the Phase Transformation from Fullerite to Amorphous Carbon at the Microscopic Level [J]. Physical Review Letters,2005,94:165503.
    [51]Popov M., Kyotani M., Nemanich R. J.. et al. Superhard phase composed of single-wall carbon nanotubes [J]. Physical Review B,2002,65:033408.
    [52]Kern G., Kresse G., Hafner J. Ab initio calculation of the lattice dynamics and phase diagram of boron nitride [J]. Physical Review B,1999,59:8551-8559.
    [53]Laubengayer A. W., Hurd D. T., Newkirk A. E., et al. Boron. I. Preparation and Properties of Pure Crystalline Boron [J]. Journal of the American Chemical Society,1943,65:1924-1931.
    [54]Condon J. B., Holcombe C. E., Johnson D. H., et al. The kinetics of the boron plus nitrogen reaction [J]. Inorganic Chemistry,1976,15:2173-2179.
    [55]Lee H., Speyer R. F. Hardness and Fracture Toughness of Pressureless-Sintered Boron Carbide (B4C) [J]. Journal of the American Ceramic Society,2002,85:1291-1293.
    [56]Jansson U., Carlsson J. O. Chemical vapour deposition of boron carbides in the temperature range 1300-1500 K and at a reduced pressure [J]. Thin Solid Films,1985,124:101-107.
    [57]Solozhenko V. L., Dubrovinskaia N. A., Dubrovinsky L. S. Synthesis of bulk superhard semiconducting B-C material [J]. Applied Physics Letters,2004,85:1508-1510.
    [58]Hubert H., Garvie L. A. J., Devouard B., et al. High-Pressure, High-Temperature Synthesis and Characterization of Boron Suboxide (B6O) [J]. Chemistry of Materials,1998,10:1530-1537.
    [59]He D., Zhao Y., Daemen L., et al. Boron suboxide:As hard as cubic boron nitride [J]. Applied Physics Letters,2002,81:643-645.
    [60]Cohen M. L. Calculation of bulk moduli of diamond and zinc-blende solids [J]. Physical Review B, 1985,32:7988-7991.
    [61]Liu A. Y., Cohen M. L. Prediction of new low compressibility solids [J]. Science (New York, N.Y.), 1989,245:841-842.
    [62]Liu A. Y., Cohen M. L. Structural properties and electronic structure of low-compressibility materials: P-Si3N4 and hypothetical β-C3N4 [J]. Physical Review B,1990,41:10727-10734.
    [63]Zhao J., et al. Superhard B-C-N materials synthesized in nanostructured bulks [J]. Journal of Materials Reaserch,2002,17:3139-3145.
    [64]TETER, M. D., et al. Low-compressibility carbon nitrides [M]. Place:American Association for the Advancement of Science, Published,1996.
    [65]Sekine T.. Kanda H., Bando Y., et al. A graphitic carbon nitride [J]. Journal of Materials Science Letters,1990,9:1376-1378.
    [66]Wu Z., Yu Y., Liu X. Characteristics of carbon nitride films synthesized by single-source ion beam enhanced deposition system [J]. Applied Physics Letters,1996,68:1291-1293.
    [67]Johnson D. J., Chen Y., He Y., et al. Deposition of carbon nitride via hot filament assisted CVD and pulsed laser deposition [J]. Diamond and Related Materials,1997,6:1799-1805.
    [68]Gao F., He J., Wu E., et al. Hardness of Covalent Crystals [J]. Physical Review Letters,2003, 91:015502.
    [69]Simunek A., Vackar J. Hardness of Covalent and Ionic Crystals:First-Principle Calculations [J]. Physical Review Letters,2006,96:085501.
    [70]Liu A. Y., Wentzcovitch R. M., Cohen M. L. Atomic Arrangement and Electronic Structure of BC2N [J]. Phys. Rev. B,1989,39:1760-1765.
    [71]Nozaki H., Itoh S. Lattice dynamics of BC2N [J]. Phys. Rev. B,1996,53:14161-14170.
    [72]Saalfrank P., Rumler W., Hummel H.-U., et al. Energetics and gap engineering in alternating layer and intralayer substituted B-C-N compounds [J]. Synth. Metals,1992,52:1-19.
    [73]Mattesini M., Matar S. F. Search for untrahard material:theoretical characterisa-tion of novel orthorhombic BC2N crystals [J]. J. Inorg. Mater.,2001,3:943-957.
    [74]Zhang R. Q., Chan K. S., Cheung H. F., et al. Energetics of segregation in beta-C2BN [J]. Appl. Phys. Lett.,1999,75:2259-2261.
    [75]Tateyama Y., Ogitsu T., Kusakabe K., et al. Proposed synthesis path for heterodiamond BC2N [J]. Physical Review B,1997,75:2259-2261.
    [76]Sun H., Jhi S.-H., Roundy D., et al. Structural forms of cubic BC2N [J]. Physical Review B,2001, 64:94-108.
    [77]Zhang Y., Sun H., Chen C. Superhard Cubic BC2N Compared to Diamond [J]. Physical Review Letters, 2004,93:195504.
    [78]Mazzoni M. S. C., Nunes R. W., Azevedo S., et al. Electronic Structure and Energetics of Layered BxCyNz Structures [J]. Physical Review B.,2006,73:1081-1084.
    [79]Kawaguchi M., Kawashima T., Nakajima T. Syntheses and Structures of New Graphite-like Materials of Composition BCN(H) and BC3N(H) [J]. Chemical Materials,1996,8:1197-1201.
    [80]Watanabe M. O., Itoh S., Mizushima K., et al. Bonding characterization of BC2N thin films [J]. Applied Physical Letter,1996,68:2962-2964.
    [81]Kim H. S., Choi I. H., Baik Y.-J. Characteristics of carbon incorporated BN films deposited by radio frequency PACVD [J]. Surface. Coating Technology,2000,133-134:473-477.
    [82]Badzian A. R. Cubic boron nitride-diamond mixed crystals [J]. Material Research Bulletin,1981, 16:1385-1393.
    [83]Sasaki T., Akaishi M., Yamaoka S., et al. Simultaneous crystallization of diamond and cubic boron nitride from the graphite relative BC2N under high pressure high temperature conditions [J]. Chemical Materials, 1993,5:695-699.
    [84]Thomas L. H. The Calculation of Atomic Fields [J]. Proc. Cambridge Philos. Soc.,1927,23:542-548.
    [85]Fermi E. Un metodo statistico per la determinazione di alcune priorieta dell'atome [J]. Rendiconti Accademia Nazionale Lincei 1927,6:602-607.
    [86]Hohenberg P., Kohn W. Inhomogeneous Electron Gas [J]. Physical Review,1964,136:B864.
    [87]Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review,1965,140:A1133.
    [88]Stephens P. J., Devlin F. J., Chabalowski C. F., et al. Ab-Initio Calculation of Vibrational Absorption and Circular-Dichroism spectra uding density-functional force-fields [J]. Journal of Physical Chemistry,1994, 98:11623-11627.
    [89]Xu X., Goddard W. A. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties [J]. Proceedings of the National Academy of Sciences, 2004,101:2673-2677.
    [90]Adamo C., Barone V. Toward reliable density functional methods without adjustable parameters:The PBE0 model [J]. Journal of Chemical Physics,1999,110:6158-6170.
    [91]Becke A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior [J]. Physical Review A.1988,38:3098-3100.
    [92]Perdew J. P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B,1992,45:13244-13249.
    [93]Paier J., Marsman M., Hummer K., et al. Screened hybrid density functionals applied to solids [J]. The Journal of Chemical Physics,2006,124:154709-154713.
    [94]Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J]. Journal Of Computational Chemistry,2006,27:1787-1799.
    [95]Lee K., Murray E. D., Kong L., et al. Higher-accuracy van der Waals density functional [J]. Physical Review B,2010,82:081101.
    [96]Liechtenstein A. I., Anisimov V. I., Zaanen J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators [J]. Physical Review B,1995,52:R5467-R5470.
    [97]Shishkin M., Marsman M., Kresse G. Accurate Quasiparticle Spectra from Self-Consistent GW Calculations with Vertex Corrections [J]. Physical Review Letters,2007,99:246403.
    [98]Zhao J., Winey J. M., Gupta Y. M. First-principles calculations of second-and third-order elastic constants for single crystals of arbitrary symmetry [J]. Physical Review B,2007,75:094105.
    [99]Hill R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A,1952,65 349.
    [100]Wu Z.-j., Zhao E.-j., Xiang H.-p., et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B,2007,76:054115.
    [101]J. Haines J. M. L., and G. Bocquillon Synthesis and design of superhard materials [J]. Annual Review Mater. Research,2001.31:1-23.
    [102]Watt J. P., Peselnick L. Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries [J]. Journal Of Applied Physics,1980, 51:1525-1531.
    [103]Watt J. P. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry [J]. Journal Of Applied Physics,1979,50:6290-6295.
    [104]Watt J. P. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry [J]. Journal Of Applied Physics,1980,51:1520-1524.
    [105]Lazar P., Podloucky R., Wolf W. Correlating elasticity and cleavage [J]. Applied Physics Letters, 2005,87:261910-261913.
