碳纳米管生长机理及碳纳米线圈光电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管是由石墨层卷曲而成的中空纳米管,随着直径的不同,碳纳米管可表现出金属性,半金属性和半导体性,这种性质使得了碳纳米管在半导体等领域具有广泛应用。目前,化学气相沉积法是可控生长碳纳米管的主要方法,由于其反应中包含复杂的气相反应和固相反应,所以化学气相沉积法生长碳纳米管的机理及参数最优化一直是人们研究的热点。在这方面,研究人员做许多了实验和模拟工作。但是,人们更多关注碳纳米管生长过程中的固相反应,而对化学气相沉积过程中的气相反应研究较少。
     本论文的第二章中建立了局部加热化学气相沉积系统并定性地研究了乙炔气相反应对碳纳米管生长的影响。在此基础上,本章还建立了碳纳米管生长的计算流体力学模型,并分析了生长条件,催化剂颗粒及乙炔气相产物对碳纳米管生长的影响。
     由于碳纳米线圈具有纳米尺度上的特殊形态,使其在纳米电子学,微纳机电系统中具有潜在应用。目前对碳纳米线圈的研究尚处于起步阶段,主要集中于碳纳米线圈的电学特性,力学特性以及磁学特性,但是并不系统完善。本论文从实验上研究了碳纳米线圈的导热特性,光学特性,并进一步研究了碳纳米线圈的电学特性与其结构上的关系。
     论文第三章研究了场发射对碳纳米线圈结构的影响。由于焦耳热的作用,场发射之后的碳纳米线圈中的sp2品粒尺寸有所增大且晶粒取向趋于一致。此外,本章还研究了激光处理后碳纳米线圈的场发射特性。激光处理导致的碳纳米线圈尖端曲率半径减小和碳纳米线圈表面非晶碳的去除提高了其场发射特性。
     论文第四章通过单根碳纳米线圈场发射所引起的热辐射光谱研究了单根碳纳米线圈上的热传导。并且,通过制作悬空单根碳纳米线圈器件初步分析了碳纳米线圈的电阻率和温度的关系。在一维热传导模型的基础上,计算得到的碳纳米线圈热导率为38W/m-K。
     论文第五章研究了悬空单根碳纳米线圈的电驱动热辐射光谱。悬空单根碳纳米线圈的黑体辐射光谱上叠加有发射峰。发射峰的出现是由于热激励高能电子向低能级跃迁所致。因此,在碳纳米线圈的费米能级附近至少存在四对能级。通过测量碳纳米线圈的光致发光谱,发现光致发光谱具有和电致发光谱类似的发射峰,这一结果也支持了文中对碳纳米线圈能带结构的推论。
     论文第六章研究了单根碳纳米线圈的红外响应特性。当激光功率为90mw时,碳纳米线圈电导变化率最大可达22%。碳纳米线圈器件的响应时间为5ms左右。进一步的实验表明碳纳米线圈光响应的机理主要为热效应。随着电压增加,由于焦耳热的作用激光照射引起的碳纳米线圈电导变化率下降,但是响应率却随之增加,最大的响应率为0.22A/W。
     论文第七章利用四探针法研究了碳纳米线圈电学特性和其内部结构的关系。相比于未经退火的碳纳米线圈,经过高温退火后,碳纳米线圈的导电特性有明显的改善。但是,当退火温度高于1273K时,结构变化对碳纳米线圈的室温电阻率变化影响较小。此外,本章还研究了各个退火温度下碳纳米线圈电阻随温度的变化并计算了碳纳米线圈的激活能,发现激活能随碳纳米线圈内晶粒的长大和晶粒间非晶成分的减少而快速降低。此外,在碳纳米线圈发生小形变的情况下,碳纳米线圈的电阻基本不发生变化。
Carbon nanotubes (CNTs) were considered to be hollow graphene cylinders. With different diameter, carbon nanotubes could be metal, semi-metal and semiconductor, which enabled CNTs to apply in the fields of semiconductor industry. At present, controllable synthesis of CNTs was mainly realized by chemical vapor deposition. Because CNT-growth process contained complicated gas phase reactions and surface reactions, the mechanism of CNT growth by chemical vapor deposition and the optimization of parameters were research focus. Up to now, many experimental and computational work has been done on this subject. In previous research, the researchers took more attention to the surface reactions of CNT growth. The gas phase reactions, however, have not been studied in detailed. When acetylene was used as the carbon source, the reaction temperature is always700℃, under which CNTs was synthesized, accompanying complicated gas phase reaction. These reactions should affect the growth of CNTs.
