安全化学气相法制备连续碳纳米管纤维
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管是高强高导电并有其它多功能特性的一维纳米材料,由其构成的宏观纤维有巨大的应用潜力,可用于新型超强纤维,传感器和智能纺织等方面。纤维的规模化制备是实现上述应用的前提。化学气相法是在气流中生长碳管,碳管在气流中组装成纤维,机械操纵连续纺出纤维的方法。化学气相法一步高效,易规模化,但气相流须使用氢气,存在潜在危险。
     本论文针对化学气相法制备纤维安全问题,以氩气替代氢气,在水为控制助剂的条件下,乙醇为碳源,二茂铁为催化剂,噻吩为促进剂,在安全气相流中纺出连续碳管纤维。纤维比强为0.75GPa/(g/cm3),导电率为0.5×105S/m,与氢气流中制备的纤维相当。纤维抗氧化性优,空气流中氧化失重开始温度为550oC,比对应氢气流中制备的纤维高50oC。水是纤维形成关键,水去除非晶碳,保持碳管表面干净,促进碳管组装形成纤维。同样通过加水,在氮气和氦气气流中也纺出了碳管纤维。水助氩气流纺出的纤维中的碳管表面缺陷多,活性高,是由于高温下水具有氧化刻蚀作用。X射线光电子能谱分析纤维碳管表面,氧含量高,原子百分比为10.2at.%,是氢气流纤维(4.6at.%)的2.2倍。纤维表面富含含氧基团,活性高,能溶于乙醇,而氢气流中制备的纤维则不能。碳管外层覆盖的缺陷翘曲碳层,在纤维拉伸断裂时,能阻碍中碳管间的滑移,可增强纤维强度。
     通过观察分析氢气流,氩气流和水助氩气流产物结构,对比气流中纤维形成的行为,推断出小直径碳管利于在气相流中组装成纤维。碳管直径越小越利于组装,且可纺性趋好。氢气流和水助氩气流产物多为双壁管,直径1-5nm。氩气流中不能形成纤维是因为碳管直径粗,80-200nm,相互间范德华力作用小,不利于组装形成纤维。氩气流产物结构为双壁碳管外裹非晶碳层。双壁碳管与非晶碳层分立,机械力作用下能将双壁碳管抽出。水蒸汽氧化也可将包裹层剥离,端部非晶碳层首先被剥离,形成以双壁碳管为凸出端的针型结构的纤维。借助非晶碳层,可操纵移动难于用现有的一般微纳操纵办法移动的双壁碳管。在扫描电镜的监控下,用微机械手拾取针型结构,将其竖立粘在原子力显微镜商用探针上,构建出了双壁碳管为凸出针尖的探针示意模型。
     此外用水蒸汽氧化处理氩气流碳管,在碳管壁上氧化形成缺陷,再通入碳源乙醇,在碳管表面原位生长出石墨烯翘曲结构,获得了碳管/石墨烯复合材料。碳管/石墨烯缺陷多,富含氧基团,氧含量为12.9at.%碳管/石墨烯表面起伏的翘曲石墨层结构利于增强复合材料,与聚硅氧烷(PDMS)复合,能有效提到材料强度,优于商用多壁碳管;利于负载纳米颗粒,能均匀负载CdS量子点,而商用光滑壁碳管则不能。
Carbon nanotubes (CNTs) have one-dimensional nanostructure, ultra-highstrength, high electrical conductivity and other functional properties. The chemicalvapor deposition (CVD) spinning process is a promising method for the fabrication ofcarbon nanotube yarns, CNT assembling into macroscopic yarns in the gas flow andspun continuously by a mechanical maniplication. The current process relies on ahydrogen flow in the high-temperature CVD gas-flow reaction which brings a safetyconcern in the production, especially at mass production.