    [106]Li K., Wang X., Zhang F., et al. Electronegativity Identification of Novel Superhard Materials [J]. Physical Review Letters,2008,100:235504.
    [107]Liu A. Y., Cohen M. L. Prediction of New Low Compressibility Solids [J]. Science,1989, 245:841-842.
    [108]Haines J., Leger J. M., Bocquillon G. SYNTHESIS AND DESIGN OF SUPERHARD MATERIALS [J]. Annual Review of Materials Research,2003,31:1-23.
    [109]D.M.Teter Computational Alchemy:The Search for New Superhard Materials [J]. MRS Bulletin, 1998,23:22.
    [110]Teter D. M., Hemley R. J. Low-Compressibility Carbon Nitrides [J]. Science,1996,271:53.
    [111]Westbrook J. H., Conrad H. The Science of Hardness Testing and Its Research Applications [M]. Place:American Society for Metals, Metal Park, Published,1973.
    [112]Weber W. Lattice Dynamics of Transition-Metal Carbides [J]. Physical Review B,1973,8:5082.
    [113]van den Berg P. H. J., de With G. Residual stress and the stress-strain relation for Mg-PSZ [J]. Journal of the European Ceramic Society,1992,9:265-270.
    [114]Nelmes R. J., Loveday J. S., Allan D. R., et al. Neutron-and x-ray-diffraction measurements of the bulk modulus of boron [J]. Physical Review B,1993,47:7668.
    [115]Doughty C., Gorbatkin S. M., Tsui T. Y., et al. Hard boron-suboxide-based films deposited in a sputter-sourced, high-density plasma deposition system [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,1997,15:2623-2626.
    [116]Schwarz R. B., Khachaturyan K., Weber E. R. Elastic moduli of gallium nitride [J]. Applied Physics Letters,1997,70:1122-1124.
    [117]Nowak R., Pessa M., Suganuma M., et al. Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal [J]. Applied Physics Letters,1999,75:2070-2072.
    [118]Cook B. A., Harringa J. L., Lewis T. L., et al. A new class of ultra-hard materials based on AlMgB14 [J]. Scripta Materialia,2000,42:597-602.
    [119]Gusev A. I., Renpel A. A., Magerl A. J. Disorder and Order in Strongly Nonstoichiometric Compounds [M]. Place:Springer, Berlin, Published,2001.
    [120]Lugscheider E., Bobzin K., Barwulf S., et al. Mechanical properties of EB-PVD-thermal barrier coatings by nanoindentation [J]. Surface and Coatings Technology,2001,138:9-13.
    [121]Kucheyev S. O., Bradby J. E., Williams J. S., et al. Mechanical deformation of single-crystal ZnO [J]. Applied Physics Letters,2002,80:956-958.
    [122]Nesterenko V. F., Gu Y. Elastic properties of hot-isostatically-pressed magnesium diboride [J]. Applied Physics Letters,2003,82:4104-4106.
    [123]Okamoto N. L., Kusakari M., Tanaka K., et al. Temperature dependence of thermal expansion and elastic constants of single crystals of ZrB2 and the suitability of ZrB2 as a substrate for GaN film [J]. Journal of Applied Physics,2003,93:88-93.
    [124]Ozgur U., Alivov Y. I., Liu C., et al. A comprehensive review of ZnO materials and devices [J]. Journal of Applied Physics,2005,98:041301-041103.
    [125]Xiao-Jia Chen, Struzhkin V. V., Wu Z., et al. Hard superconducting nitrides [J]. proceeding of the National Academy of Sciences,2005,102:3198-3201.
    [126]Andrievskiy R. A. New Superhard Nanomaterials-Based High-Melting Point Compounds [J]. Proceeding of the Seventeenth (2007) International Offshore and Polar Engineering Conference,2007.
    [127]Fang T. H., Chang W., Lin C. M. Nanoindentation characterization of ZnO thin films [J]. Materials Science and Engineering:A,2007,452-453:715-720.
    [128]Chung H. Y., Weinberger M. B., Yang J. M., et al. Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2 [J]. Applied Physics Letters,2008, 92:261904-261903.
    [129]Kamran S., Chen K., Chen L. Semiempirical formulae for elastic moduli and brittleness of diamondlike and zinc-blende covalent crystals [J]. Physical Review B,2008,77:094109.
    [130]Prikhna T. A., et al. Peculiarities of high-pressure and hot-pressing manufacture of MgB2-based blocks with high critical currents for electrical machines [J]. Journal of Physics:Conference Series,2008, 97:012022.
    [131]Zhang X., Hilmas G. E., Fahrenholtz W. G. Synthesis, densification, and mechanical properties of TaB2 [J]. Materials Letters,2008,62:4251-4253.
    [132]Grabke H. J., Brumm M., Steinhorst M. Development of oxidation resistant high temperature intermetallics [J]. Materials Science and Technology,1992,8:339-344.
    [133]Pugh S. F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. Philosophical Magazine Series 7,1954,45:823-843.
    [134]Sun H., Jhi S. H., Roundy D., et al. Structural forms of cubic BC2N [J]. Physical Review B,2001, 64:094108.
    [135]Swamy V., Muddle B. C. Ultrastiff Cubic TiO2 Identified via First-Principles Calculations [J]. Physical Review Letters,2007,98:035502.
    [136]Lee Y., Harmon B. N. First principles calculation of elastic properties of AlMgB14 [J]. Journal of Alloys and Compounds,2002,338:242-247.
    [137]Gou H., Hou L., Zhang J., et al. Pressure-induced incompressibility of ReC and effect of metallic bonding on its hardness [J]. Applied Physics Letters,2008,92:241901-241903.
    [138]Yu R., Zhang X. F. Platinum nitride with fluorite structure [J]. Applied Physics Letters,2005, 86:121913-121913.
    [139]Wang M., Li Y., Cui T., et al. Origin of hardness in WB4 and its implications for ReB4, TaB4, MoB4, TcB4, and OsB4 [J]. Applied Physics Letters,2008,93:101905-101903.
    [140]Zhuang C., Zhao J., Jiang X., et al. Structural stability, mechanical and electronic properties of cubic BCxN crystals within a random solid solution model [J]. Journal of Physics:Condensed Matter,2009, 21:405401.
    [141]Higashi I., Kobayashi M., Okada S., et al. Boron-rich crystals in Al-M-B (M=Li, Be, Mg) systems grown from high-temperature aluminum solutions [J]. Journal of Crystal Growth,1993,128:1113-1119.
    [142]Delley B. An all electron numerical method for solving the local density functional for polyatomic molecules [J]. Journal of Chemical Physics,1990,92:508-517.
    [143]Delley B. From molecules to solids with the DMol3 approach [J]. Journal of Chemical Physics,2000. 113:7756-7764.
    [144]DFT plane-wave pseudopotential calculations are performed by using CASTEP. CASTEP is a first-principles package distributed by Accelrys Inc. [J].
    [145]Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B,1996,54:11169-11186.
    [146]Togo A., Oba F., Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures [J]. Physical Review B,2008,78:134106.
    [147]Novoselov K. S., Geim A. K., Morozov S. V., et al. Electric Field Effect in Atomically Thin Carbon Films [J]. Science,2004,306:666-669.
    [148]Chen D., Tang L., Li J. Graphene-based materials in electrochemistry [J]. Chemical Society Reviews, 2010,39:3157-3180.
    [149]Liang M., Luo B., Zhi L. Application of graphene and graphene-based materials in clean energy-related devices [J]. International Journal Of Energy Research,2009,33:1161-1170.
    [150]Allen M. J., Tung V. C., Kaner R. B. Honeycomb Carbon:A Review of Graphene [J]. Chemical Reviews,2009,110:132-145.
    [151]Novoselov K. S., Geim A. K., Morozov S. V., et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature,2005,438:197-200.
    [152]Kuchta B., Firlej L., Mohammadhosseini A., et al. Hypothetical High-Surface-Area Carbons with Exceptional Hydrogen Storage Capacities:Open Carbon Frameworks [J]. Journal Of The American Chemical Society.2012,134:15130-15137.
    [153]Worsley M. A., Kucheyev S. O., Mason H. E., et al. Mechanically robust 3D graphene macroassembly with high surface area [J]. Chemical Communications,2012,48:8428-8430.
    [154]Worsley M. A.. Olson T. Y., Lee J. R. I., et al. High Surface Area, sp'-Cross-Linked Three-Dimensional Graphene Monoliths [J]. The Journal of Physical Chemistry Letters,2011,2:921-925.
    [155]Son Y.-W., Cohen M. L., Louie S. G. Energy Gaps in Graphene Nanoribbons [J]. Physical Review Letters,2006,97:216803.
    [156]Yang L., Park C.-H., Son Y.-W., et al. Quasiparticle Energies and Band Gaps in Graphene Nanoribbons [J]. Physical Review Letters,2007,99:186801.
    [157]Castro Neto A. H., Guinea F., Peres N. M. R., et al. The electronic properties of graphene [J]. Reviews Of Modern Physics,2009,81:109-162.