     In the second chapter of this thesis, the local heating CVD system was built and the influence of gas phase reaction on the growth of CNTs was studied. Basing on above experiment and simulation, the influence of reaction parameters, catalyst and gas phase reaction on the growth of CNTs was analyzed.
     With unique helical morphology in nanoscale, carbon nanocoils (CNCs) may have excellent physical properties and may be applied in the fields of nano-electronic and MEMS system. In recent years, the research on the properties of the CNCs just started, which mainly concentrated on the electrical, mechanical and magnetic properties of CNCs. However, the study was not systematical. In this thesis, the thermal conduction in the CNCs, optical property of CNC and the relationship between the electrical property and the structure of CNCs were studied.
     In the third chapter, the field-emission properties of an individual CNC was investigated. The electron diffraction patterns and Raman scattering spectra for the CNC before and after the field emission showed the improvement of the crystallinity of the CNC. Joule heating induced by the high field-emission current was considered to be the main reason for this result. Furthermore, the tip morphology of a CNC was also modified by laser irradiation. The field emission property of the modified CNC was improved. It was found that the curvature radius of the modified CNC tip was smaller than that of the initial one, which was the main factor contributing to the enhancement of field-emission properties.
     In the fourth chapter, the spectra of thermal radiation induced by field emission from a single CNC were obtained, from which its thermal conductivity was investigated. By preparing the CNC device, the dependence of resistivity of the CNC on temperature was studied. The thermal conductivity of the CNC was evaluated to be38W/m-K by an one-dimensional thermal conduction model.
     In the fifth chapter, electrically driven thermal radiation spectra from single suspended CNCs were investigated. The suspended CNC showed thermally excited emission peaks superimposed on the blackbody radiation spectrum in the wavelengths above600nm. It was believed that at least four pairs of energy bands existed around the Fermi energy level and the observed emission peaks were attributed to thermally-excited interband electron transitions in the CNC.
     In the sixth chapter, the near-infrared photoresponse of a single suspended CNC was investigated. Under the irradiation of a785nm laser beam, the photoresponse was generated in the voltage-biased CNC. At a voltage of50mV, the sensitivity could reach22%and the typical response time was5ms. It was found the photoresponse of the CNC was mainly attributed to the bolometric effect. Because of the increase of Joule heating, the sensitivity reduced with the elevation of the bias voltage. However, the responsivity increased with the increase of the bias voltage, which was opposite to the change of the sensitivity. The maximum responsivity of the single CNC IR sensor was0.22A/W.
     In the seventh chapter, the relationship between the internal structure of CNCs and the electrical property of CNCs were investigated by a four-wire method. It was found that the room-temperature resistivity of the CNCs annealed at the temperature higher than1273K deceased significantly, compared with pristine CNCs, because of the improvement of crystallinity of CNCs. The change of the resistance of the annealed CNCs with temperature was also studied. From room temperature to about380K, the change of CNC resistance with temperature could be described by an exponential function. From above experiment, the activation energy of the CNCs annealed at various temperature was calculated. It was found that the activation energy decreased quickly when the size of nano-crystallines increased and the amorphous structure between nano-crystallines reduced. Moreover, when the tensile of the CNC was not large, the resistance of the CNC did not change with the expansion of the CNC.
引文
[J]Iijima S., T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature, 1993,363(6430):603-605.
    [2]Huang S., X. Cai, J. Liu. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates [J]. Journal of the American Chemical Society,2003,125(19)-.5636-5637.
    [3]Meyyappan M. Carbon nanotubes:science and applications [M]. CRC press.2005.
    [4]Fan S. Self-oriented regular arrays of carbon nanotubes and their field emission properties [J]. Science,1999,283(5401):512-514.
    [5]Hata K., D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes [J]. Science,2004,306(5700):1362-1364.
    [6]Chakrabarti S., H. Kume, L. Pan, T. Nagasaka, Y. Nakayama. Number of walls controlled synthesis of millimeter-long vertically aligned brushlike carbon nanotubes [J]. The Journal of Physical Chemistry C,2007,111 (5):1929-1934.
    [7]Jiang K., Q. Li, S. Fan. Nanotechnology:Spinning continuous carbon nanotube yarns [J]. Nature,2002,419(6909):801-801.
    [8]Xiao L., Y. Zhang, Y. Wang, K. Liu, Z. Wang, T. Li, Z. Jiang, J. Shi, L. Liu, Q. Li, Y. Zhao, Z. Feng, S. Fan, K. Jiang. A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films [J]. Nanotechnology,2011, 22(2):025502-025509.