     In this thesis, we report the fabrication of carbon nanotube (CNT) yarns by thisCVD process from a gas flow reaction in an argon flow. The spinning is achieved bythe introduction of a certain amount of water in the ethanol carbon source to suppressthe amorphous carbon deposition on the CNTs. With the addition of water in thereaction, assembling CNTs are achieved in the gas flow forming a continuous CNTintegrate that allows continuous spinning as a CNT yarn. The yarn specific strength is0.75GPa/(g/cm3), electrical conducitity is0.5×105S/m, which is about equivalentwith the yarn spinning from hydrogen. The yarns have a good oxidation resistance.The initial temperature of oxidization loss weight is550oC in the air, which is50oChigher than that of the yarn from hydrogen. The spinning of CNT yarns is alsoachieved in helium or nitrogen flows in the water-assisted CVD reaction.
     The CNTs in yarn spun from argon flow assisting with water have many surfacedefects owe to the oxidization corrosion of water at high temperature. The oxygencontent on the surface of CNTs in the yarn is10.2at.%(atom percentage), which is2.2times higher than that of the yarn from hydrogen flow (4.6at.%). The yarn couldbe dissoloved in ethanol solution through ultrasound treatment due to the rich oxgencontaining groups on the surface of CNTs.
     Through observation and analysis of the yarn prepration process in hydrogen,argon and argon assisting with water, the small diameter CNT is believed to beconductive when assemble into yarns in the gas flow. The CNTs assembly into yarnsin hydrogen flow and argon flow with water are double walled CNT with the diameterof1-6nm. The CNTs can not assemble into yarns in argon are multi-walled CNT withdiameter of80-200nm. The mutual van der Waals' forces among big diameter CNT isweak, which does not favor CNTs assembly into fibers. Multi-walled CNTs from argon flow have a core-shell structure, which is composed of inner core double walledCNT and amorphous carbon layer shell. The inner core and shell could be seperated.The inner double walled CNT could be extracted out. The amorphous carbon layershell can also be peeled off by water vapor. Normally, the amorphous carbon shell atthe end of CNT is first removed and obtains a needle structure with a protrudingdouble walled CNT end. With the help of amorphous carbon layer shell, the needlestructure can be manipulated to move in three-dimensional space. Under scanningelectron microscopy observation, micro mechanical hand is used to pick up the needlestructure and vertically stick to a commercial atomic force microscope probe, adouble-walled CNT atomic force microscope probe model is constuctued.
     In addition, multi-walled CNT from argon flow is treated by water vapor, andthen put into ethanol as the carbon source. Graphene nano sheet (GNS) warp structurein-situ grows on the surface of CNT. The warp GNS on the surface of the structure ishelpful for reinforcing composite materials and is favor of supported nanoparticles,the comosiptes combining with polydimethylsiloxane (PDMS) are more stronger thancommercial multi walled CNT with a smooth surface. The warp GNS is also helpfulto load CdS quantum dots on its surface uniformly.
引文
[1] Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and BreakingMechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science.2000;287(5453):637-40.
    [2] Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, et al. Direct mechanicalmeasurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes.Mater Sci Eng A.2002;334(1-2):173-8.
    [3] Wang CM, Zhang YY, Xiang Y, Reddy JN. Recent studies on buckling of carbon nanotubes.Appl Mech Rev.2010;63(3):030804.
    [4] Chang C-C, Hsu IK, Aykol M, Hung W-H, Chen C-C, Cronin SB. A new lower limit for theultimate breaking strain of carbon nanotubes. ACS Nano.2010:5095-10.
    [5] Robertson J. Growth of nanotubes for electronics. Mater Today.2006;10(1-2):36-43.
    [6] Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE. Nanotubes as nanoprobes inscanning probe microscopy. Nature.1996;384(6605):147-50.
    [7] Wilson NR, Macpherson JV. Carbon nanotube tips for atomic force microscopy. NatNanotechnol.2009;4(8):483-91.
    [8] de Jonge N, Lamy Y, Kaiser M. Controlled mounting of individual multiwalled carbonnanotubes on support tips. Nano Lett.2003;3(12):1621-4.
    [9] Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C. Carbon Nanotube Single-ElectronTransistors at Room Temperature. Science.2001;293(5527):76-9.
    [10] Collins PG, Arnold MS, Avouris P. Engineering Carbon Nanotubes and Nanotube CircuitsUsing Electrical Breakdown. Science.2001;292(5517):706-9.
