新型共轭聚合物的设计、合成及光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭聚合物半导体材料既具有金属、半导体的电学和光学性能,又保留传统聚合物材料优越的机械性能和加工性能,同时还可以方便地利用分子设计对化学结构进行改变或修饰来调控和改善其物理与化学性能,体现出有机材料无法比拟的优势。作为有机光电功能器件的材料基础,设计和合成综合性能优良的聚合物半导体材料对提高和改善器件性能具有非常重要的意义。本论文主要从材料的角度,设计合成了一系列具有良好稳定性、可溶液加工的新型共轭聚合物,并根据它们的结构特点和性质分别应用于聚合物场效应晶体管及聚合物太阳能电池的研究中。对聚合物的光电性能进行了研究,并探讨了分子结构和性能之间的内在联系,为进一步设计和探索更加优异的聚合物光电功能材料提供指导和借鉴。主要内容如下:
     1.合成了新型的2,4,6-三-2-噻吩取代吡啶单体,与4,8-二(十二烷氧基)苯并[1,2-b:4,5-b']二噻吩单元共聚得到交替聚合物PBDTTPy。缺电子的吡啶环的引入,以及其间位连接的芳香结构造成聚合物主链相对弯曲的结构,有效地降低了聚合物PBDTTPy的HOMO能级至-5.23eV,提高了材料的空气稳定性。以聚合物为半导体活性层制备了顶接触/底栅极结构的场效应晶体管器件,初步研究表明PBDTTPy为空穴传输型(p型)材料。结合XRD和AFM提供的信息,尽管聚合物PBDTTPy在固态下表现出无定形非晶薄膜形态,但是经退火优化后,其场效应性能有明显提高。
     2.引入4,8-二(2,3-二已基噻吩)苯并[1,2-b:4,5-b']二噻吩(BDTT)单元,并分别与2,2'-二噻吩和噻吩并[3,2-b]噻吩共聚得到新型的二维共轭聚合物PBDTT-2T和PBDTT-TT。烷基取代的噻吩侧链基团可以和主链形成二维共轭,增加共轭效果,有利于载流子的传输。两个聚合物均具有较低的HOMO能级(-5.25~-5.28eV)。分别以聚合物PBDTT-2T和PBDTT-TT为半导体活性层制备了顶接触/底栅极结构的场效应晶体管器件,结果表明,两个聚合物均为典型的空穴传输型(p型)材料。聚合物PBDTT-2T的最大空穴迁移率达到0.035cm2V-1s-1(Ion/Ioff≈6.56×105),而聚合物PBDTT-TT的最大空穴迁移率达到0.008cm2V-1s-1(Ion/Ioff≈9.01×104)。XRD和AFM测试表明,聚合物PBDTT-2T薄膜表现出了结晶性,随着退火温度的进一步增大,有序度提高。而聚合物PBDTT-TT薄膜规整度差,退火前后均表现为无定形非晶薄膜形态,因此分子间相互作用力比较弱,在一定程度上解释了聚合物PBDTT-2T的空穴迁移率和开关比相对于PBDTT-TT的更高。
     3.以BDTT为给电子(D)单元,分别与含有酰亚胺或内酰胺基团的吸电子(A)单元——N-十二烷基-邻苯二甲酰胺、5-(2-辛基十二烷基)噻吩并[3,4-c]吡咯-4,6-二酮、N,N'-(2-乙基己基)-异靛蓝和2,5-二(2-乙基己基)-3,6-二噻吩-吡咯并[3,4-c]吡咯-1,4-二酮共聚得到新型D-A交替聚合物:PBDTT-PhI、PBDTT-TPD、PBDTT-ID和PBDTT-DPP。不同吸电子能力的酰亚胺或内酰胺基团的引入有效地拓宽了聚合物的吸收范围,调节了聚合物的能带结构。基于异靛蓝的聚合物PBDTT-ID具有非常理想的能带结构(LUMO=-3.89eV,HOMO=-5.41eV,Eg=1.52eV)。含强吸电子DPP单元的聚合物PBDTT-DPP具有最宽的光谱吸收(能带隙为1.42eV)。分别以四种聚合物为给体材料,PC61BM为受体材料,制备了结构为ITO/PEDOT:PSS/聚合物:PC61BM/LiF/Al的本体异质结型太阳能电池器件。经初步优化后,基于PBDTT-PhI和PBDTT-TPD为活性层的的聚合物太阳能电池能量转换效率分别为0.77%和2.93%。特别是PBDTT-DPP:PC61BM器件的最大短路电流超过了10mAcm-2,效率达到了4.24%,是基于DPP分子的高性能聚合物太阳能电池之一。而基于PBDTT-ID:PC61BM为活性层的太阳能电池器件不需要经过热处理或添加改性剂优化就达到了4.02%的高效率,开路电压也达到了0.94V,是目前基于异靛蓝的聚合物太阳能电池所获得的最高的开路电压。
     4.以3,3'-二(十二烷基)-2,2'-二噻吩(DT)或烷基噻吩取代苯并[1,2-b:4,5-b']二噻吩为给电子单元,分别与吸电子的吡嗪衍生物——2,3-二(4-三氟甲基苯)-苯并吡嗪、2,3--二(4-三氟甲基苯)-吡啶并[3,4-b]吡嗪和吡啶并[3,4-b]吡嗪共聚得到新型D-A交替聚合物:PDT-QxF、PBDTT-QxF、PBDTT-PpF和PBDTT-Pp。BDTT单元的给电子能力和共平面性更好,增强了聚合物主链的共轭长度及电子离域程度,聚合物PBDTT-QxF在溶液态和薄膜态的吸收光谱和PDT-QxF相比出现显著红移,能带隙更窄(1.72eV vs1.90eV)。缺电子的三氟甲基苯基团和/或吡啶基团取代吡嗪单元的方法,能同时降低聚合物的HOMO和LUMO能级,提高材料在空气中的稳定性,聚合物PBDTT-QxF、PBDTT-PpF和PBDTT-Pp具有低的HOMO能级(-5.40~-5.51eV)。从QxF、Pp到PpF单元的吸电子能力逐渐增强,分子内给/吸电子相互作用增加,因此聚合物PBDTT-QxF、PBDTT-Pp到PBDTT-PpF的吸收光谱逐渐红移,能带隙进一步降低(1.72eV→1.65eV→1.60eV)。
     5.将吸电子的三氟甲基苯基团引入苯并二噻吩单元得到了新型的4,8-二(三氟甲基苯)苯并[1,2-b:4,5-b']二噻吩单体,与酯基取代的噻吩并[3,4-b]噻吩共聚得到交替聚合物PBDTTFB-TTE。新聚合物具有较窄的能带隙,其紫外吸收光谱覆盖了从300~1000nm非常宽的范围。三氟甲基苯基团的引入,明显降低了聚合物的HOMO和LUMO能级,其HOMO能级可达到-5.41eV,提高了材料的空气稳定性。虽然基于PBDTTFB-TTE:PC61BM为活性层的聚合物太阳能电池器件的能量转换效率偏低,但BDTTFB-TTE低的HOMO能级使其获得了较高的开路电压(0.76~0.79V),这是目前基于苯并[1,2-b:4,5-b']二噻吩和酯基取代的噻吩并[3,4-b]噻吩的交替共聚物太阳能电池器件中所报道的最高值。