    [9]Xiao L., Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, S. Fan. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers [J]. Nano Letters,2008,8(12):4539-4545.
    [10]Aliev A. E., J. Oh, M. E. Kozlov, A. A. Kuznetsov, S. Fang, A. F. Fonseca, R. Ovalle, M. D. Lima, M. H. Haque, Y. N. Gartstein. Giant-stroke, superelastic carbon nanotube aerogel muscles [J]. Science,2009,323(5921):1575-1578.
    [11]Zhang L., C. Feng, Z. Chen, L. Liu, K. Jiang, Q. Li, S. Fan. Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials [J]. Nano Letters,2008,8(8):2564-2569.
    [12]Sun Y., K. Liu, J. Miao, Z. Wang, B. Tian, L. Zhang, Q. Li, S. Fan, K. Jiang. Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes [J]. Nano Letters,2010,10(5):1747-1753.
    [13]Kocabas C., S. J. Kang, T. Ozel, M. Shim, J. A Rogers. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors! [J]. The Journal of Physical Chemistry C,2007,111(48):17879-17886.
    [14]Aubuchon J. F., L. H. Chen, A. I. Gapin, D. W. Kim, C. Daraio, S. Jin. Multiple sharp bendings of carbon nanotubes during growth to produce zigzag morphology [J]. Nano Letters,2004,4(9):1781-1784.
    [15]Satishkumar B. C., P. J. Thomas, A. Govindaraj, C. N. R. Rao. Y-junction carbon nanotubes [J]. Applied Physics Letters,2000,77(16):2530-2533.
    [16]Nakayama Y., M. Zhang. Synthesis of carbon nanochaplets by catalytic thermal chemical vapor deposition [J]. Japanese Journal of Applied Physics Part 2,2001, 40 (5B):492-494.
    [17]Zhang M., Y. Nakayama, Pan L. Synthesis of carbon tubule nanocoils in heigh yeild using iron-coated indium tin oxide as catalyst [J]. Japanese Journal of Applied Physics,2000,39:1242-1244.
    [18]Ma H., L. Pan, Q. Zhao, Z. Zhao, J. Zhao, J. Qiu. Electrically driven light emission from a single suspended carbon nanocoil [J]. Carbon,2012,50(15):5537-5542.
    [19]Pan L., M. Zhang, Y. Nakayama. Growth mechanism of carbon nanocoils [J]. Journal of Applied Physics,2002,91(12):10058-10061.
    [20]Pan L., T. Hayashida, Y. Nakayama. Growth and density control of carbon tubule nanocoils using catalyst of iron compounds [J]. Journal of Materials Research, 2002,17(1):145-148.
    [21]Li D., L. Pan, J. Qian, D. Liu. Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol-gel method [J]. Carbon,2010, 48(1):170-175.
    [22]Li D., L. Pan. Growth of carbon nanocoils using Fe-Sn-0 catalyst film prepared by a spin-coating method [J]. Journal of Materials Research,2011, 26(16):2024-2032.
    [23]Li D. W., L. J. Pan, J. J. Qian, H. Ma. High efficient synthesis of carbon nanocoils by catalysts produced by a Fe and Sn containing solution [J]. Advanced Materials Research,2009,60:251-255.
    [24]Tang N., Y. Yang, K. Lin, W. Zhong, C. Au, Y. Du. Synthesis of plait-like carbon nanocoils in ultrahigh yield, and their microwave absorption properties [J]. The Journal of Physical Chemistry C,2008,112(27):10061-10067.
    [25]Hanus M. J., P. B. Linkson, A. T. Harris. Fixed-and fluidised-bed synthesis of coiled carbon fibres on an in situ generated HS-modified Ni/Al2O3 catalyst from a NiSO1/Al2O3 precursor [J]. Carbon,2010,48(13):3931-3938.
    [26]Qin Y., Z. Zhang, Z. Cui. Helical carbon nanofibers prepared by pyrolysis of acetylene with a catalyst derived from the decomposition of copper tartrate [J]. Carbon,2003,41(15):3072-3074.
    [27]Liu W. C., U.K. Lin, Y. L. Chen, C. Y. Lee, H. T. Chiu. Growth of carbon nanocoils from K and Ag cooperative bicatalyst assisted thermal decomposition of acetylene [J]. ACS Nano,2010,4(7):4149-4157.
    [28]Qi X., W. Zhong, X. Yao, H. Zhang, Q. Ding, Q. Wu, Y. Deng, C. Au, Y. Du. Controllable and large-scale synthesis of metal-free carbon nanofibers and carbon nanocoils over water-soluble Na,Kv catalysts [J]. Carbon,2012,50(2):646-658.