    [11][11] Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, et al. Individualsingle-wall carbon nanotubes as quantum wires. Nature.1997;386(6624):474-7.
    [12] Avouris P. Molecular electronics with carbon nanotubes. Accounts Chem Res.2002;35(12):1026-34.
    [13] Bourgoin JP, Campidelli S, Chenevier P, Derycke V, Filoramo A, Goffman MF. RecentAdvances in Molecular Electronics Based on Carbon Nanotubes. Chimia.2010;64(6):414-20.
    [14] Kong J, Chapline MG, Dai HJ. Functionalized carbon nanotubes for molecular hydrogensensors. Adv Mater.2001;13(18):1384-6.
    [15] Jacobs CB, Peairs MJ, Venton BJ. Review: Carbon nanotube based electrochemical sensorsfor biomolecules. Anal Chim Acta.2010;662(2):105-27.
    [16] Zhang T, Mubeen S, Myung NV, Deshusses MA. Recent progress in carbon nanotube-basedgas sensors. Nanotechnology.2008;19(33):-.
    [17] Li Y, Qiu XM, Yang F, Wang XS, Yin YJ. Ultra-high sensitivity of supercarbon-nanotube-based mass and strain sensors. Nanotechnology.2008;19(16):332001.
    [18] Mahar B, Laslau C, Yip R, Sun Y. Development of carbon nanotube-based sensors-A review.Ieee Sens J.2007;7(1-2):266-84.
    [19] Sinha N, Ma JZ, Yeow JTW. Carbon nanotube-based sensors. J Nanosci Nanotechno.2006;6(3):573-90.
    [20] Moulton SE, Minett AI, Wallace GG. Carbon nanotube based electronic and electrochemicalsensors. Sens Lett.2005;3(3):183-93.
    [21] Harris PJF. Carbon nanotube composites. Int Mater Rev.2004;49(1):31-43.
    [22] Curtin WA, Sheldon BW. CNT-reinforced ceramics and metals. Mater Today.2004;7(11):44-9.
    [23] Yeow JTW, Wang Y. A review of carbon nanotubes-based gas sensors. J Sens.2009;493904.
    [24] Kauffman DR, Star A. Carbon nanotube gas and vapor sensors. Angew Chem Int Edit.2008;47(35):6550-70.
    [25] Tombler TW, Zhou CW, Alexseyev L, Kong J, Dai HJ, Lei L, et al. Reversibleelectromechanical characteristics of carbon nanotubes under local-probe manipulation.Nature.2000;405(6788):769-72.
    [26] Cao J, Wang Q, Dai HJ. Electromechanical properties of metallic, quasimetallic, andsemiconducting carbon nanotubes under stretching. Phys Rev Lett.2003;90(15):157601.
    [27] Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, et al. Nanotube molecular wiresas chemical sensors. Science.2000;287(5453):622-5.
    [28] Collins PG, Bradley K, Ishigami M, Zettl A. Extreme Oxygen Sensitivity of ElectronicProperties of Carbon Nanotubes. Science.2000;287(5459):1801-4.
    [29] Jung HY, Jung SM, Kim J, Suh JS. Chemical sensors for sensing gas adsorbed on the innersurface of carbon nanotube channels. Appl Phys Lett.2007;90(15):153114.
    [30] Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE. Catalytic growth of single-walledmanotubes by laser vaporization. Chem Phys Lett.1995;243(1–2):49-54.
    [31] Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature.1992;358(6383):220-2.
    [32] Endo M, Takeuchi K, Igarashi S, Kobori K, Shiraishi M, Kroto HW. The production andstructure of pyrolytic carbon nanotubes (PCNTs). J Phys Chem Solids.1993;54(12):1841-8.
    [33] Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, et al. Macroscopic fibersand ribbons of oriented carbon nanotubes. Science.2000;290(5495):1331-4.
    [34] Vigolo B, Poulin P, Lucas M, Launois P, Bernier P. Improved structure and properties ofsingle-wall carbon nanotube spun fibers. Appl Phys Lett.2002;81(7):1210-2.