    [158]Balog R., Jorgensen B., Nilsson L., et al. Bandgap opening in graphene induced by patterned hydrogen adsorption [J]. Nature Materials,2010,9:315-319.
    [159]Gao H., Wang L., Zhao J., et al. Band Gap Tuning of Hydrogenated Graphene:H Coverage and Configuration Dependence [J]. The Journal of Physical Chemistry C,2011,115:3236-3242.
    [160]Wang Y., Jaiswal M., Lin M., et al. Electronic Properties of Nanodiamond Decorated Graphene [J]. ACS Nano,2012,6:1018-1025.
    [161]Tang Z., Shen S., Zhuang J., et al. Noble-Metal-Promoted Three-Dimensional Macroassembly of Single-Layered Graphene Oxide [J]. Angewandte Chemie,2010,122:4707-4711.
    [162]Vickery J. L., Patil A. J., Mann S. Fabrication of Graphene-Polymer Nanocomposites With Higher-Order Three-Dimensional Architectures [J]. Advanced Materials,2009,21:2180-2184.
    [163]Worsley M. A., Pauzauskie P. J., Olson T. Y., et al. Synthesis of Graphene Aerogel with High Electrical Conductivity [J]. Journal Of The American Chemical Society,2010,132:14067-14069.
    [164]Diederich F., Kivala M. All-Carbon Scaffolds by Rational Design [J]. Advanced Materials,2010, 22:803-812.
    [165]Jo J. Y., Kim B. G. Carbon allotropes with triple bond predicted by first-principle calculation:Triple bond modified diamond and T-carbon [J]. Physical Review B,2012,86:075151.
    [166]Zhu Z., Tomanek D. Formation and Stability of Cellular Carbon Foam Structures:An Ab Initio Study [J]. Physical Review Letters,2012,109:135501.
    [167]Zhao Z., Xu B., Wang L.-M., et al. Three Dimensional Carbon-Nanotube Polymers [J]. ACS Nano, 2011,5:7226-7234.
    [168]Yamanaka S., Kubo A., Inumaru K., et al. Electron Conductive Three-Dimensional Polymer of Cuboidal C60 [J]. Physical Review Letters,2006,96:076602.
    [169]Kutana A., Giapis K. P. Transient Deformation Regime in Bending of Single-Walled Carbon Nanotubes [J]. Physical Review Letters,2006,97:245501.
    [170]Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B,1999,59:1758-1775.
    [171]Perdew J. P., Chevary J. A., Vosko S. H., et al. Atoms, Molecules, Solids, and Surfaces Applications of the Generalized Gradient Approximation for Exchange and Correlation [J]. Physical Review B, 1992,46:6671-6687.
    [172]Blochl P. E. Projector augmented-wave method [J]. Physical Review B,1994,50:17953-17979.
    [173]Godby R. W., Schluter M., Sham L. J. Accurate Exchange-Correlation Potential for Silicon and Its Discontinuity on Addition of an Electron [J]. Physical Review Letters,1986,56:2415-2418.
    [174]Kresse G., Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science,1996,6:15-50.
    [175]Roundy D., Krenn C. R., Cohen M. L., et al. Ideal Shear Strengths of fcc Aluminum and Copper [J]. Physical Review Letters,1999,82:2713-2716.
    [176]Zhang Y., Sun H., Chen C. Atomistic Deformation Modes in Strong Covalent Solids [J]. Physical Review Letters,2005,94:145505.
    [177]Lee S. H., Lee D. H., Lee W. J., et al. Tailored Assembly of Carbon Nanotubes and Graphene [J]. Advanced Functional Materials,2011,21:1338-1354.
    [178]Cao X., Shi Y., Shi W., et al. Preparation of Novel 3D Graphene Networks for Supercapacitor Applications [J]. Small,2011,7:3163-3168.
    [179]Wei D., Wang F. Relative stability of armchair, zigzag and reczag graphene edges on the Ru(0001) surface [J]. Surface Science,2012,606:485-489.
    [180]Chen Z., Ren W., Gao L., et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition [J]. Nature Materials,2011,10:424-428.
    [181]Pettes M. T., Ji H., Ruoff R. S., et al. Thermal Transport in Three-Dimensional Foam Architectures of Few-Layer Graphene and Ultrathin Graphite [J]. Nano Letters,2012,12:2959-2964.
    [182]Bloch E. D., Britt D., Lee C, et al. Metal Insertion in a Microporous Metal-Organic Framework Lined with 2,2'-Bipyridine [J]. Journal Of The American Chemical Society,2010,132:14382-14384.
    [183]Kim M., Cahill J. F., Fei H., et al. Postsynthetic Ligand and Cation Exchange in Robust Metal-Organic Frameworks [J]. Journal Of The American Chemical Society,2012,134:18082-18088.
    [184]Shigematsu A., Yamada T., Kitagawa H. Selective Separation of Water, Methanol, and Ethanol by a Porous Coordination Polymer Built with a Flexible Tetrahedral Ligand [J]. Journal Of The American Chemical Society,2012,134:13145-13147.
    [185]Xiao X., Beechem T. E., Brumbach M. T., et al. Lithographically Defined Three-Dimensional Graphene Structures [J]. ACS Nano,2012,6:3573-3579.
    [186]Gui G., Li J., Zhong J. Band structure engineering of graphene by strain:First-principles calculations [J]. Physical Review B,2008,78:075435.
    [187]Cocco G., Cadelano E., Colombo L. Gap opening in graphene by shear strain [J]. Physical Review B, 2010,81:241412.
    [188]Liu F., Ming P. M., Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension [J]. Physical Review B,2007,76.
    [189]Lee C., Wei X. D., Kysar J. W., et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science,2008,321:385-388.
    [190]Telling R. H., Pickard C. J., Payne M. C, et al. Theoretical Strength and Cleavage of Diamond [J]. Physical Review Letters,2000,84:5160-5163.
    [191]Field J. E. Properties of natural and synthetic diamond [M]. Place:Academic Press, Published,1992.
    [192]Fortes A. D., Suard E., Knight K. S. Negative Linear Compressibility and Massive Anisotropic Thermal Expansion in Methanol Monohydrate [J]. Science,2011,331:742-746.
    [193]Baughman R. H., Stafstrom S., Cui C., et al. Materials with Negative Compressibilities in One or More Dimensions [J]. Science,1998,279:1522-1524.
    [194]Newnham R. E., Properties of Materials, in, Oxford Univ Press, Oxford.2005.
    [195]McCann D. R., Cartz L.. Schmunk R. E., et al. Compressibility of Hexagonal Selenium by X-Ray and Neutron Diffraction [J]. Journal Of Applied Physics,1972,43:1432-1436.
    [196]Li W., Probert M. R., Kosa M., et al. Negative Linear Compressibility of a Metal-Organic Framework [J]. Journal Of The American Chemical Society,2012,134:11940-11943.
    [197]Cairns A. B., Thompson A. L., Tucker M. G., et al. Rational Design of Materials with Extreme Negative Compressibility:Selective Soft-Mode Frustration in KMn[Ag(CN)2]3 [J]. Journal Of The American Chemical Society,2011,134:4454-4456.
    [198]Goodwin A. L., Keen D. A., Tucker M. G. Large negative linear compressibility of Ag3[Co(CN)6] [J]. Proceedings of the National Academy of Sciences,2008,105:18708-18713.
    [199]Ortiz A. U., Boutin A., Fuchs A. H., et al. Anisotropic Elastic Properties of Flexible Metal-Organic Frameworks:How Soft are Soft Porous Crystals? [J]. Physical Review Letters,2012,109:195502.
    [200]Meng Y., Mao H.-k., Eng P. J., et al. The formation of sp3 bonding in compressed BN [J]. Nature Material,2004,3:111-114.
    [201]Taniguchi T., Sato T., Utsumi W., et al. In-situ X-ray observation of phase transformation of rhombohedral boron nitride under static high pressure and high temperature [J]. Diamond and Related Materials, 1997,6:1806-1815.
    [202]Kurdyumov A. V., Britun V. F., Petrusha I. A. Structural mechanisms of rhombohedral BN transformations into diamond-like phases [J]. Diamond and Related Materials,1996,5:1229-1235.
    [203]Lorenz H., Orgzall I. Influence of the initial crystallinity on the high pressure-high temperature phase transition in boron nitride [J]. Acta Materialia,2004,52:1909-1916.
    [204]Hromadova L., Martonak R. Pressure-induced structural transitions in BN from ab initio metadynamics [J]. Physical Review B,2011,84:224108.
    [205]Yu W. J., Lau W. M., Chan S. P., et al. Ab initio study of phase transformations in boron nitride [J]. Phvsical Review B.2003.67:014108.
    [206]Wen B., Zhao J., Melnik R., et al. Body-centered tetragonal B2N2:a novel sp3 bonding boron nitride polymorph [J]. Physical Chemistry Chemical Physics,2011,13:14565-14570.
    [207]Xu Y.-N., Ching W. Y. Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures [J]. Physical Review B,1991,44:7787-7798.
    [208]Donohue J. Structures of the elements [M]. Place:New York:Wiley, Published,1974.