    [29]Kanada R., L. Pan, S. Akita, N. Okazaki, K. Hirahara, Y. Nakayama. Synthesis of multiwalled carbon nanocoils using codeposited thin film of Fe-Sn as catalyst [J]. Japanese Journal of Applied Physics,2008,47(4):1949-1951.
    [30]Yokota M., Y. Suda, H. Takikawa, H. Ue, K. Shimizu, Y. Umeda. Structural analysis of multi-walled carbon nanocoils synthesized with FeSn catalyst supported on zeolite [J]. Journal of Nanoscience and Nanotechnology,2011,11(3):2344-2348.
    [31]Li D., L. Pan, K. Liu, W. Peng, R. Muhammad. Growth of multiwall carbon nanocoils using Fe catalyst films prepared by ion sputtering [J]. Journal of Materials Research,2013:1-10.
    [32]Liu J., A. T. Harris. Synthesis of coiled carbon nanotubes on Co/Al2O3 catalysts in a fluidised-bed [J]. Journal of Nanoparticle Research,2009,12(2):645-653.
    [33]Lu M., H.L. Li, K. T. Lau. Formation and growth mechanism of dissimilar coiled carbon nanotubes by reduced-pressure catalytic chemical vapor deposition [J]. The Journal of Physical Chemistry B,2004,108(20):6186-6192.
    [34]Hanus M. J., A. T. Harris. Synthesis, characterisation and applications of coiled carbon nanotubes [J]. Journal of Nanoscience and Nanotechnology,2010, 10(4):2261-2283.
    [35]Piedigrosso P., Z. Konya, J.-F. Colomer, A. Fonseca, G. Van Tendeloo, J. B. Nagy. Production of differently shaped multi-wall carbon nanotubes using various cobalt supported catalysts [J]. Physical Chemistry Chemical Physics,2000,2(1):163-170.
    [36]S. Amelinckx, X. B.Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, J. B. Nagy. A formation mechanism for catalytically grown helix-shaped graphite nanotubes [J]. Science,1994,265(29):635-639.
    [37]Li D., L. Pan. Necessity of base fixation for helical growth of carbon nanocoils [J]. Journal of Materials Research,2012,27(2):431-439.
    [38]Li D. W., L. J. Pan, D. P. Liu, N. S. Yu. Relationship between geometric structures of catalyst particles and growth of carbon nanocoils [J]. Chemical Vapor Deposition,2010,16(4):166-169.
    [40]Nishimura K., L. Pan, Y. Nakayama. In situ study of Fe/ITO catalysts for carbon nanocoil growth by X-ray diffraction analysis [J]. Japanese Journal of Applied Physics,2004,43:5665-5666
    [41]Pan L., T. Hayashida, M. Zhang, Y. Nakayama. Field emission properties of carbon tubule nanocoils [J]. Japanese Journal of Applied Physics,2001,40(3B):235-237.
    [42]Einarsson E., D. W. Tuggle, J. Jiao. In situ alignment of carbon nanocoils and their field emission behavior induced by an electric field [J]. Applied Physics A,2004,79(8):2049-54.
    [43]Hokushin S., L. Pan, Y. Konishi, H. Tanaka, Y. Nakayama. Field emission properties and structural changes of a stand-alone carbon nanocoil [J]. Japanese Journal of Applied Physics,2007,46:565-567.
    [44]Hayashida T., L. Pan, Y. Nakayama. Mechanical and electrical properties of carbon tubule nanocoils [J]. Physica B:Condensed Matter,2002,323(1-4):352-353.
    [45]Chiu H. S., P.I. Lin, H. C. Wu, W. H. Hsieh, C.D. Chen, Y. T. Chen. Electron hopping conduction in highly disordered carbon coils [J]. Carbon,2009,47(7):1761-1769.
    [46]Tang N., W. Kuo, C. Jeng, L. Wang, K. Lin, Y. Du. Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and Electrical Contact Improvement [J]. ACS Nano,2010,4(2):781-788.
    [47]Shen J., Z. Chen, N. Wang, W. Li, L. Chen. Electrical properties of a single microcoiled carbon fiber [J]. Applied Physics Letters,2006, 89(15):153132-153135.
    [48]Yoshimura K., K. Nakano, T. Miyake, Y. Hishikawa, C. Kuzuya, T. Katsuno, S. Motojima. Effect of compressive and tensile strains on the electrical resistivity of carbon microcoil/silicone-rubber composites [J]. Carbon,2007,45(10):1997-2003.