Conjugated polymers combine the optical and electronic properties of metals andsemiconductors with the attractive mechanical and processing properties of traditionalpolymeric materials. The ease of manipulation with the chemical structures of polymersallows the fabrication of functional materials with tailor-made physical and chemicalproperties. As the critical materials for organic photoelectric devices, the design andsynthesis of high-performance π-conjugated polymeric semiconductors has an importantimpact on the device properties. In this thesis, we designed and synthesized a series ofnew conjugated polymers with good solution-processability and stablity for organicfield-effect transistor and bulk heterojunction solar cell applications. The relationshipbetween molecular structures and photoelectric properties were also studied in detail toprovide important insights for further design of excellent polymeric photoelectricmaterials. The main contents are described as follows:
     1.2,4,6-Tri(2-thienyl)pyridine, had been used to synthesize new conjugated polymerPBDTTPy with4,8-didodecyloxybenzo[1,2-b:4,5-b']dithiophene. The concept ofintroducing electron deficient pyridine repeating unit and meta-linked structure intoconjugated polymer for reducing its HOMO energy level and thereby increasing ambientstability had been tested. The preliminary field-effect transistor devices based on thispolymer had been reported. The PBDTTPy exhibited p-type transporting performanceunder ambient conditions in bottom-gate, top-contact OFET devices. It was found that theannealing temperatures had signifcant effects on the performances of the OFET devices,although the polymer PBDTTPy showed typical amorphous structures in solid state basedon the information from XRD and AFM studies.
     2. The bis(2,3-dialkylthienyl)benzo[1,2-b:4,5-b']-dithiophene (BDTT) building block was copolymerized with the unit of2,2'-bithiophene or thieno[3,2-b]thiophene by Stillecouple reaction to afford new2D conjugated polymers, PBDTT-2T and PBDTT-TT. TheBDTT building block with pendant thienyl moieties on the central phenyl rings providedadditional conjugation. This conjugated side chain system may extend the π-conjugationand thus facilitate the charge carrier transport. Both polymers had deep HOMO energylevels. The field-effect transistor devices based on new polymers displayed p-typetransporting performances under ambient conditions. The best hole-mobility obtainedfrom PBDTT-2T and PBDTT-TT were0.035cm2V-1s-1and0.008cm2V-1s-1,respectively, with the on-off ratios of6.56×105and9.01×104. Structural analysis by XRDand AFM were obtained to investigate the molecular ordering and film morphology ofboth polymers. The crystalline formation and highly ordered structures in films should befavorable for the charge transport, and could help to explain the high performance of theOFETs based on PBDTT-2T.