    [209]Barbara A., Harald H. Boron:Elementary Challenge for Experimenters and Theoreticians [J]. Angewandte Chemie International Edition,2009,48:8640-8668.
    [210]Russell A. M., Cook B. A., Harringa J. L., et al. Coefficient of thermal expansion of AlMgB,4 [J]. Scripta Materialia,2002,46:629-633.
    [211]Higashi I., Ito T. Refinement of the structure of MgAlBM [J]. Journal of the Less Common Metals, 1983,92:239-246.
    [212]Lewis T. L., Cook B. A., Harringa J. L., et al. Al2MgO4, Fe3O4, and FeB impurities in AlMgB,4 [J]. Materials Science and Engineering A,2003,351:117-122.
    [213]Cherukuri R., Womack M., Molian P., et al. Pulsed laser deposition of AlMgB,4 on carbide inserts for metal cutting [J]. Surface and Coatings Technology,2002,155:112-120.
    [214]Ahmed A., Bahadur S., Cook B. A., et al. Mechanical properties and scratch test studies of new ultra-hard AlMgB14 modified by TiB2 [J]. Tribology International,2006,39:129-137.
    [215]Riedel R. Novel Ultrahard Materials [J]. Advanced Materials,1994,6:549-560.
    [216]马廷灿,冯瑞华,姜山,等.美国能源部未来工业材料研究进展[J].新材料产业,2007,10:45-50
    [217]Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple [J]. Physical Review Letters,1996,77:3865.
    [218]Simunek A. Anisotropy of hardness from first principles:The cases of ReB2 and OsB2 [J]. Physical Review B,2009,80:060103.
    [219]Grimsditch M., Zouboulis E. S., Polian A. Elastic constants of boron nitride [J]. Journal Of Applied Physics,1994,76:832-834.
    [220]Bundy F. P., Wentorf J. R. H. Direct Transformation of Hexagonal Boron Nitride to Denser Forms [J]. The Journal of Chemical Physics,1963,38:1144-1149.
    [221]Clark S. J., Matthew D. Segall, Chris J. Pickard, et al. First principles methods using CASTEP [J]. Zeitschrift fur Kristallograhie.2005,220:567.
    [222]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B,1990,41:7892-7895.
    [223]Mao W. L., Mao H.K., Eng P. J., et al. Bonding Changes in Compressed Superhard Graphite [J]. Science,2003,302:425-427.
    [224]Li Q., Ma Y., Oganov A. R., et al. Superhard Monoclinic Polymorph of Carbon [J]. Physical Review Letters,2009,102:175506.
    [225]Umemoto K., Wentzcovitch R. M., Saito S., et al. Body-Centered Tetragonal C4:A Viable sp3 Carbon Allotrope [J]. Physical Review Letters,2010,104:125504.
    [226]Wang J.-T., Chen C, Kawazoe Y. Low-Temperature Phase Transformation from Graphite to spJ Orthorhombic Carbon [J]. Physical Review Letters,2011,106:075501.
    [227]Zhao Z., Xu B., Zhou X.-F., et al. Novel Superhard Carbon:C-Centered Orthorhombic C8 [J]. Physical Review Letters,2011,107:215502.
    [228]Niu H., Chen X.-Q., Wang S., et al. Families of Superhard Crystalline Carbon Allotropes Constructed via Cold Compression of Graphite and Nanotubes [J]. Physical Review Letters,2012,108:135501.
    [229]Zhang R. Q., Chan K. S., Cheung H. F., et al. Energetics of segregation in beta-C2BN [J]. Applied Physics Letters,1999,75:2259-2261.
    [230]Sun H., Jhi S.-H., Roundy D., et al. Structural forms of cubic BC2N [J]. Physical Review B,2001, 64:094108.
    [231]He C, Sun L., Zhang C, et al. Z-BN:a novel superhard boron nitride phase [J]. Physical Chemistry Chemical Physics,2012,14:10967-10971.
    [232]Sachdev H., Haubner R., Noth H., et al. Investigation of the c-BN/h-BN phase transformation at normal pressure [J]. Diamond And Related Materials,1997,6:286-292.
    [233]Hill R. The Elastic Behaviour of a Crystalline Aggregate [J]. Proceedings of the Physical Society. Section A,1952,65:349.
    [234]Gao F. Theoretical model of intrinsic hardness [J]. Physical Review B,2006,73:132104.
    [235]Lambrecht W. R. L., Segall B. Anomalous band-gap behavior and phase stability of c-BN-diamond alloys [J]. Physical Review B,1993,47:9289-9296.
    [236]Ludwig T., Hillebrecht H. Synthesis and crystal structure of MgB12Si2--The first ternary compound in the system B/Mg/Si [J]. Journal of Solid State Chemistry,2006,179:1623-1629.
    [237]Natascha V., Harald H. Li2B12C2 and LiB,3C2:Colorless Boron-Rich Boride Carbides of Lithiuml3 [J]. Angewandte Chemie International Edition,2006,45:165-168.
    [238]Natascha V., Melanie S., Caroline R., et al. Li2B12Si2:The First Ternary Compound in the System Li/B/Si:Synthesis, Crystal Structure, Hardness, Spectroscopic Investigations, and Electronic Structure [J]. Chemistry-A European Journal,2008,14:7331-7342.
    [239]Okada S., Shishido T., Mori T., et al. Crystal growth of MgAlB14-type compounds using metal salts and some properties [J]. Journal of Alloys and Compounds,2008,458:297-301.
    [240]Okada S., Tanaka T., Sato A., et al. Crystal growth and structure refinement of a new higher boride NaAlB14 [J]. Journal of Alloys and Compounds,2005,395:231-235.
    [241]Peters J. S., Hill J. M., Russell A. M. Direct reaction synthesis of Mg2B14 from elemental precursors [J]. Scripta Materialia,2006,54:813-816.
    [242]Volker A., Kai-Uwe H., Thilo L., et al. Synthesis, Crystal Structure, and Properties of Two Modifications of MgB12C2 [J]. Chemistry-A European Journal,2007,13:3450-3458.
    [243]Tian Y., Bastawros A. F., Lo C. C. H., et al. Superhard self-lubricating AlMgB,4 films for microelectromechanical devices [J]. Applied Physics Letters,2003,83:2781-2783.
    [244]Tian Y., Constant A., Lo C. C. H., et al. Microstructure evolution of Al--Mg--B thin films by thermal annealing [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2003,21:1055-1063.
    [245]Tian Y., Li G., Shinar J., et al. Electrical transport in amorphous semiconducting AlMgB14 films [J]. Applied Physics Letters,2004,85:1181-1183.
    [246]Higashi I., Kobayashi M., Okada S., et al. Boron-rich crystals in Al-M-B (M=Li, Be, Mg) systems grown from high-temperature aluminum solutions [J]. Journal of Crystal Growth,1993,128:1113-1119.
    [247]Kolpin H., Music D., Henkelman G., et al. Phase stability and elastic properties of XMgB14 studied by ab initio calculations (X=Al,Ge,Si,C,Mg,Sc,Ti,V,Zr,Nb,Ta,Hf) [J]. Physical Review B,2008,78:054122.
    [248]Letsoalo T., Lowther J. E. Systematic trends in boron icosahedral structured materials [J]. Physica B: Condensed Matter,2008,403:2760-2767.
    [249]Lowther J. E. Possible ultra-hard materials based upon boron icosahedra [J]. Physica B:Condensed Matter,2002,322:173-178.
    [250]Kevorkijan V., Skapin S. D., Jelen M., et al. Cost-effective synthesis of AlMgB14-xTiB2 [J]. Journal of the European Ceramic Society,2007,27:493-497.
    [251]Melgarejo Z. H., Suarez O. M., Sridharan K. Microstructure and properties of functionally graded Al-Mg-B composites fabricated by centrifugal casting [J]. Composites Part A:Applied Science and Manufacturing,2008,39:1150-1158.
    [252]Takeda M., Fukuda T., Domingo F., et al. Thermoelectric properties of some metal borides [J]. Journal of Solid State Chemistry,2004,177:471-475.
    [253]Muthu D. V. S., Chen B., Cook B. A., et al. Effects of sample preparation on the mechanical properties of AlMgB14 [J]. High Press. Res.,2008,28:63.
    [254]Klepper C. C, Hazelton R. C, Yadlowsky E. J., et al. Amorphous boron coatings produced with vacuum arc deposition technology [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2002,20:725-732.
    [255]van Setten M. J., Uijttewaal M. A., de Wijs G. A., et al. Thermodynamic Stability of Boron:The Role of Defects and Zero Point Motion [J]. Journal of the American Chemical Society,2007,129:2458-2465.
    [256]Segall M. D., Shah R., Pickard C. J., et al. Population analysis of plane-wave electronic structure calculations of bulk materials [J]. Physical Review B,1996,54:16317.
    [257]Pauling L. General Chemistry,3rd ed [M], Published,1970.
    [258]Longuet-Higgins H. C., de M., Roberts V. The Electronic Structures of Borides MgB6 [J]. Proceedings The Royal of Society A,1955,230:110.