    [49]Chen X., J. Sakai, S. Yang, S. Motojima. Biomimetic tactile sensors with fingerprint-type surface made of carbon microcoils/polysilicone [J]. Japanese Journal of Applied Physics,2006,45:L1019-L1021.
    [50]Chen X., S. Zhang, D, A. Dikin, W. Ding, R. S. Ruoff, L. Pan, Y. Nakayama. Mechanics of a carbon nanocoil [J]. Nano Letters,2003,3(9):1299-1304.
    [51]Volodin A., M. Ahlskog, E. Seynaeve, C. Van Haesendonck, A. Fonseca, J. B. Nagy. Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy [J]. Physical Review Letters,2000,84(15):3342-3345.
    [52]Volodin A., C. Van Haesendonck, R. Tarkiainen, M. Ahlskog, A. Fonseca, J. B. Nagy. AFM detection of the mechanical resonances of coiled carbon nanotubes [J]. Applied Physics A:Materials Science & Processing,2001,72(7):S75-S78.
    [53]Yamamoto K., T. Hirayama, M. Kusunoki, S. Yang, S. Motojima. Electron holographic observation of micro-magnetic fields current-generated from single carbon coil [J]. Ultramicroscopy,2006,106(4-5):314-319.
    [54]Zhao D. L., Z. M. Shen. Preparation and microwave absorption properties of carbon nanocoils [J]. Materials Letters,2008,62(21-22):3704-3706.
    [55]Wang G., Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, Y. Qin. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition [J]. ACS Nano,2012, 6(12):11009-11017.
    [56]Tang N., J. Wen, Y. Zhang, F. Liu, K. Lin, Y. Du. Helical carbon nanotubes:catalytic particle size-dependent growth and magnetic properties [J]. ACS Nano,2010, 4(1):241-250.
    [57]Gupta B. K., V. Shanker, M. Arora, D. Haranath. Photoluminescence and electron paramagnetic resonance studies of springlike carbon nanofibers [J]. Applied Physics Letters,2009,95(7):073115-073118.
    [58]Wen J., Y. Zhang, N. Tang, X. Wan, Z. Xiong, W. Zhong, Z. Wang, X. Wu, Y. Du. Synthesis, photoluminescence, and magnetic properties of nitrogen-doping helical carbon nanotubes [J]. The journal of Physical Chemistry C,2011, 115(25):12329-12334.
    [59]Milosevic I., Z. Popovic, S. Dmitrovic, M. Damnjanovic. Optical properties of coiled carbon nanotubes:A simple model [J]. Physica Status Solidi (b),2011, 248(11):2585-2588.
    [60]Liu Y., N. Tang, W. Kuo, C. Jiang, J. Wen, Y. Du. N-doped helical carbon nanotubes: single helix photoconductivity and photoluminescence properties [J]. The Journal of Physical Chemistry C,2012,116(27):14584-14590.
    [61]Pan L., Y. Nakayama, H. Shiozaki, C. Inazumi. Carbon nanotubes grown on different-sized rectangular patterns [J]. Journal of Materials Research,2011, 19(06):1803-1807.
    [62]Fan S., M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai. Self-oriented regular arrays of carbon nanotubes and their field emission properties [J]. Science,1999,283(5401):512-514.
    [63]Grujicic M., G. Cao, B. Gersten. An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes [J]. Materials Science and Engineering:B,2002,94(2):247-259.
    [64]Grujicic M., G. Cao, B. Gersten. Optimization of the chemical vapor deposition process for carbon nanotubes fabrication [J]. Applied Surface Science,2002, 191(1):223-239.
    [65]Grujicic M., G. Cao, B. Gersten. Reactor length-scale modeling of chemical vapor deposition of carbon nanotubes [J]. Journal of Materials Science,2003, 38(8):1819-1830.
    [66]Kuwana K., H. Endo, K. Saito, D. Qian, R. Andrews, E. A. Grulke. Catalyst deactivation in CVD synthesis of carbon nanotubes [J]. Carbon,2005, 43(2):253-260.
    [67]Kuwana K., K. Saito. Modeling CVD synthesis of carbon nanotubes:Nanoparticle formation from ferrocene [J]. Carbon,2005,43(10):2088-2095.
    [68]Andrew C. L., K. S. C. Wilson. Modeling of the carbon nanotube chemical vapor deposition process using methane and acetylene precursor gases [J]. Nanotechnology, 2008 (16):165607-165615.
    [69]Egloff G., C. Lowry Jr, R. Schaad. Polymerization and decomposition of acetylene hydrocarbons [J]. The Journal of Physical Chemistry,1932,36(5):1457-1520.