     3. Four new D-A alternative polymers, PBDTT-PhI, PBDTT-TPD, PBDTT-ID andPBDTT-DPP, containing BDTT as electron-rich (D) unit and strong electron-withdrawing imide or lactam groups as electron-deficient (A) units, had been synthesizedand characterized. The bandgaps and the energy levels of the polymers can be fine-tunedby introducing different electron-deficient moieties, such as2-dodecylisoindoline-1,3-dione,5-(2-octyldodecyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione,6,6'-di(2-ethylhexyl)-isoindigo and2,5-bis(2-ethylhexyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione. The isoindigo-based polymer PBDTT-ID exhibited strong absorption in thevisible and near-infrared region with an ideal optical bandgap (Eg) of1.52eV, low HOMOenergy level of-5.41eV, and suitable LUMO energy level of-3.89eV. The lactamstructure makes the DPP unit exhibit a strong electron-withdrawing effect. The polymerPBDTT-DPP possessed broad absorption in the visible and near-infrared region with anarrow optical bandgap of1.42eV. The photovoltaic performances of these polymers asdonors and PC61BM as acceptors were investigated with the device configuration of ITO/PEDOT:PSS/polymer:PC61BM/LiF/Al, under simulated air mass (AM)1.5Gillumination at100mW cm-2. The bulk heterojunction solar cell devices based onPBDTT-PhI and PBDTT-TPD displayed power conversion efficiencies (PCE) of0.77%and2.93%, respectively. The devices based on PBDTT-DPP showed a PCE of4.24%anda high short-circuit current density (Jsc) over10mA cm-2. The PBDTT-ID based deviceshad achieved a PCE of4.02%and a open-circuit voltage (Voc) of0.94V without thermalannealing and adding addtives, it is the highest Vocrealized among the isoindigo-basedpolymers.
     4. A series of modified electron-deficient quinoxaline units, such as2,3-bis(4-(trifluoromethyl)phenyl)quinoxaline (QxF),2,3-bis(4-(trifluoromethyl)phenyl)py-rido[3,4-b]pyrazine (PpF) and pyrido[3,4-b]pyrazine (Pp) were synthesized and used tocopolymerize with electron-rich3,3'-didodecyl-2,2'-bithiophene (DT) or bis(dialkyl-thienyl)benzodithiophene (BDTT) to obtain new D-A alternative polymers, PDT-QxF,PBDTT-QxF, PBDTT-PpF and PBDTT-Pp. Different electron-donating ability of DTand BDTT had an obvious effect on the absorption spectra of the resulting polymers,which can be seen from the fact that PBDTT-QxF with Egof1.72eV showed a visiblered-shifted absorption compared to PDT-QxF with Egof1.92eV. Two ways of modifingthe quinoxaline units by introducing trifluoromethylbenzene substitutes from the top of thepyrazine and/or changing the benzene unit to more electron-deficient pyridine moiety canboth lead to lower HOMO and LUMO energy levels of the polymers. PBDTT-QxF,PBDTT-PpF and PBDTT-Pp exhibited deep HOMO of-5.40to-5.51eV. UV-visabsorption spectra revealed that the electron-withdrawing ability increases in the order ofQxF, Pp, and PpF, which resulted in narrowering Egfrom1.72eV (PBDTT-QxF),1.65eV (PBDTT-Pp) to1.60eV (PBDTT-PpF).
     5. An efficient procedure towards electron-withdrawing trifluoromethylbenzenesubstituted benzo[1,2-b:4,5-b']dithiophene (BDTTFB) was developed. A new lowbandgap conjugated polymer PBDTTFB-TTE based on2-heptylundecyl thieno[3,4- b]thiophene-2-carboxylate and BDTTFB as repeating units had been synthesized andcharacterized. The new polymer had a board absorption spectrum in the range from300to1000nm. The introduction of trifluoromethylbenzene lowered both HOMO and LUMOenergy levels, and the PBDTTFB-TTE exhibited much deep HOMO of-5.41eV. A lowPCE of0.23%but a high Vocof0.78V had been achieved in bulk heterojunction polymersolar cell devices with PBDTTFB-TTE as donor and PC61BM as acceptor under theillumination of AM1.5G,100mW cm-2. It is the highest Vocrealized among thealternative polymers of ester-substituted thieno[3,4-b]thiophene and benzo[1,2-b:4,5-b']dithiophene.
引文
[1] Shirakawa H., Louis E. J., MacDiarmid A. G., Chiang C. K., Heeger A. J.Synthesis of electrically conducting organic polymers: Halogen derivatives ofpolyacetylene,(CH)x. J. Chem. Soc., Chem. Commun.,1977,16:578-580.
    [2] Chiang C. K., Fincher C. R., Park Y. W., Heeger A. J., Shirakawa H., Louis E. J.,Gau S. C., MacDiarmid A.G. Electrical conductivity in doped polyacetylene. Phys. Rev.Lett.,1977,39:1098-1101.
    [3] Nalwa, H. S., Eds. Handbook of organic conductive molecules and polymers.John Wiley&Sons: Chichester,1997.
    [4] Heeger A. J. Semiconducting polymers: The third generation. Chem. Soc. Rev.,2010,39:2354-2371.
    [5] Heeger A. J. Semiconducting and metallic polymers: The fourth generation ofpolymeric materials. Synth. Met.,2001,125:23-42.
    [6] Bao Z. Conducting polymers: Fine printing. Nat. Mater.,2004,3:137-138.