    [259]Wade K. Structural and bonding patterns in cluster chemistry [J]. Advvances in Inorganic Chemistry and Radiochemistry,1976,18:1.
    [260]Ogata S., Li J., Yip S. Ideal Pure Shear Strength of Aluminum and Copper [J]. Science,2002, 298:807-811.
    [261]Roundy D., Cohen M. L. Ideal strength of diamond, Si, and Ge [J]. Physical Review B,2001, 64:212103.
    [262]Zhang Y., Sun H., Chen C. Superhard Cubic BC2N Compared to Diamond [J]. Physical Review Letters,2004,93:195504.
    [263]Blanco M. A., Francisco E., Luana V. GIBBS:isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J]. Computer Physics Communications,2004,158:57-72.
    [264]Guo H.-Z., Chen X.-R., Cai L.-C., et al. Structural and thermodynamic properties of MgB2 from first-principles calculations [J]. Solid State Communications,2005,134:787-790.
    [265]Hao Y.-J., Chen X.-R., Cui H.-L., et al. First-principles calculations of elastic constants of c-BN [J]. Physica B:Condensed Matter,2006,382:118-122.
    [266]Masago A., Shirai K., Katayama-Yoshida H. Crystal stability of α- and β-boron [J]. Physical Review B,2006,73:104102.
    [267]Liu K., Zhou X.-L., Chen X.-R., et al. Structural and elastic properties of A1B2 compound via first-principles calculations [J]. Physica B:Condensed Matter,2007,388:213-218.
    [268]Robertson J. Diamond-like amorphous carbon [J]. Materials Science and Engineering:R:Reports, 2002,37:129-281.
    [269]Shenderova O. A., Zhirnov V. V., Brenner D. W. Carbon Nanostructures [J]. Critical Reviews In Solid State And Materials Sciences,2002,27:227-356.
    [270]Wallace D. C. Evaluation of thermodynamic functions of elemental crystals and liquids [J]. Physical Review E,1997,56:1981-1986.
    [271]Holmstrom E., Bock N., Peery T. B., et al. Ab initio method for locating characteristic potential-energy minima of liquids [J]. Physical Review E,2009,80:051111.
    [272]Amezaga A., Holmstrom E., Lizarraga R., et al. Quantitative local environment characterization in amorphous oxides [J]. Physical Review B,2010,81:014210.
    [273]Bock N., Holmstrom E., Peery T. B., et al. Liquid-state properties from first-principles density functional theory calculations:Static properties [J]. Physical Review B,2010,82:144101.
    [274]Holmstrom E., Bock N., Peery T., et al. Structure discovery for metallic glasses using stochastic quenching [J]. Physical Review B,2010,82:024203.
    [275]Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B,1996,54:11169-11186.
    [276]Arhammar C, Pietzsch A., Bock N., et al. Unveiling the complex electronic structure of amorphous metal oxides [J]. Proceedings Of The National Academy Of Sciences,2011,108:6355-6360.
    [277]Perdew J. P., Ruzsinszky A., Csonka G. I., et al. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces [J]. Physical Review Letters,2008,100:136406.
    [278]Kresse G., Hafner J. NORM-CONSERVING AND ULTRASOFT PSEUDOPOTENTIALS FOR FIRST-ROW AND TRANSITION-ELEMENTS [J]. Journal of Physics-Condensed Matter,1994,6:8245-8257.
    [279]Wang Y., Perdew J. P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling [J]. Physical Review B,1991,44:13298.
    [280]Nose S. A UNIFIED FORMULATION OF THE CONSTANT TEMPERATURE MOLECULAR-DYNAMICS METHODS [J]. Journal of Chemical Physics,1984,81:511-519.
    [281]Tersoff J. Modeling solid-state chemistry:Interatomic potentials for multicomponent systems [J]. Physical Review B,1989,39:5566-5568.
    [282]Zhuang C.-Q., Jiang X., Zhao J.-J., et al. Structures and elastic properties of crystalline and amorphous BC2N solids [J]. Journal of Atomtic Molecular Science,2010,1:126.
    [283]Pesin L. A. Review Structure and properties of glass-like carbon [J]. Journal Of Materials Science, 2002,37:1-28.
    [284]Ergun S., Tiensuu V. H. Alicyclic Structures in Coals [J]. Nature,1959,183:1668-1670.
    [285]Jenkins G. M., Kawamura K. Structure of Glassy Carbon [J]. Nature,1971,231:175-176.
    [286]Pesin L. A., Baitinger E. M. A new structural model of glass-like carbon [J]. Carbon,2002, 40:295-306.
    [287]Harris P. J. F. Fullerene-related structure of commercial glassy carbons [J]. Philosophical Magazine, 2004,84:3159-3167.
    [288]Sundqvist B. Fullerenes under high pressures [J]. Advances In Physics,1999,48:1-134.
    [289]Wang J. T., Chen C. f, Kawazoe Y. Low-Temperature Phase Transformation from Graphite to sp3 Orthorhombic Carbon [J]. Physical Review Letters,2011,106:075501.
    [290]Zhao Z. S., Xu B., Zhou X. F., et al. Novel Superhard Carbon:C-Centered Orthorhombic C8 [J]. Physical Review Letters,2011,107:215502.
    [291]Wang Y., Panzik J. E., Kiefer B., et al. Crystal structure of graphite under room-temperature compression and decompression [J]. Scientific Reports,2012,2.
    [292]Dion M., Rydberg H., Schroder E., et al. Van der Waals Density Functional for General Geometries [J]. Physical Review Letters,2004,92:246401.
    [293]Kittel C. Introduction to solid state physics [M]. Place:Wiley, Published,1996.
    [294]Klimes J., Bowler D. R., Michaelides A. Van der Waals density functionals applied to solids [J]. Physical Review B,2011,83:195131.
    [295]Townsend S. J., Lenosky T. J., Muller D, A., et al. Negatively curved graphitic sheet model of amorphous carbon [J]. Physical Review Letters,1992,69:921-924.
    [296]Marks N. A., McKenzie D. R., Pailthorpe B. A., et al. Ab initio simulations of tetrahedral amorphous carbon [J]. Physical Review B,1996,54:9703-9714.
    [297]Marks N. A., Cooper N. C., McKenzie D. R., et al. Comparison of density-functional, tight-binding, and empirical methods for the simulation of amorphous carbon [J]. Physical Review B,2002,65:075411.
    [298]Mackay A. L., Terrones H. Diamond from graphite [J]. Nature,1991,352:762-762.
    [299]Stephan U., Frauenheim T., Blaudeck P., et al. π bonding versus electronic-defect generation:An examination of band-gap properties in amorphous carbon [J]. Physical Review B,1994,50:1489-1501.
    [300]Goyette A. N., Lawler J. E., Anderson L. W., et al. Spectroscopic determination of carbon dimer densities in plasmas [J]. Journal Of Physics D:Applied Physics,1998,31:1975.
    [301]Sternberg M., Zapol P., Curtiss L. A. Carbon dimers on the diamond (100) surface:Growth and nucleation [J]. Physical Review B,2003,68:205330.
    [302]Gilkes K. W. R., Gaskell P. H., Robertson J. Comparison of neutron-scattering data for tetrahedral amorphous carbon with structural models [J]. Physical Review B,1995,51:12303-12312.
    [303]Raoux S., Welnic W., Ielmini D, Phase Change Materials and Their Application to Nonvolatile Memories [J]. Chemical Reviews,2009,110:240-267.
    [304]Kolobov A.V, Krbal M, Fons P, et al. Distortion-triggered loss of long-range order in solids with bonding energy hierarchy [J]. Nature Chemistry,2011,3:311-316.
    [305]Johnson W. L. Thermodynamic and Kinetic Aspects of the Crystal to Glass Transformation in Metallic Materials [J]. Progress In Materials Science,1986,30:81-134.
    [306]Rehn L. E., Okamoto P. R., Pearson J., et al. Solid-State Amorphization of Zr3Al:Evidence of an Elastic Instability and First-Order Phase Transformation [J]. Physical Review Letters,1987,59:2987-2990.
    [307]Fecht H. J. Defect-induced melting and solid-state amorphization [J]. Nature,1992,356:133-135.
    [308]Lyapin A. G., Brazhkin V. V. Pressure-induced lattice instability and solid-state amorphization [J]. Physical Review B,1996,54:12036-12048.
    [309]Vadim V. B., Vladimir L. S., Vasilii I. B., et al. Bulk nanostructured carbon phases prepared from C 60:approaching the 'ideal' hardness [J]. Journal of Physics:Condensed Matter,2007,19:236209.
    [310]Liu A. Y., Cohen M. L. Structural properties and electronic structure of low-compressibility materials: beta -Si3N4 and hypothetical beta -C3N4 [J]. Physical Review B,1990,41:10727.
    [311]Ni J., Wu W., Ju X., et al. Bonding structure of a-CNx:H films obtained in methane-nitrogen system and its influence on hardness [J]. Thin Solid Films,2008,516:7422-7426.