    [70]Colket M. B. Kinetic mechanism for pyrolysis of acetylene near 1000K [J]. Prepr. Pap., Am. Chem. Soc., Div. Fuel Chem.,1988,32(3):417-427.
    [71]Coltrin M. E., R. J. Kee, J. A. Miller. A mathematical model of silicon chemical vapor deposition [J]. Journal of the Electrochemical Society,1986, 133(6):1206-1213.
    [72]Coltrin M. E., R. J. Kee, J. A. Miller. A mathematical model of the coupled fluid mechanics and chemical kinetics in a chemical vapor deposition reactor [J]. Journal of the Electrochemical Society,1984,131(2):425-434.
    [73]Kee R. J., M. E. Coltrin, P. Glarborg. Chemically react ing flow:theory and practice [M]. Wiley-Interscience.2005.
    [74]Yoshida H., S. Takeda, T. Uchiyama, H. Kohno, Y. Homma. Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles [J]. Nano Letters,2008,8(7):2082-2086.
    [75]Sharma R., E. Moore, P. Rez, M. M. J. Treacy. Site-specific fabrication of Fe particles for carbon nanotube growth [J]. Nano Letters,2009,9(2):689-694.
    [76]Jung Y. J., B. Q. Wei, R. Vajtai, P. M. Ajayan, Y. Homma, K. Prabhakaran, T. Ogino. Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns [J]. Nano Letters,2003,3(4):561-564.
    [77]Kim S. M., C. L. Pint, P. B. Amama, D. N. Zakharov, R. H. Hauge, B. Maruyama, E. A. Stach. Evolution in catalyst morphology leads to carbon nanotube growth termination [J]. The Journal of Physical Chemistry Letters,2010,1(6):918-922.
    [78]Yoshida H., T. Shimizu, T. Uchiyama, H. Kohno, Y. Homma, S. Takeda. Atomic-scale analysis on the role of molybdenum in iron-catalyzed carbon nanotube growth [J]. Nano Letters,2009,9(8):2961-2966.
    [79]LouchcvO. A., T. Laude, Y. Sato, H. Kanda. Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition [J]. Journal of Chemical Physics,2003,118(16):7622-7634.
    [80]Puretzky A. A., D. B. Geohegan, S. Jesse,1. N. Ivanov, G. Eres. In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition [J]. Applied Physics A,2005,81(2):223-240.
    [81]Kai Liu P. L., Kaili Jiang, Shoushan Fan. Effect of carbon deposits on the reactor wall during the growth of multi-walled carbon nanotube arrays [J]. Carbon,2007, 45:2379-2387.
    [82]Patole S. P., J. H. Park, T. Y. Lee, J. H. Lee, A. S. Patole, J. B. Yoo. Growth interruption studies on vertically aligned 2-3 wall carbon nanotubes by water assisted chemical vapor deposition [J]. Applied Physics Letters,2008, 93(11):114101-114103.
    [83]Liu K., K. Jiang, C. Feng, Z. Chen, S. Fan. A growth mark method for studying growth mechanism of carbon nanotube arrays [J]. Carbon,2005,43(14):2850-2856.
    [84]Yoshida H., T. Shimizu, T. Uchiyama, H. Kohno, Y. Homma, S. Takeda. Atomic-scale analysis on the role of molybdenum in iron-catalyzed carbon nanotube growth [J]. Nano Letters,2009,9(11):3810-3815.
    [85]Stein S. E., A. Fahr. High-temperature stabilities of hydrocarbons [J]. The Journal of Physical Chemistry,1985,89(17):3714-3725.
    [86]Pan L., Y. Konishi, H. Tanaka,0. Suekane, T. Nosaka, Y. Nakayama. Effect of morphology on field emission properties of carbon nanocoils and carbon nanotubes [J]. Japanese Journal of Applied Physics,2005,44(4A):1652-1654.
    [87]Huang J.Y., F. Ding, K. Jiao, B. I. Yakobson. Self-templated growth of carbon-manotube walls at high temperatures [J]. Small,2007,3(10):1735-1739.
    [88]Tang D., C. Liu, F. Li, W. Ren, J. Du, X. Ma, H. Cheng. Structural evolution of carbon microcoils induced by a direct current [J]. Carbon,2009,47(3):670-674.
    [89]Wang M. S., L. M. Peng, J. Y. Wang, Q. Chen. Electron field emission characteristics and field evaporation of a single carbon nanotube [J]. The Journal of Physical Chemistry B,2004,109(1):110-113.
    [90]Huang J. Y. In situ observation of quasimelting of diamond and reversible graphite-diamond phase transformations [J]. Nano Letters,2007,7:2335-2340.