    [35] Ericson LM, Fan H, Peng HQ, Davis VA, Zhou W, Sulpizio J, et al. Macroscopic, neat,single-walled carbon nanotube fibers. Science.2004;305(5689):1447-50.
    [36] Kozlov ME, Capps RC, Sampson WM, Ebron VH, Ferraris JP, Baughman RH. Spinningsolid and hollow polymer-free carbon nanotube fibers. Adv Mater.2005;17(5):614-7.
    [37] Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK, Behabtu N, Prieto V, et al. True solutionsof single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol.2009;4(12):830-4.
    [38] Jiang KL, Li QQ, Fan SS. Nanotechnology: Spinning continuous carbon nanotube yarns-Carbon nanotubes weave their way into a range of imaginative macroscopic applications.Nature.2002;419(6909):801.
    [39] Zhang M, Atkinson KR, Baughman RH. Multifunctional carbon nanotube yarns bydownsizing an ancient technology. Science.2004;306(5700):1358-61.
    [40] Zhang XB, Jiang KL, Teng C, Liu P, Zhang L, Kong J, et al. Spinning and processingcontinuous yarns from4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater.2006;18(12):1505-10.
    [41] Cheng HM, Li F, Sun X, Brown SDM, Pimenta MA, Marucci A, et al. Bulk morphology anddiameter distribution of single-walled carbon nanotubes synthesized by catalyticdecomposition of hydrocarbons. Chem Phys Lett.1998;289(5-6):602-10.
    [42] Zhu HW, Xu CL, Wu DH, Wei BQ, Vajtai R, Ajayan PM. Direct synthesis of longsingle-walled carbon nanotube strands. Science.2002;296(5569):884-6.
    [43] Li YL, Kinloch IA, Windle AH. Direct spinning of carbon nanotube fibers from chemicalvapor deposition synthesis. Science.2004;304(5668):276-8.
    [44] Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, et al. High-performancecarbon nanotube fiber. Science.2007;318(5858):1892-5.
    [45] Zhong XH, Li YL, Liu YK, Qiao XH, Feng Y, Liang J, et al. Continuous MultilayeredCarbon Nanotube Yarns. Adv Mater.2010;22(6):692-6.
    [46] Bergeson JD, Etzkorn SJ, Murphey MB, Qu L, Yang J, Dai L, et al. Iron nanoparticle drivenspin-valve behavior in aligned carbon nanotube arrays. Appl Phys Lett.2008;93(17):172505.
    [47] Joselevich E, Dai H, Liu J, Hata K, Windle AH. Carbon nanotube synthesis and organization.Carbon Nanotubes.2008;111:101-64.
    [48] Behabtu N, Green MJ, Pasquali M. Carbon nanotube-based neat fibers. Nano Today.2008;3(5-6):24-34.
    [49] Tersoff J RR. Structural properties of a carbon-nanotube crystal. Phys Rev Lett.1994;73(5):676-9.
    [50] Adams G B, Sankey O F, Page J B, O'Keeffe M and Drabold D A1992Energetics of LargeFullerenes: Balls, Tubes, and Capsules Science2561792-5.
    [51] Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, et al. Super-toughcarbon-nanotube fibres-These extraordinary composite fibres can be woven into electronictextiles. Nature.2003;423(6941):703.
    [52] Miaudet P, Badaire S, Maugey M, Derre A, Pichot V, Launois P, et al. Hot-drawing of singleand multiwall carbon nanotube fibers for high toughness and alignment. Nano Lett.2005;5(11):2212-5.
    [53] Zhang XF, Li QW, Holesinger TG, Arendt PN, Huang JY, Kirven PD, et al. Ultrastrong, stiff,and lightweight carbon-nanotube fibers. Adv Mater.2007;19(23):4198-201.
    [54] Atkinson KR, Hawkins SC, Huynh C, Skourtis C, Dai J, Zhang M, et al. Multifunctionalcarbon nanotube yarns and transparent sheets: Fabrication, properties, and applications.Physica B-Condensed Matter.2007;394(2):339-43.