    [312]Leonhardt A., Gruger H., Selbmann D., et al. Preparation of CNx-phases using plasma-assisted and hot filament chemical vapour deposition [J]. Thin Solid Films,1998,332:69-73.
    [313]Cappelli E., Orlando S., Trucchi D. M., et al. Carbon nitride films by RF plasma assisted PLD: Spectroscopic and electronic analysis [J]. Applied Surface Science,2011,257:5175-5180.
    [314]Roh K. M., You S. J., Choi S. K., et al. Influence of N2 gas pressure on the chemical bonds of amorphous carbon nitride films [J]. Journal of Physics D:Applied Physics.2009,42:175405.
    [315]Alibart F., Lejeune M., Zellama K., et al. Effect of nitrogen on the optoelectronic properties of a highly sp2-rich amorphous carbon nitride films [J]. Diamond and Related Materials,2011,20:409-412.
    [316]Gu Y. S., Pan L. Q., Chang X. R., et al. Carbon nitride films prepared by ion implantation [J]. Journal of Materials Science Letters,1996,15:1355-1357.
    [317]Kundoo S., Banerjee A. N., Saha P., et al. Synthesis of crystalline carbon nitride thin films by electrolysis of methanol-urea solution [J]. Materials Letters,2003,57:2193-2197.
    [318]Muhl S., Mendez J. M. A review of the preparation of carbon nitride films [J]. Diamond and Related Materials,1999.8:1809-1830.
    [319]Zhang Y., Zhou Z., Li H. Crystalline carbon nitride films formation by chemical vapor deposition [J]. Applied Physics Letters,1996,68:634-636.
    [320]Fuge G. M., Rennick C. J., Pearce S. R. J., et al. Structural characterisation of CNx thin films deposited by pulsed laser ablation [J]. Diamond and Related Materials,2003,12:1049-1054.
    [321]Rinzler A. G., Hafner J. H., Nikolaev P., et al. Unraveling Nanotubes:Field Emission from an Atomic Wire [J]. Science,1995,269:1550-1553.
    [322]Ferrari A. C., Rodil S. E., Robertson J. Interpretation of infrared and Raman spectra of amorphous carbon nitrides [J]. Physical Review B,2003,67:155306.
    [323]Rodil S. E., Muhl S. Bonding in amorphous carbon nitride [J]. Diamond and Related Materials,2004, 13:1521-1531.
    [324]Fu Q., Jiu J. T., Cai K., et al. Attempt to deposit carbon nitride films by electrodeposition from an organic liquid [J]. Physical Review B,1999,59:1693.
    [325]Hellgren N., Macak K., Broitman E., et al. Influence of plasma parameters on the growth and properties of magnetron sputtered CN[sub x] thin films [J]. Journal of Applied Physics,2000,88:524-532.
    [326]Togashi Y., Hirohata Y., Hino T. Characterization of CNx films prepared by reactive magnetron sputtering [J]. Vacuum,2002,66:391-395.
    [327]Bongiorno G., Blomqvist M., Piseri P., et al. Nanostructured CNx (0    [328]Gillan E. G. Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor [J]. Chemistry of Materials,2000,12:3906-3912.
    [329]Gupta B. K., Bhushan B. Micromechanical properties of amorphous carbon coatings deposited by different deposition techniques [J]. Thin Solid Films,1995,270:391-398.
    [330]Kato K., Bai M., Umehara N., et al. Effect of internal stress of CNx coating on its wear in sliding friction [J]. Surface and Coatings Technology,1999,113:233-241.
    [331]Scharf T. W., Deng H., Barnard J. A. Nanowear/nanomechanical testing and the role of stress in sputtered CNx overcoats [J]. Journal of Applied Physics,1997,81:5393-5395.
    [332]Spaeth C., Kuhu M., Chudoba T., et al. Mechanical properties of carbon nitride thin films prepared by ion beam assisted filtered cathodic vacuum arc deposition [J]. Surface and Coatings Technology,1999, 112:140-145.
    [333]Sjostrom H., Stafstrom S., Boman M., et al. Superhard and Elastic Carbon Nitride Thin Films Having Fullerenelike Microstructure [J]. Physical Review Letters,1995,75:1336.
    [334]Kim E., Chen C., Thomas K., et al. Theoretical study of a body-centered-tetragonal phase of carbon nitride [J]. Physical Review B,2001,64:094107.
    [335]Kim E., Chen C., Thomas K., et al. Tetragonal Crystalline Carbon Nitrides:Theoretical Predictions [J]. Physical Review Letters,2001,86:652.
    [336]Sandre E., Pickard C. J., Colliex C. What are the possible structures for CNx compounds? The example of C3N [J]. Chemical Physics Letters,2000,325:53-60.
    [337]Mattesini M., Matar S. F. Density-functional theory investigation of hardness, stability, and electron-energy-loss spectra of carbon nitrides with C11N4 stoichiometry [J]. Physical Review B,2002, 65:075110.
    [338]Badding J. V. Solid-state Carbon Nitrides [J]. Advanced Materials,1997,9:877-886.
    [339]Takadoum J., Rauch J. Y., Cattenot J. M., et al. Comparative study of mechanical and tribological properties of CNx and DLC films deposited by PECVD technique [J]. Surface and Coatings Technology, 174-175:427-433.
    [340]Weich F., Widany J., Frauenheim T. Paracyanogenlike Structures in High-Density Amorphous Carbon Nitride [J]. Physical Review Letters,1997,78:3326.
    [341]Jungnickel G., Frauenheim T., Porezag D., et al. Structural properties of amorphous hydrogenated carbon. Ⅳ. A molecular-dynamics investigation and comparison to experiments [J]. Physical Review B,1994, 50:6709.
    [342]McSkimin H. J., Bond W. L. Elastic Moduli of Diamond [J]. Physical Review,1957,105:116. [343] Zhang Y., Sun H., Chen C. Ideal tensile and shear strength of beta-C3N4 from first-principles calculations [J]. Physical Review B,2007,76:144101.
    [344]Knittle E., Kaner R. B., Jeanloz R., et al. High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions [J]. Physical Review B,1995,51:12149-12156.
    [345]Thamm T., Korner K. U., Bohne W., et al. Characterization of PECVD boron carbonitride layers [J]. Applied Surface Science,2005,252:223-226.
    [346]Stockel S., Weise K., Thamm T., et al. Comparative investigations of structure and properties of BCN coatings deposited by thermal and plasma-enhanced CVD [J]. Analytical and Bioanalytical Chemistry,2003, 375:884-890.
    [347]Chien S. C, Chattopadhyay S., Chen L. C., et al. Mechanical properties of amorphous boron carbon nitride films produced by dual gun sputtering [J]. Diamond and Related Materials,2003,12:1463-1471.
    [348]Zhou Z. F., Bello I., Lei M. K., et al. Synthesis and characterization of boron carbon nitride films by radio frequency magnetron sputtering [J]. Surface and Coatings Technology,2000,128-129:334-340.
    [349]Zhou F., Adachi K., Kato K. Friction and wear behavior of BCN coatings sliding against ceramic and steel balls in various environments [J]. Wear,2006,261:301-310.
    [350]Ying Z. F., Yu D., Ling H., et al. Synthesis of BCN thin films by nitrogen ion beam assisted pulsed laser deposition from a B4C target [J]. Diamond and Related Materials,2007,16:1579-1585.
    [351]Hasegawa T., Yamamoto K., Kakudate Y., et al. Mechanical properties of B-C-N films synthesized by an electron beam excited plasma-CVD method [J]. Surface and Coatings Technology,2003, 169-170:270-273.
    [352]Komatsu T., Nomura M., Kakudate Y., et al. Synthesis and characterization of a shock-synthesized cubic B-C-N solid solution of composition BC2.5N [J]. Journal of Materials Chemistry,1996,6:1799-1803.
    [353]Sasaki T., Akaishi M., Yamaoka S., et al. Simultaneous crystallization of diamond and cubic boron nitride from the graphite relative boron carbide nitride (BC2N) under high pressure/high temperature conditions [J]. Chemistry of Materials,1993,5:695-699.
    [354]Nakano S., Akaishi M., Sasaki T., et al. Segregative Crystallization of Several Diamond-like Phases from the Graphitic BC2N without an Additive at 7.7 GPa [J]. Chemistry of Materials,1994,6:2246-2251.
    [355]Martinez C, Kyrsta S., Cremer R., et al. Influence of the composition of BCN films deposited by reactive magnetron sputtering on their properties [J]. Analytical and Bioanalytical Chemistry,2002, 374:709-711.
    [356]Kim D. H., Byon E., Lee S., et al. Characterization of ternary boron carbon nitride films synthesized by RF magnetron sputtering [J]. Thin Solid Films,2004,447-448:192-196.
    [357]Wada Y.. Yap Y. K., Yoshimura M., et al. The control of B-N and B-C bonds in BCN films synthesized using pulsed laser deposition [J]. Diamond and Related Materials,2000,9:620-624.
    [358]Ahn H., Klimek K. S., Rie K. T. BCN coatings by RF PACVD at low temperature [J]. Surface and Coatings Technology,2003,174-175:1225-1228.