    [91]Shakerzadeh M., N. Xu, M. Bosman, B. Tay, X. Wang, E. Teo, H. Zheng, H. Yu. Field emission enhancement and microstructural changes of carbon films by single pulse laser irradiation [J]. Carbon,2011,49(3):1018-1024.
    [92]Gomer R. Field emission and field ionization [M]. Vol.34:Harvard University Press Cambridge, MA.1961.
    [93]Kim J. S., K. S. Ahn, C.0. Kim, J. P. Hong. Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature [J]. Applied Physics Letters,2003, 82(10):1607-1609.
    [94]Yotani J., S. Uemura, T. Nagasako, H. Kurachi, H. Yamada, T. Ezaki, T. Maesoba, T. Nakao, M. Ito, T. Ishida. Emission enhancement by excimer laser irradiation over a weblike carbon nanotube layer [J]. Japanese Journal of Applied Physics, 2004,43:1459-1462.
    [95]Kim P., L. Shi, A. Majumdar, P. Mceuen. Thermal transport measurements of individual multiwalled nanotubes [J]. Physical Review Letters,2001, 87(21):215502-215504.
    [96]Choi T. Y., D. Poulikakos, J. Tharian, U. Sennhauser. Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-w method [J]. Nano Letters,2006,6(8):1589-1593.
    [97]Choi T. Y., D. Poulikakos, J. Tharian, U. Sennhauser. Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-w method [J]. Applied Physics Letters,2005,87(1):013108-013111.
    [98]Li Q., C. Liu, X. Wang, S. Fan. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method [J]. Nanotechnology,2009, 20(14):145702-145707.
    [99]Akita S., Y. Ohshima, T. Arie. Nanoincandescent consisting of individual carbon nanotubes [J]. Applied Physics Express,2011,4(2):025101-025104.
    [100]Rinzler A. G., J. H. Hafner, P. Nikolaev, P. Nordlander, D. T. Colbert, R. E. Smalley, L. Lou, S. G. Kim, D. Tomdnek. Unraveling nanotubes:field emission from an atomic wire [J]. Science,1995,269(5230):1550-1553.
    [101]Purcell S. T., P. Vincent, C. Journet, V. T. Binh. Tuning of nanotube mechanical resonances by electric field pulling [J]. Physical Review Letters,2002, 89(27):276103-276107.
    [102]Vincent P., S. Purcell, C. Journet, V. Binh. Modelization of resistive heating of carbon nanotubes during field emission [J]. Physical Review B,2002, 66(7):075406-075411.
    [103]JiaoJ., E. Einarsson, D. Tuggle, L. Love, J. Prado, G. Coia. High-yield synthesis of carbon coils on tungsten substrates and their behavior in the presence of an electric field [J]. Journal of Materials Research,2003,18(11)=2580-2587.
    [104]Zhao Q., L. Pan, H. Ma, T. Wang. Structure changes of an individual carbon nanocoil and its field-emission enhancement by laser treatment [J]. Diamond and Related Materials,2012,22:33-36.
    [105]Purcell S. T., P. Vincent, M. Rodriguez, C. Journet, S. Vignoli, D. Guillot, A. Ayari. Evolution of the field emission properties of individual multiwalled carbon nanotubes submitted to temperature and field treatments [J]. Chemical Vapor Deposition,2006,12(6):331-344.
    [106]Saito Y. Carbon Nanotube and Related Field Emitters:Fundamentals and Applications [M]. Wiley-VCH.2010.
    [107]Huang N., J. She, J. Chen, S. Deng, N. Xu, H. Bishop, S. Huq, L. Wang, D. Zhong, E. Wang. Mechanism responsible for initiating carbon nanotube vacuum breakdown [J]. Physical Review Letters,2004,93(7):75501-75505.
    [108]WeiW., Y. Liu, Y. Wei, K. Jiang, L. M. Peng, S. Fan. Tip cooling effect and failure mechanism of field-emitting carbon nanotubes [J]. Nano Letters,2007,7(1):64-68.
    [109]Mann D., Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, H. Dai. Electrically driven thermal light emission from individual single-walled carbon nanotubes [J]. Nature Nanotechnology,2007,2(1):33-38.
    [110]Xie L., H. Farhat, H. Son, J. Zhang, M. S. Dresselhaus, J. Kong, Z. Liu. Electroluminescence from suspended and on-substrate metallic single-walled carbon nanotubes [J]. Nano Letters,2009,9(5):1747-1751.