    [55] Shin SR, Lee CK, So I, Jeon J-H, Kang TM, Kee C, et al. DNA-wrapped single-walledcarbon nanotube hybrid fibers for supercapacitors and artificial muscles. Adv Mater.2008;20(3):466-70.
    [56] Ma WJ, Liu L, Zhang Z, Yang R, Liu G, Zhang T, et al. High-Strength Composite Fibers:Realizing True Potential of Carbon Nanotubes in Polymer Matrix through ContinuousReticulate Architecture and Molecular Level Couplings. Nano Letters.2009;9(8):2855-61.
    [57] Lima MD, Fang S, Lepró X, Lewis C, Ovalle-Robles R, Carretero-González J, et al.Biscrolling Nanotube Sheets and Functional Guests into Yarns. Science.2011;331(6013):51-5.
    [58] Li QW, Zhang XF, DePaula RF, Zheng LX, Zhao YH, Stan L, et al. Sustained growth ofultralong carbon nanotube arrays for fiber spinning. Adv Mater.2006;18(23):3160-3.
    [59] Ci L, Punbusayakul N, Wei J, Vajtai R, Talapatra S, Ajayan PM. MultifunctionalMacroarchitectures of Double-Walled Carbon Nanotube Fibers. Adv Mater.2007;19(13):1719-23.
    [60] Ohashi F, Chen GY, Stolojan V, Silva SRP. The role of the gas species on the formation ofcarbon nanotubes during thermal chemical vapour deposition. Nanotechnology.2008;19(44):445605.
    [61] Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficientsynthesis of impurity-free single-waited carbon nanotubes. Science.2004;306(5700):1362-4.
    [62] Chakrabarti S, Nagasaka T, Yoshikawa Y, Pan LJ, Nakayama Y. Growth of super long alignedbrush-like carbon nanotubes. Japanese Journal of Applied Physics Part2-Letters&ExpressLetters.2006;45(24-28):L720-L2.
    [63] Li QW, Zhang XF, DePaula RF, Zheng LX, Zhao YH, Stan L, et al. Sustained growth ofultralong carbon nanotube arrays for fiber spinning. Adv Mater.2006;18(23):3160-3.
    [64] Zhu LB, Xiu YH, Hess DW, Wong CP. Aligned carbon nanotube stacks by water-assistedselective etching. Nano Lett.2005;5(12):2641-5.
    [65] Motta M, Moisala A, Kinloch IA, Windle AH. High Performance Fibres from ‘Dog Bone’Carbon Nanotubes. Adv Mater.2007;19(21):3721-6.
    [66] Biris AR, Lupu D, Grüneis A, Ayala P, Rümmeli MH, Pichler T, et al. High-QualityDouble-Walled Carbon Nanotubes Grown by a Cold-Walled Radio Frequency ChemicalVapor Deposition Process. Chem Mater.2008;20(10):3466-72.
    [67] Liu QF, Ren WC, Li F, Cong HT, Cheng HM. Synthesis and high thermal stability ofdouble-walled carbon nanotubes using nickel formate dihydrate as catalyst precursor J PhysChem C.2007;111(40):5006-13.
    [68] Zhang M, Fang SL, Zakhidov AA, Lee SB, Aliev AE, Williams CD, et al. Strong, transparent,multifunctional, carbon nanotube sheets. Science.2005;309(5738):1215-9.
    [69] Zhang XX, Deng CF, Xu R, Wang DZ. Oxidation resistance of multi-walled carbonnanotubes purified with sulfuric and nitric acids. J Mater Sci.2007;42(19):8377-80.
    [70] Li QW, Li Y, Zhang XF, Chikkannanavar SB, Zhao YH, Dangelewicz AM, et al.Structure-Dependent Electrical Properties of Carbon Nanotube Fibers. Adv Mater.2007;19(20):3358-63.
    [71] Yoshihara N, Ago H, Tsuji M. Chemistry of water-assisted carbon nanotube growth overFe-Mo/MgO catalyst. J Phys Chem C.2007;111(31):11577-82.
    [72] Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, et al.Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. ChemPhys Lett.1999;313(1–2):91-7.