    [359]Yap Y. K., Wada Y., Yamaoka M., et al. Bond modification of BCN films on Ni substrate [J]. Diamond and Related Materials,2001,10:1137-1141.
    [360]Ling H., Wu J. D., Sun J., et al. Electron cyclotron resonance plasma-assisted pulsed laser deposition of boron carbon nitride films [J]. Diamond and Related Materials,2002,11:1623-1628.
    [361]Stockel S., Weise K., Dietrich D., et al. Influence of composition and structure on the mechanical properties of BCN coatings deposited by thermal CVD [J]. Thin Solid Films,2002,420-421:465-471.
    [362]Linss V., Rodil S. E., Reinke P., et al. Bonding characteristics of DC magnetron sputtered B-C-N thin films investigated by Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy [J]. Thin Solid Films,2004,467:76-87.
    [363]Polo M. C, Martinez E., Esteve J., et al. Micromechanical properties of BN and B-C-N coatings obtained by r.f. plasma-assisted CVD [J]. Diamond and Related Materials,1999,8:423-427.
    [364]Nakao S., Sonoda T., Tsugawa K., et al. Effects of nitrogen gas ratio on composition and microstructure of BCN films prepared by RF magnetron sputtering [J]. Vacuum,2009,84:642-647.
    [365]He D., Cheng W., Qin J., et al. Relief of the internal stress in ternary boron carbonitride thin films [I]. Applied Surface Science,2002.191:338-343.
    [366]Caretti I., Jimenez I., Albella J. M. BCN films with controlled composition obtained by the interaction between molecular beams of B and C with nitrogen ion beams [J]. Diamond and Related Materials, 2003.12:1079-1083.
    [367]Caretti I., Jimenez I., Gago R., et al. Tribological properties of ternary BCN films with controlled composition and bonding structure [J]. Diamond and Related Materials,2004.13:1532-1537.
    [368]Ulrich S., Ehrhardt H., Theel T., et al. Phase separation in magnetron sputtered superhard BCN thin films [J]. Diamond and Related Materials,1998,7:839-844.
    [369]Kamran S., Chen K., Chen L. Ab initio examination of ductility features of fcc metals [J]. Physical Review B,2009,79:024106.
    [370]Chen K., Zhao L. R., Rodgers J., et al. Alloying effects on elastic properties of TiN-based nitrides [J]. Journal of Physics D:Applied Physics,2003,36:2725.
    [371]Zhang H., Johansson B., Vitos L. Ab initio calculations of elastic properties of bcc Fe-Mg and Fe-Cr random alloys [J]. Physical Review B,2009,79:224201.
    [372]Lewis R. S., Anders E., Draine B. T. Properties, detectability and origin of interstellar diamonds in meteorites [J]. Nature,1989,339:117.
    [373]Lewis R. S., Ming T., Wacker J. F., et al. Interstellar diamonds in meteorites [J]. Nature,1987, 326:160.
    [374]Prawer S., Peng J. L., Orwa J. O., et al. Size dependence of structural stability in nanocrystalline diamond [J]. Physical Review B,2000,62:R16360.
    [375]Shenderova O. A., Zhirnov V. V., Brenner D. W. Carbon Nanostructures [J]. Critical Reviews in Solid State and Materials Sciences,2002,27:227-356.
    [376]Greiner N. R., Phillips D. S., Johnson J. D., et al. Diamonds in detonation soot [J]. Nature,1988, 333:440-442.
    [377]Gruen D. M., Liu S., Krauss A. R., et al. Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions [J]. Applied Physics Letters,1994,64:1502-1504.
    [378]Barnard A. S. Theory and modeling of nanocarbon phase stability [J]. Diamond and Related Materials, 2006,15:285-291.
    [379]Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules [J]. The Journal of Chemical Physics,1990,92:508-517.
    [380]Drummond N. D., Williamson A. J., Needs R. J., et al. Electron Emission from Diamondoids:A Diffusion Quantum Monte Carlo Study [J]. Physical Review Letters,2005,95:096801.
    [381]Wen B., Zhao J., Li T. Relative stability of hydrogenated nanodiamond and nanographite from density function theory [J]. Chemical Physics Letters,2007,441:318-321.
    [382]Zhuang C, Jiang X., Zhao J., et al. Infrared spectra of hydrogenated nanodiamonds by first-principles simulations [J]. Physica E:Low-dimensional Systems and Nanostructures,2009,41:1427-1432.
    [383]Mclntosh G. C, Yoon M., Berber S., et al. Diamond fragments as building blocks of functional nanostructures [J]. Physical Review B,2004,70:045401.
    [384]Sasagawa T., Shen Z.-x. A route to tunable direct band-gap diamond devices:Electronic structures of nanodiamond crystals [J]. Journal of Applied Physics,2008,104:073704-073704.
    [385]Raty J.-Y., Galli G., Bostedt C., et al. Quantum Confinement and Fullerenelike Surface Reconstructions in Nanodiamonds [J]. Physical Review Letters,2003,90:037401.
    [386]Areshkin D. A., Shenderova O. A., Adiga S. P., et al. Electronic properties of diamond clusters: self-consistent tight binding simulation [J]. Diamond and Related Materials,2004,13:1826-1833.
    [387]Tang Y. H., Zhou X. T., Hu Y. F., et al. A soft X-ray absorption study of nanodiamond films prepared by hot-filament chemical vapor deposition [J]. Chemical Physics Letters,2003,372:320-324.
    [388]He D., Shao L., Gong W., et al. Electron transport and electron field emission of nanodiamond synthesized by explosive detonation [J]. Diamond and Related Materials,2000,9:1600-1603.
    [389]Lijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56.
    [390]Shiomi H. Reactive Ion Etching of Diamond in 02 and CF4 Plasma, and Fabrication of Porous Diamond for Field Emitter Cathodes [J]. Japanese Journal of Applied Physics,1997,36:7745.
    [391]Hirsch A. The era of carbon allotropes [J]. Nature Materials,2010,9:868-871.
    [392]Appell D. Nanotechnology:Wired for success [J]. Nature,2002,419:553-555.
    [393]Baik E. S., Baik Y. J., Jeon D. Aligned diamond nanowhiskers [J]. Materials Research Society,2000, 15:923.
    [394]Baik E. S., Baik Y. J., Lee S. W., et al. Fabrication of diamond nano-whiskers [J]. Thin Solid Films, 2000,377-378:295-298.
    [395]Masuda H., Yanagishita T., Yasui K., et al. Synthesis of Well-Aligned Diamond Nanocylinders [J]. Advanced Materials,2001,13:247-249.
    [396]Ando Y., Nishibayashi Y., Sawabe A.'Nano-rods'of single crystalline diamond [J]. Diamond and Related Materials,2004,13:633-637.
    [397]Dubrovinskaia N., Dubrovinsky L., Crichton W., et al. Aggregated diamond nanorods, the densest and least compressible form of carbon [J]. Applied Physics Letters,2005,87:083106-083103.
    [398]Sun L. T., Gong J. L., Zhu Z. Y., et al. Synthesis and characterization of diamond nanowires from carbon nanotubes [J]. Diamond and Related Materials,2005,14:749-752.
    [399]Rakha S. A., Guojun Y., Xingtai Z., et al. Diamond nanorods from nanocrystalline diamond films [J]. Journal of Crystal Growth,2009,311:3332-3336.
    [400]Barnard A. S., Russo S. P., Snook I. K. Ab Initio Modeling of Diamond Nanowire Structures [J]. Nano Letters,2003,3:1323-1328.
    [401]Shenderova O., Brenner D., Ruoff R. S. Would Diamond Nanorods Be Stronger than Fullerene Nanotubes? [J]. Nano Letters,2003,3:805-809.
    [402]Barnard A. S., Snook I. K. Phase stability of nanocarbon in one dimension:Nanotubes versus diamond nanowires [J]. The Journal of Chemical Physics,2004,120:3817-3821.
    [403]Okada S. Formation of graphene nanostructures on diamond nanowire surfaces [J]. Chemical Physics Letters,2009,483:128-132.
    [404]Barnard A. S., Russo S. P., Snook I. K. Electronic band gaps of diamond nanowires [J]. Physical Review B,2003,68:235407.
    [405]Padgett C. W., Shenderova O., Brenner D. W. Thermal Conductivity of Diamond Nanorods: Molecular Simulation and Scaling Relations [J]. Nano Letters,2006,6:1827-1831.
    [406]Babinec T. M., Hausmann B. J. M., Khan M., et al. A diamond nanowire single-photon source [J]. Nature Nanotechnology,2010,5.
    [407]Guo J., Wen B.. Melnik R., et al. Geometry and temperature dependent thermal conductivity of diamond nanowires:A non-equilibrium molecular dynamics study [J]. Physica E.2010, In Press, Corrected Proof.
    [408]Geim A. K., Novoselov K. S. The rise of graphene [J]. Nature Materials.2007,6:183-191.
    [409]Crespi V. H., Benedict L. X., Cohen M. L., et al. Prediction of a pure-carbon planar covalent metal [J]. Physical Review B,1996,53:13303-13305.