    [7] Gamota D. R., Brazis P., Kalyanasundaram X., Zhang J., Eds. Printed organic andmolecular electronics. Kluwer Academic: New York,2004.
    [8] Facchetti A. π-Conjugated polymers for organic electronics and photovoltaic cellapplications. Chem. Mater.,2011,23:733-758.
    [9] Bore B. D., Facchetti A. Semiconducting polymeric materials. Polymer Rev.,2008,48:423-431.
    [10] Wong W. S., Salleo A., Eds. Flexible electronics: Materials and applications.Springer,2009.
    [11]刘云圻。有机纳米与分子器件。科学出版社:北京,2010。
    [12]肖恺,于贵,刘云圻,朱道本。有机场效应晶体管研究和应用进展。科学通报,2002,12:881-890。
    [13] Allard S., Forster M., Souharce B., Thiem H., Scherf U. Organic semiconductorsfor solution-processable field-effect transistors (OFETs). Angew. Chem. Int. Ed.,2008,47:4070-4098.
    [14]胡文平。有机场效应晶体管。科学出版社:北京,2011。
    [15] Tsumura A., Koezuka H., Ando T. Macromolecular electronic device:Field-effect transistor with a polythiophene thin film. Appl. Phys. Lett.,1986,49,1210-1212.
    [16] Horowitz G. Organic field-effect transistors. Adv. Mater.,1998,10:365-377.
    [17]李荣金,李洪祥,周欣然,胡文平。聚合物场效应晶体管材料及其器件。化学进展,2007,19:325-326。
    [18] Dodabalapur A. Organic and polymer transistors for electronics. Mater. Today,2006,9:24-30.
    [19] Facchetti A. Semiconductors for organic transistors. Mater. Today,2007,10:28-37.
    [20] Klauk H. Organic thin-film transistors. Chem. Soc. Rev.,2010,39:2643-2666.
    [21] Dong H. L., Wang C. L., Hu W. P. High performance organic semiconductorsfor feld-effect transistors. Chem. Commun.,2010,46:5211-5222.
    [22] Ong B. S., Wu Y. L., Li Y. N., Liu P., Pan H. Thiophene polymersemiconductors for organic thin-film transistors. Chem. A Euro. J.,2008,14:4766-4778.
    [23] Abdou M. S. A., Orfino F. P., Son Y., Holdcroft S. Interaction of oxygen withconjugated polymers: Charge transfer complex formation with poly (3-alkylthiophenes). J.Am. Chem. Soc.,1997,119:4518-4524.
    [24] Mattis B. A., Chang P. C., Subramanian V. Performance recovery andoptimization of poly (3-hexylthiophene) transistors by thermal cycling. Synth. Met.,2006,156:1241-1248.
    [25] McCulloch I., Bailey C., Giles M., Heeney M., Love I., Shkunov M., SparroweD., Tierney S. Influence of molecular design on the field-effect transistor characteristics ofterthiophene polymers. Chem. Mater.,2005,17:1381-1385.
    [26] Heeney M., Bailey C., Genevicius K., Shkunov M., Sparrowe D., Tierney S.,McCulloch I. Stable polythiophene semiconductors incorporating thieno[2,3-b]thiophene.J. Am. Chem. Soc.,2005,127:1078-1079.
    [27] Osaka I., Zhang R., Sauve G., Smilgies D. M., Kowalewski T., McCullough R.D. High-lamellar ordering and amorphous-like π-network in short-chain thiazolothiazole-thiophene copolymers lead to high mobilities. J. Am. Chem. Soc.,2009,131:2521-2529.
    [28] Kim D. H., Lee B. L., Moon H., Kang H. M., Jeong E. J., Park J. I., Han K. M.,Lee S., Yoo B. W., Koo B. W., Kim J. Y., Lee W. H., Cho K., Becerril H. A., Bao Z. N.Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptorbuilding blocks for high-stability polymer transistors. J. Am. Chem. Soc.,2009,131:6124-6132.
    [29] Li Y., Singh S. P., Sonar P. A High mobility p-type DPP-thieno[3,2-b]thiophenecopolymer for organic thin-film Transistors. Adv. Mater.,2010,22:4862-4866.
    [30] Bronstein H., Chen Z. Y., Ashraf R. S., Zhang W. M., Du J. P., Durrant J. R.,Tuladhar P. S., Song K., Watkins S. E., Geerts Y., Wienk M. M., Janssen R. A. J.,Anthopoulos T., Sirringhaus H., Heeney M., McCulloch I. Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effecttransistors and organic photovoltaic devices. J. Am. Chem. Soc.,2011,133:3272-3275.
    [31] Coropceanu V., Cornil J., Filho D. A. S., Olivier Y., Silbey R., Brédas J. Chargetransport in organic semiconductors. Chem. Rev.,2007,107:926-952.
    [32] McCullough R. D., Tristram-Nagle S., Williams S. P., Lowe R. D., JayaramanM. Self-orienting head-to-tail poly(3-alkylthiophenes): New insights on structure-property relationships in conducting polymers. J. Am. Chem. Soc.,1993,115:4910-4911.
    [33] Ong B. S., Wu Y., Liu P., Gardner S. Structurally ordered polythiophenenanoparticles for high-performance organic thin-film transistors. Adv. Mater.,2005,9:1141-1144.