    [73] Peg M, Ruiz M, Esarte C, Millera A, Bilbao R, Alzueta M. Ethanol pyrolysis and formationof soot.Third European Combustion Meeting ECM2007.
    [74] Wang W, Wang YQ. Thermodynamic analysis of steam reforming of ethanol for hydrogengeneration. International Journal of Energy Research.2008;32(15):1432-43.
    [75] Jia J, Zhao J, Xu G, Di J, Yong Z, Tao Y, et al. A comparison of the mechanical properties offibers spun from different carbon nanotubes. Carbon.2011;49(4):1333-9.
    [76] Sundaram RM, Koziol KKK, Windle AH. Continuous Direct Spinning of Fibers ofSingle-Walled Carbon Nanotubes with Metallic Chirality. Adv Mater.2011;23(43):5064-8.
    [77] Lyu SC, Lee TJ, Yang CW, Lee CJ. Synthesis and characterization of high-qualitydouble-walled carbon nanotubes by catalytic decomposition of alcohol. Chem Commun.2003(12):1404-5.
    [78] Brown SDM, Corio P, Marucci A, Pimenta MA, Dresselhaus MS, Dresselhaus G.Second-order resonant Raman spectra of single-walled carbon nanotubes. Phys Rev B.2000;61(11):7734-42.
    [79] Fantini C, Cruz E, Jorio A, Terrones M, Terrones H, Van Lier G, et al. Resonance Ramanstudy of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes.Phys Rev B.2006;73(19):193408.
    [80] Baughman R. Dangerously seeking linear carbon. Science.2006;5776:1009.
    [81] Wang Y, Huang Y, Yang B, Liu R. Crystal orbital study on carbon chains encapsulated inarmchair carbon nanotubes with various diameters. Carbon.2008;46(2):276-84.
    [82] Fan X, Liu L, Lin J, Shen Z, Kuo J-L. Density functional theory study of finite carbon chains.ACS Nano.2009;3(11):3788-94.
    [83] Derycke V, Soukiassian P, Mayne A, Dujardin G, Gautier J. Carbon atomic chain formationon the beta-SiC(100) surface by controlled sp-> sp(3) transformation. Phys Rev Lett.1998;81(26):5868-71.
    [84] Wang Z, Ke X, Zhu Z, Zhang F, Ruan M, Yang J. Carbon-atom chain formation in the core ofnanotubes. Phys Rev B.2000;61(4):R2472-4.
    [85] Zhao XL, Ando Y, Liu Y, Jinno M, Suzuki T. Carbon nanowire made of a long linear carbonchain inserted inside a multiwalled carbon nanotube. Phys Rev Lett.2003;90(18):187401.
    [86] Jinno M, Ando Y, Bandow S, Fan J, Yudasaka M, Iijima S. Raman scattering study forheat-treated carbon nanotubes: The origin of≈1855 cm1Raman band. ChemPhysLette.2006;418(1–3):109-14.
    [87] Scuderi V, Scalese S, Bagiante S, Compagnini G, D’Urso L, Privitera V. Direct observation ofthe formation of linear C chain/carbon nanotube hybrid systems. Carbon.2009;47(8):2134-7.
    [88] Fantini C, Cruz E, Jorio A, Terrones M, Terrones H, Van Lier G, et al. Resonance Ramanstudy of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes.Phys Rev B.2006;73(19).
    [89] Saito R, Takeya T, Kimura T, Dresselhaus G, Dresselhaus MS. Finite-size effect on theRaman spectra of carbon nanotubes. Phys Rev B.1999;59(3):2388.
    [90] Tobias G, Shao L, Salzmann CG, Huh Y, Green MLH. Purification and Opening of CarbonNanotubes Using Steam. J Phys Chem B.2006;110(45):22318-22.
    [91] Shreve AP, Haroz EH, Bachilo SM, Weisman RB, Tretiak S, Kilina S, et al. Determination ofexciton-phonon coupling elements in single-walled carbon nanotubes by Raman overtoneanalysis. Phys Rev Lett.2007;98(3):037405.