    [410]Terrones H., Terrones M., Hernandez E., et al. New metallic allotropes of planar and tubular carbon [J]. Physical Review Letters,2000,84:1716-1719.
    [411]Sun H. COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds [J]. The Journal of Physical Chemistry B,1998, 102:7338-7364.
    [412]G.Herzberg Electronic spectra and electronic structure of polyatomic molecules [J]. Molecular Spectra and Molecular Structure 1966,3:745.
    [413]Yin M. T., Cohen M. L. Ground-state properties of diamond [J]. Physical Review B,1981,24:6121.
    [414]Field J. E. The Properties of Natural and Synthetic Diamond [M]. Place:Academic, Published,1992.
    [415]Lambrecht W. R. L., Segall B. Anomalous band-gap behavior and phase stability of c-BN-diamond alloys [J]. Physical Review B,1993,47:9289.
    [416]Blochl P. E. Projector Augmented-Wave Method [J]. Physical Review B,1994,50.17953-17979.
    [417]Lebegue S., Arnaud B., Alouani M., et al. Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation:Application to Si, SiC, AlAs, InAs, NaH, and KH [J]. Physical Review B,2003,67.
    [418]Hybertsen M. S., Louie S. G. 1st-Principles Theory of Quasiparticles-Calculation of Band-Gaps in Semiconductors and Insulators [J]. Physical Review Letters,1985,55:1418-1421.
    [419]Bruneval F. GW Approximation of the Many-Body Problem and Changes in the Particle Number [J]. Physical Review Letters,2009,103.
    [420]Monkhorst H. J., Pack J. D. Special Points for Brillouin-Zone Integrations [J]. Physical Review B, 1976,13:5188-5192.
    [421]Ogata S., Shibutani Y. Ideal tensile strength and band gap of single-walled carbon nanotubes [J]. Physical Review B,2003,68.
    [422]Gogotsi Y. G., Kailer A., Nickel K. G. Materials:Transformation of diamond to graphite [J]. Nature, 1999,401:663-664.
    [423]Grimsditch M. H., Ramdas A. K. Brillouin scattering in diamond [J]. Physical Review B,1975, 11:3139.
    [424]McSkimin H. J., Andreatch J. P. Elastic Moduli of Diamond as a Function of Pressure and Temperature [J]. Journal of Applied Physics,1972,43:2944-2948.
    [425]Ruoff A. L., Luo H., Vohra Y. K. The closing diamond anvil optical window in multimegabar research [J]. Journal of Applied Physics,1991,69:6413-6416.
    [426]Loubeyre P., Occelli F., LeToullec R. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen [J]. Nature,2002,416:613-617.
    [427]Ruoff A. L., Luo H. Pressure strengthening:A possible route to obtaining 9 Mbar and metallic diamonds [J]. Journal of Applied Physics,1991,70:2066-2070.
    [428]Gogotsi Y. G., Kailer A., Nickel K. G. Pressure-induced phase transformations in diamond [J]. Journal of Applied Physics,1998,84:1299-1304.
    [429]Sharda T., Rahaman M. M., Nukaya Y., et al. Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition [J]. Diamond and Related Materials, 2001,10:561-567.
    [430]Craighead H. G. Nanoelectromechanical Systems [J]. Science,2000,290:1532-1535.
    [431]Gruen D. M. NANOCRYSTALLINE DIAMOND FILMS 1 [J]. Annual Review of Materials Science, 1999,29:211-259.
    [432]Xu Taoy, Jiazheng Z., Kang X. The ball-bearing effect of diamond nanoparticles as an oil additive [J]. Appl.Phys.,1996,29:2932.
    [433]Espinosa H., Prorok B., Peng B., et al. Mechanical properties of ultrananocrystalline diamond thin films relevant to MEMS/NEMS devices [J]. Experimental Mechanics,2003,43:256-268.
    [434]Espinosa H. D., Peng B., Prorok B. C, et al. Fracture strength of ultrananocrystalline diamond thin films---identification of Weibull parameters [J]. Journal of Applied Physics,2003,94:6076-6084.
    [435]Paci J. T., Belytschko T., Schatz G. C. The mechanical properties of single-crystal and ultrananocrystalline diamond:A theoretical study [J]. Chemical Physics Letters,2005,414:351-358.
    [436]Philip J., Hess P., Feygelson T., et al. Elastic, mechanical, and thermal properties of nanocrystalline diamond films [J]. Journal of Applied Physics,2003,93:2164-2171.
    [437]Shen Z. H., Hess P., Huang J. P., et al. Mechanical properties of nanocrystalline diamond films [J]. Journal of Applied Physics,2006,99:124302-124306.
    [438]Chow L., Zhou D., Hussain A., et al. Chemical vapor deposition of novel carbon materials [J]. Thin Solid Films,2000,368:193-197.
    [439]Zheng B., Wang Y. N., Qi M., et al. Phase boundary effects on the mechanical deformation of core/shell Cu/Ag nanoparticles [J]. Journal of Materials Research,2009,24:2210-2214
    [440]Shan Z. W., Adesso G., Cabot A., et al. Ultrahigh stress and strain in hierarchically structured hollow nanoparticles [J]. Nature Materials,2008,7:947-952.
    [441]Kelires P. C. Elastic Properties of Amorphous Carbon Networks [J]. Physical Review Letters,1994, 73:2460.
    [442]Hauser J. J. Amorphous ferromagnetic Ag-X (X=Ni,Co,Gd) alloys [J]. Physical Review B,1975, 12:5160.
    [443]Chen Y. G., Liu B. X. Amorphous films formed by solid-state reaction in an immiscible Y--Mo system and their structural relaxation [J]. Applied Physics Letters,1996,68:3096-3098.
    [444]Willey T. M., Bostedt C., van Buuren T., et al. Molecular Limits to the Quantum Confinement Model in Diamond Clusters [J]. Physical Review Letters,2005,95:113401.
    [445]Van Camp P. E., Van Doren V. E., Devreese J. T. Theoretical study of diamond under strong anisotropic stresses [J]. Solid State Communications,1992,84:731-733.
    [446]Li H., Bradt R. C. The indentation size effect and the hardness of single crystal diamond on the (001) <110> [J]. Diamond and Related Materials,1992,1:1161-1167.
    [447]Ng M. F., Zhou L., Yang S. W., et al. Theoretical investigation of silicon nanowires:Methodology, geometry, surface modification, and electrical conductivity using a multiscale approach [J]. Physical Review B, 2007,76:155435.
    [448]Jiang X., Zhao J., Zhuang C, et al. Mechanical and electronic properties of ultrathin nanodiamonds under uniaxial compressions [J]. Diamond and Related Materials,2009,19:21-25.
    [449]Ma L., Wang J., Zhao J., et al. Anisotropy in stability and Young's modulus of hydrogenated silicon nanowires [J]. Chemical Physics Letters,2008,452:183-187.
    [450]Zhuang C., Jiang X., Zhao J., et al. Infrared spectra of hydrogenated nanodiamonds by first-principles simulations [J]. Physica E,2009,41:1427-1432.
    [451]Weinert M., Wimmer E., Freeman A. J. Total-Energy All-Electron Density Functional Method for Bulk Solids and Surfaces [J]. Physical Review B,1982,26:4571-4578.
    [452]Wu X. J., Zhou R. L., Yang J. L., et al. Density-Functional Theory Studies of Step-Kinked Carbon Nanotubes [J]. Journal of Physical Chemistry C,2011,115:4235-4239.
    [453]Umemoto K., Wentzcovitch R. M., Saito S., et al. Body-Centered Tetragonal C4:A Viable sp'Carbo Allotrope [J]. Physical Review Letters,2010,104.
    [454]Sheng X. L., Yan Q. B., Ye F., et al. T-Carbon:A Novel Carbon Allotrope [J]. Physical Review Letters,2011,106.
    [455]Godby R. W., Schluter M., Sham L. J. Accurate Exchange-Correlation Potential for Silicon and Its Discontinuity on Addition of an Electron [J]. Physical Review Letters,1986,56:2415-2418.
    [456]Shishkin M., Kresse G. Self-consistent GW calculations for semiconductors and insulators [J]. Physical Review B,2007,75.
    [457]Pei Q. X., Zhang Y. W., Shenoy V. B. A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene [J]. Carbon,2010,48:898-904.
    [458]Zhang Y. B., Tan Y. W., Stormer H. L., et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature,2005,438:201-204.
    [459]Gomez-Navarro C., Burghard M., Kern K. Elastic properties of chemically derived single graphene sheets [J]. Nano Letters,2008,8:2045-2049.
    [460]Li Z., Gao F., Structure, bonding, vibration and ideal strength of primitive-centered tetragonal boron nitride [J]. Physical Chemistry Chemical Physics,2012,14:869.
    [461]Zhao H., Min K., Aluru N. R. Size and Chirality Dependent Elastic Properties of Graphene Nanoribbons under Uniaxial Tension [J]. Nano Letters,2009.9:3012-3015.
    [462]Narita N.. Nagai S., Suzuki S., et al. Optimized geometries and electronic structures of graphyne and its family [J]. Physical Review B,1998,58:11009-11014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700