    [34] Tsao H. N., Cho D. M., Park I., Hansen M. R., Mavrinskiy A., Yoon D. Y.,Graf R., Pisula W., Spiess H. W., M llen K. Ultrahigh mobility in polymer field-effecttransistors by design. J. Am. Chem. Soc.,2011,133:2605-2612.
    [35] Sirringhaus H., Brown P. J., Friend R. H., Nielsen M. M., Bechgaard K.,Langeveld-Voss B. M. W., Spiering A. J. H., Janssen R. A. J., Meijer E. W., Herwig P.,de Leeuw D. M. Two-dimensional charge transport in self-organized, high-mobilityconjugated polymers. Nature,1999,401:685-688.
    [36] Kim D. H., Park Y. D., Jang Y., Yang H., Kim Y. H., Han J. I., Moon D. G.,Park S., Chang T., Chang C., Joo M., Ryu C. Y., Cho K. Enhancement of field-effectmobility due to surface-mediated molecular ordering in regioregular polythiophene thinfilm transistors. Adv. Funct. Mater.,2005,15:77-82.
    [37] Sirringhaus H., Tessler N., Friend R. H. Integrated optoelectronic devicesbased on conjugated polymers. Science,1998,280:1741-1743.
    [38] Katz H. E. Recent advances in semiconductor performance and printingprocesses for organic transistor-based electronics. Chem. Mater.,2004,16:4748-4756.
    [39] Hamadani B. H., Gundlach D. J., McCulloch I., Heeney M. Undopedpolythiophene field-effect transistors with mobility of1cm2V-1s-1. Appl. Phys. Lett.,2007,91:243512-243515.
    [40] Osaka I., McCullough R. D. Advances in molecular design and synthesis ofregioregular polythiophenes. Acc. Chem. Res.,2008,41:1202-1214.
    [41] Ong B. S., Wu Y. L., Liu P., Gardner S. High-performance semiconductingpolythiophenes for organic thin-film transistors. J. Am. Chem. Soc.,2004,126:3378-3379.
    [42] Ong B. S., Wu Y., Jiang L., Liu P., Murti K. Polythiophene-based field-effecttransistors with enhanced air stability. Synth. Met.,2004,142:49-52.
    [43] Wu Y., Liu P., Gardner S., Ong B. S. Poly(3,3''-dialkylterthiophene)s:Room-temperature, solution-processed, high-mobility semiconductors for organicthin-film transistors. Chem. Mater.,2005,17:221-223.
    [44] McCulloch I., Heeney M., Bailey C., Genevicius K., Macdonald I., ShkunovM., Sparrowe D., Tierney S., Wagner R., Zhang W. M., Chabinyc M. L., Kline R. J.,McGehee M. D., Toney M. F. Liquid-crystalline semiconducting polymers with highcharge-carrier mobility. Nat. Mater.,2006,5:328-333.
    [45] Chabinyc M. L., Toney M. F., Kline R. J., McCulloch I., Heeney M. X-rayscattering study of thin films of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). J. Am. Chem. Soc.,2007,129:3226-3237.
    [46] Li Y., Wu Y., Liu P., Birau M., Pan H., Ong B. S. Poly(2,5-bis(2-thienyl)-3,6-dialkylthieno[3,2-b]thiophene)s——High-mobility semiconductors forthin-film transistors. Adv. Mater.,2006,18:3029-3032.
    [47] Li J., Qin F., Li C. M., Bao Q. L., Chan-Park M. B., Zhang W., Qin J. G., OngB. S. High-performance thin-film transistors from solution-processed dithienothiophenepolymer semiconductor nanoparticles. Chem. Mater.,2008,20:2057-2059.
    [48] He M. Q., Li J. F., Sorensen M. L., Zhang F. X., Hancock R. R., Fong H. H.,Pozdin V. A., Smilgies D. M., Malliaras G. G. Alkylsubstituted thienothiophenesemiconducting materials: Structure—property relationships. J. Am. Chem. Soc.,2009,131:11930-11938.
    [49] Usta H., Lu G., Facchetti A., Marks T. J. Dithienosilole and dibenzosilolethiophene copolymers as semiconductors for organic thin-film transistors. J. Am. Chem.Soc.,2006,128:9034-9035.
    [50] Liu J. Y., Zhang R., Sauvé G., Kowalewski T., McCullough R, D. Highlydisordered polymer field effect transistors: N-alkyl dithieno[3,2-b:2',3'-d]pyrrole-basedcopolymers with surprisingly high charge carrier mobilities. J. Am. Chem. Soc.,2008,130:13167-13176.
    [51] Pan H. L., Li Y. N., Wu Y. L., Liu P., Ong B. S., Zhu S. P., Xu G. Synthesisand thin-film transistor performance of poly(4,8-didodecylbenzo[1,2-b:4,5-b']dithiophene). Chem. Mater.,2006,18:3237-3241.