    [111]Liu Z., A. Bushmaker, M. Aykol, S. B. Cronin. Thermal emission spectra from individual suspended carbon nanotubes [J]. ACS Nano,2011,5(6):4634-4640.
    [112]Wei J., H. Zhu, D. Wu, B. Wei. Carbon nanotube filaments in household light bulbs [J]. Applied Physics Letters,2004,84(24):4869-4872.
    [113]Akagi K., R. Tamura, M. Tsukada, S. Itoh, S. Ihara. Electronic structure of helically coiled cage of graphitic carbon [J]. Physical Review Letters,1995, 74(12):2307-2310.
    [114]Kim S., Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, J. V. Frangioni. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping [J]. Nature Biotechnology,2004,22(1):93-97.
    [115]Tanaka A., S. Matsumoto, N. Tsukamoto, S. Itoh, K. Chiba, T. Endoh, A. Nakazato, K. Okuyama, Y. Kumazawa, M. Hijikawa, H. Gotoh, T. Tanaka, N. Teranishi. Infrared focal plane array incorporating silicon IC process compatible bolometer [J]. Electron Devices, IEEE Transactions on,1996,43(11):1844-1850.
    [116]Rauch T., M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss,0. Hayden. Near-infrared imaging with quantum-dot-sensitized organic photodiodes [J]. Nature Photonics,2009,3(6):332-336.
    [117]Itkis M. E., F. Borondics, A. Yu, R. C. Haddon. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films [J]. Science,2006, 312(5772):413-416.
    [118]Lu R., J. J. Shi, F. J. Baca, J. Z. Wu. High performance multiwall carbon nanotube bolometers [J]. Journal of Applied Physics,2010,108(8):084305-084310.
    [119]Lu R., Z. Li, G. Xu, J. Z. Wu. Suspending single-wall carbon nanotube thin film infrared bolometers on microchannels [J]. Applied Physics Letters,2009, 94(16):163110-163113.
    [120]Aliev A. E. Bolometric detector on the basis of single-wall carbon nanotube/polymer composite [J]. Infrared Physics & Technology,2008, 51 (6):541-545.
    [121]Pradhan B., K. Setyowati, H. Y. Liu, D. H. Waldeck, J. Chen. Carbon nanotube-polymer nanocomposite infrared sensor [J]. Nano Letters,2008,8(4):1142-1146.
    [122]Pradhan B., R. R. Kohlmeyer, K. Setyowati, H. A. Owen, J. Chen. Advanced carbon nanotube/polymer composite infrared sensors [J]. Carbon,2009,47(7):1686-1692.
    [123]Bang D., J. Lee, J. Park, J. Choi, Y. W. Chang, K.-H. Yoo, Y.-M. Huh, S. Haam. Effectively enhanced sensitivity of a polyaniline-carbon nanotube composite thin film bolometric near-infrared sensor [J]. Journal of Materials Chemistry, 2012,22(7):3215-3220.
    [124]Lu R., G. Xu, J. Z. Wu. Effects of thermal annealing on noise property and temperature coefficient of resistance of single-walled carbon nanotube films [J]. Applied Physics Letters,2008,93(21):213101-213103.
    [125]Lu R., R. Kamal, J. Z. Wu. A comparative study of 1/f noise and temperature coefficient of resistance in multiwall and single-wall carbon nanotube bolometers [J]. Nanotechnology,2011,22(26):265503-265508.
    [126]Zhang J., N. Xi, H. Chan, G. Li. Single carbon nanotube based infrared sensor [J]. Proc. SPIE,2006:63950A-63950A.
    [127]Zhang J., N. Xi, H. Chen, K. W. C. Lai. Fabrication and experimental testing of individual multi-walled carbon nanotube (CNT) based Infrared sensors [C]. Sensors, 2007 IEEE.2007. IEEE,511-514.
    [128]Freitag M., Y. Martin, J. Misewich, R. Martel, P. Avouris. Photoconductivity of single carbon nanotubes [J]. Nano Letters,2003,3(8):1067-1071.
    [129]Chen H., N. Xi, K. W. C. Lai, C. K. M. Fung, R. Yang. Development of infrared detectors using single carbon-nanotube-based field-effect transistors [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY,2010,9(5):582-589.
    [130]Yamada T., H. Yabutani, T. Saito, C. Y. Yang. Temperature dependence of carbon nanofiber resistance [J]. Nanotechnology,2010,21(26):265707-2657012.
    [131]Buclzier H., G. Gerlach. Thermal Infrared Sensors:Theory, Optimisation and Practice [M]. Wiley.2011.
    [133]叶良修.半导体物理学[M].高等教育出版社.1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700