    [92] Yin Y, Vamivakas AN, Walsh AG, Cronin SB, Unlu MS, Goldberg BB, et al. Opticaldetermination of electron-phonon coupling in carbon nanotubes. Phys Rev Lett.2007;98(3):037404.
    [93] Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD. High resolutionXPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon.2005;43(1):153-61.
    [94] Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A. Pyrolytic carbonnanotubes from vapor-grown carbon fibers. Carbon.1995;33(7):873-81.
    [95] Hafner JH, Cheung CL, Lieber CM. Growth of nanotubes for probe microscopy tips. Nature.1999;398(6730):761-2.
    [96] Tang J, Yang G, Zhang Q, Parhat A, Maynor B, Liu J, et al. Rapid and reproduciblefabrication of carbon nanotube AFM probes by dielectrophoresis. Nano Lett.2005;5(1):11-4.
    [97] Hafner JH, Cheung CL, Lieber CM. Direct growth of single-walled carbon nanotubescanning probe microscopy tips. J Am Chem Soc.1999;121(41):9750-1.
    [98] Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsicstrength of monolayer graphene. Science.2008;321(5887):385-8.
    [99] Murali R, Yang YX, Brenner K, Beck T, Meindl JD. Breakdown current density of graphenenanoribbons. Appl Phys Lett.2009;94(24):-.
    [100] Rafiee MA, Rafiee J, Wang Z, Song HH, Yu ZZ, Koratkar N. Enhanced MechanicalProperties of Nanocomposites at Low Graphene Content. Acs Nano.2009;3(12):3884-90.
    [101] Rafiee MA, Rafiee J, Yu ZZ, Koratkar N. Buckling resistant graphene nanocomposites.Appl Phys Lett.2009;95(22):223103.
    [102] Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song HH, Yu ZZ, et al. Fracture and Fatiguein Graphene Nanocomposites. Small.2010;6(2):179-83.
    [103] Wang X, Zhi LJ, Mullen K. Transparent, conductive graphene electrodes fordye-sensitized solar cells. Nano Lett.2008;8(1):323-7.
    [104] Bae S, Kim H, Lee Y, Xu XF, Park JS, Zheng Y, et al. Roll-to-roll production of30-inchgraphene films for transparent electrodes. Nat Nanotechnol.2010;5(8):574-8.
    [105] Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C.Continuous, Highly Flexible, and Transparent Graphene Films by Chemical VaporDeposition for Organic Photovoltaics. Acs Nano.2010;4(5):2865-73.
    [106] Yin Z, Sun S, Salim T, Wu S, Huang X, He Q, et al. Organic Photovoltaic Devices UsingHighly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. Acs Nano.2010;4(9):5263-8.
    [107] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. ElectricField Effect in Atomically Thin Carbon Films. Science.2004;306(5696):666-9.
    [108] Reina A, Jia XT, Ho J, Nezich D, Son HB, Bulovic V, et al. Large Area, Few-LayerGraphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett.2009;9(1):30-5.
    [109] Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, et al. Large-scale pattern growth ofgraphene films for stretchable transparent electrodes. Nature.2009;457(7230):706-10.
    [110] Li XS, Cai WW, An JH, Kim S, Nah J, Yang DX, et al. Large-Area Synthesis ofHigh-Quality and Uniform Graphene Films on Copper Foils. Science.2009;324(5932):1312-4.
    [111] Virojanadara C, Syvajarvi M, Yakimova R, Johansson LI, Zakharov AA,Balasubramanian T. Homogeneous large-area graphene layer growth on6H-SiC(0001). PhysRev B.2008;78(24):245403.
    [112] Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemicalanalysis of graphene oxide films after heat and chemical treatments by X-ray photoelectronand Micro-Raman spectroscopy. Carbon.2009;47(1):145-52.
    [113] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.Carbon.2007;45(7):1558-65.
    [114] Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, et al.Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature.2009;458(7240):872-6.
    [115] Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, et al.Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials forHigh-Performance Transparent Conductors. Nano Lett.2009;9(5):1949-55.
    [116] Yang S-Y, Chang K-H, Tien H-W, Lee Y-F, Li S-M, Wang Y-S, et al. Design andtailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. J MaterChem.2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700