    [52] Pan H. L., Wu Y. L., Li Y. N., Liu P., Ong B. S., Zhu S. P., Xu G.Benzodithiophene copolymer: A low-temperature, solution-processed high-performancesemiconductor for thin-film transistors. Adv. Funct. Mater.,2007,17:3574-3579
    [53] Pan H. L., Li Y. N., Wu Y. L., Liu P., Ong B. S., Zhu S. P., Xu G.Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors. J. Am. Chem. Soc.,2007,129:4112-4113.
    [54] Rieger R., Beckmann D., Mavrinskiy A., Kastler M., M llen K. Backbonecurvature in polythiophenes. Chem. Mater.,2010,22:5314-5318.
    [55] Rieger R., Beckmann D., Pisula W., Steffen W., Kastler M., M llen K. Rationaloptimization of benzo[2,1-b;3,4-b']dithiophene-containing polymers for organic field-effect transistors. Adv. Mater.,2010,22:83-86.
    [56] Schroeder B. C., Nielsen C. B., Kim Y. J., Smith J., Huang Z. G., Durrant J.,Watkins S. E., Song K., Anthopoulos T. D., McCulloch I. Benzotrithiophene copolymerswith high charge carrier mobilities in field-effect transistors. Chem. Mater.,2011,23:4025-4031.
    [57] Osaka I., Abe T., Shinamura S., Miyazaki E., Takimiya K. High-mobilitysemiconducting naphthodithiophene copolymers. J. Am. Chem. Soc.,2011,132:5000-5001.
    [58] Osaka I., Abe T., Shinamura S., Takimiya K. Impact of isomeric structures ontransistor performances in naphthodithiophene semiconducting polymers. J. Am. Chem.Soc.,2011,133:6852-6860.
    [59] Osaka I., Sauvé G., Zhang R., Kowalewski T., McCullough R. D. Novelthiophene-thiazolothiazole copolymers for organic field-effect transistors. Adv. Mater.,2007,19:4160-4165.
    [60] Osaka I., Zhang R., Liu J. Y., Smilgies D. M., Kowalewski T., McCullough R.D. Highly stable semiconducting polymers based on thiazolothiazole. Chem. Mater.,2010,22:4191-4196.
    [61] Ahmed E., Kim F. S., Xin H., Jenekhe S. A. Benzobisthiazole-thiophenecopolymer semiconductors: Synthesis, enhanced stability, field-effect transistors, andefficient solar cells. Macromolecules,2009,42:8615-8618.
    [62] Dong H., Bo Z., Hu W. High performance phototrasistors of a planar conjugatedcopolymer. Macro. Rapid. Commun.,2011,32:649-653.
    [63] Zhang W. M., Smith J., Watkins S. E., Gysel R., McGehee M., Salleo A.,Kirkpatrick J., Ashraf S., Anthopoulos T., Heeney M., McCulloch I. Indacenodithiophenesemiconducting polymers for high-performance, air-stable transistors. J. Am. Chem. Soc.,2010,132:11437-11439.
    [64] Sainova D., Janietz S., Asawapirom U., Romaner L., Zojer E., Koch N., VollmerA. Improving the stability of polymer FETs by introducing fixed acceptor units into themain chain: Application to poly(alkylthiophenes). Chem. Mater.,2007,19:1472-1481.
    [65] Yang C., Cho S., Chiechi R. C., Walker W., Coates N. E., Moses D., Heeger A.J., Wudl F. Visible near infrared absorbing dithienylcyclopentadienone thiophenecopolymers for organic thin-film transistors. J. Am. Chem. Soc.,2008,130:16524-16526.
    [66] Guo X. G., Kim F. S., Jenekhe S. A., Watson M. D. Phthalimide-based polymersfor high performance organic thin-film transistors. J. Am. Chem. Soc.,2009,131:7206-7207.
    [67] Li Y. N., Sonar P., Singh S. P., Soh M. S., Meurs M.,. Tan J. Annealing-freehigh-mobility diketopyrrolopyrrole-quaterthiophene copolymer for solution-processedorganic thin film transistors. J. Am. Chem. Soc.,2011,133:2198-2204.
    [68] United nations environment programme (UNEP), global environment outlook(GEO year book2006). http://www.unep.org/geo/yearbook/yb2006/.
    [69]徐明生,季振国,阙端麟,汪茫,陈红征。有机太阳能电池研究进展。材料科学与工程,2000,18:92-99。
    [70] Brabec C. J., Sariciftci N. S., Hummelen J. C. Plastic solar cells. Adv. Funct.Mater.,2001,11:15-26.
    [71] Hoppe H., Sariciftci N. S. Organic solar cells: An overview. J. Mater. Res.,2004,19,1924-1945.
    [72]张正华,李陵岚,叶楚平,杨平华。有机太阳能电池和塑料太阳能电池。化学工业出版社:北京,2005。
    [73] Krebs F. C. Polymer photovoltaics: A practical approach. SPIE Press:Bellingham,2008.
    [74] Sariciftci N. S., Smilowitz L., Heeger A. J., Wudl F. Photoinducedelectron-transfer from a conducting polymer to buckminsterfullerene. Science,1992,258:1474-1476.
    [75] Yu G., Gao J., Hummelen J. C., Wudl F., Heeger A. J. Polymer photovoltaic cells:Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science,1995,270:1789-1791.
    [76] Jenekhe S. A., Yi S. Efficient photovoltaic cells from semiconducting polymerheterojunctions. Appl. Phys. Lett.,2000,77:2635-2637.
    [77] Winder C., Sariciftci N. S. Low bandgap polymers for photon harvesting in bulkheterojunction solar cells. J. Mater. Chem.,2004,14:1077-1086.
    [78] Park S. H., Roy A., Beaupré S., Cho S., Coates N., Moon J. S., Moses D.,Leclerc M., Lee K., Heeger A. J. Bulk heterojunction solar cells with internal quantumefficiency approaching100%. Nat. Photo.,2009,3:297-302.
    [79] Thompson B. C., Frechet J. M. J. Polymer-fullerene composite solar cells.Angew. Chem. Int. Ed.,2008,47:58-77.
    [80] Liang Y., Xu Z., Xia J., Tsai S. T., Wu Y., Li G., Ray C., Yu L. For the brightfuture-bulk heterojunction polymer solar cells with power conversion efficiency of7.4%.Adv. Mater.,2010,22:1-4.
    [81] G nes S., Neugebauer H., Sariciftci N. S. Conjugated polymer-based organicsolar cells. Chem. Rev.,2007,107:1324-1338.
    [82] Cheng Y. J., Yang S. H., Hsu C. S. Synthesis of conjugated polymers for organicsolar cell applications. Chem. Rev.2009,109:5868-5923.
    [83] Li G., Zhu R., Yang Y. Polymer solar cells. Nat. Photo.,2012,6:153-161.
    [84] Piliego C., Holcombe T. W., Douglas J. D., Woo C. H., Beaujuge P. M., FréchetJ. M. J. Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J. Am. Chem. Soc.,2010,132:7595-7597.
    [85] Boudreault P. T., Najari A., Leclerc M. Processable low-bandgap polymers forphotovoltaic applications. Chem. Mater.,2011,23:456-469.
    [86] Son H. J., He F., Carsten B., Yu L. P. Are we there yet? Design of betterconjugated polymers for polymer solar cells. J. Mater. Chem.,2011,21:18934-18945.
    [87] He, Z., Zhong, C., Huang, X., Wong, W., Wu, H., Chen, L., Su, S., Cao, Y.Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fillfactor in polymer solar cells. Adv. Mater.,2011,23:4636-4643.
    [88] Li Y. F. Molecular design of photovoltaic materials for polymer solar cells:Toward suitable electronic energy levels and broad absorption. Acc. Chem. Res.,2012,45:723-733.
    [89] Schweitzer B., Bassler H. Excitons in conjugated polymers. Synth. Met.,2000,109:1-6.
    [90] Scharber M., Muhlbacher D., Koppe M., Denk P., Waldauf C., Heeger A. J.,Brabec C. Design rules for donors in bulk-heterojunction solar cells——Towards10%energy-conversion efficiency. Adv. Mater.,2006,18:789-794.
    [91] Brabec C. J., Cravino A., Meissner D., Sariciftci N. S., Fromherz T., Rispens M.T., Sanchez L., Hummelen J. C. Origin of the open circuit voltage of plastic solar cells.Adv. Funct. Mater.,2001,11:374-380.
    [92] Chen H. Y., Hou J. H., Zhang S. Q., Liang Y. Y., Yang G. W., Yang Y., Yu L. P.,Wu Y., Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat.Photon.,2009,3:649-653.
    [93] Hoppe H., Sariciftci N. S. Morphology of polymer/fullerene bulk heterojunctionsolar cells. J. Mater. Chem.,2006,16:45-61.
    [94] Andersson L. M., Zhang F. L., Inganas O. Stoichiometry, mobility, andperformance in bulk heterojunction solar cells. Appl. Phys. Lett.,2007,91:071108-071111.
    [95] Mandoc M. M., Veurman W., Koster L. J. A., de Boer B., Blom P. W. M. Originof the reduced fill factor and photocurrent in MDMO-PPV:PCNEPV all-polymer solarcells. Adv. Funct. Mater.,2007,17:2167-2173.
    [96]李永舫。聚合物太阳能电池高效共轭聚合物给体和富勒烯受体光伏材料。高分子通报,2011,10:33-49。
    [97] Zhou H. X., Yang L. Q., You W. Rational design of high performanceconjugated polymers for organic solar cells. Macromolecules,2012,45:607-632.
    [98] Li Y., Zou Y. Conjugated polymer photovoltaic materials with broad absorptionband and high charge carrier mobility. Adv. Mater.,2008,20:2952-2958.
    [99] Zhou E., Wei Q., Yamakawa S., Zhang Y., Tajima K., Yang C., Hashimoto K.Diketopyrrolopyrrole-based semiconducting polymer for photovoltaic device withphotocurrent response wavelengths up to1.1μm. Macromolecules,2010,43:821-826.
    [100] Dou L. T., You J. B., Yang J., Chen C. C., He Y. J., Murase S., Moriarty T.,Emery K., Li G., Yang Y. Tandem polymer solar cells featuring a spectrally matchedlow-bandgap polymer. Nat. Photo.,2012,6:180-185.
    [101]叶怀英,李文,李维实。有机太阳能电池用聚合物给体材料的研究进展。有机化学,2012,32:266-283。
    [102] Koster L. J. A., Mihailetchi V. D., Blom P. W. M. Ultimate efficiency ofpolymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett.,2006,88:093511-093514.
    [103] Blouin N., Michaud A., Gendron D., Wakim S., Blair E., Neagu-Plesu R.,Belletete M., Durocher G., Tao Y., Leclerc M. Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. J. Am. Chem. Soc.,2008,130:732-742.
    [104] Hou J. H., Yang C. H., He C., Li Y. F. Poly[3-(5-octyl-thienylene-vinyl)-thiophene]: A side-chain conjugated polymer with very broad absorption band. Chem.Commun.,2006,871-873.
    [105] Hou J., Chen H., Zhang S., Li G., Yang Y. Synthesis, characterization, andphotovoltaic properties of a low band gap polymer based on silole-containingpolythiophenes and2,1,3-benzothiadiazole. J. Am. Chem. Soc.,2008,130:16144-16145.
    [106] Chu T. Y., Lu J. P., Beaupré S., Zhang Y. G., Pouliot J. R., Wakim S., Zhou J.Y., Leclerc M., Li Z., Ding J. F., Tao Y. Bulk heterojunction solar cells usingthieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2,3-d]silole copolymer with a powerconversion efficiency of7.3%. J. Am. Chem. Soc.,2011,133:4250-4253.
    [107] Wang M., Hu X. W., Liu P., Li W., Gong X., Huang F., Cao Y. Donor-acceptorconjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc.,2011,133:9638-9641.
    [108] Shaheen S. E., Brabec C. J., Sariciftci N. S., Padinger F., Fromherz T.,Hummelen J. C.2.5%Efficient organic plastic solar cells. Appl. Phys. Lett.,2001,78:841-843.
    [109] Li G., Shrotriya V., Huang J., Yao Y., Moriarty T., Emery K., Yang Y.High-efficiency solution processable polymer photovoltaic cells by self-organization ofpolymer blends. Nat. Mater.,2005,4:864-868.
    [110] Zhao G. J., He Y. J., Li Y. F.6.5%Efficiency of polymer solar cells based onpoly(3-hexylthiophene) and indene-C60bisadduct by device optimization. Adv. Mater.,2010,22:4355-4358.
    [111] Chang Y. T., Hsu S. L., Su M. H., Wei K. H. Intramolecular donor-acceptorregioregular poly(hexylphenanthrenyl-imidazole thiophene) exhibits enhanced holemobility for heterojunction solar cell applications. Adv. Mater.,2009,21:2093-2097.
    [112] Zhang G. B., Fu Y. Y., Xie Z. Y., Zhang Q. Benzo[1,2-b:4,5-b']dithiophene-dioxopyrrolothiophen copolymers for high performance solar cells. Chem. Commun.,2010,46:4997-4999.
    [113] Zhou H. X., Yang L. Q., Stuart A. C., Price S. C., Liu S., You W. Developmentof fluorinated benzothiadiazole as a structural unit for a polymer solar cell of7%efficiency. Angew. Chem. Int. Ed.,2011,50:2995-2998.
    [114] Huo L. J., Zhang S. Q., Guo X., Xu F., Li Y. F., Hou J. H. Replacing alkoxygroups with alkylthienyl groups: A feasible approach to improve the properties ofphotovoltaic polymers. Angew. Chem. Int. Ed.,2011,50:9697-9702.
    [115] Duan C. H., Huang F., Cao Y. Recent development of push-pull conjugatedpolymers for bulk-heterojunction photovoltaics: Rational design and fne tailoring ofmolecular structures. J. Mater. Chem.,2012,22:10416-10434.
    [116] Svensson M., Zhang F. L., Veenstra S. C., Verhees W. J. H., Hummelen J. C.,Kroon J. M., Ingans O., Ahedrsson M. R. High-performance polymer solar cells of analternating polyfluorene copolymer and a fullerene derivative. Adv. Mater.,2003,15:988-991.
    [117] Slooff L. H., Veenstra S. C., Kroon J. M., Moet D. J. D., Sweelssen J., KoetseM. M. Determining the internal quantum efficiency of highly efficient polymer solar cellsthrough optical modeling. Appl. Phys. Lett.,2007,90,143506-143509.
    [118] Wang E. G., Wang L., Lan L. F., Luo C., Zhuang W., Peng J., Cao Y.High-performance polymer heterojunction solar cells of a polysilafluorene derivative.Appl. Phys. Lett.,2008,92:033307-033310.
    [119] Blouin N., Michaud A., Leclerc M. A low-bandgap poly(2,7-carbazole)derivative for use in high-performance solar cells. Adv. Mater.,2007,19:2295-2300.
    [120] Gendron D., Morin P. O., Najari A., Leclerc M. Synthesis of newpyridazine-based monomers and related polymers for photovoltaic applications. Macro.Rapid. Commun.,2010,31:1090-1094.
    [121] Lee S. K., Lee W. H., Cho J. M., Park S. J., Park J. U., Shin W. S., Lee J. C.,Kang I. N., Moon S. J. Synthesis and photovoltaic properties of quinoxaline-basedalternating copolymers for high-efficiency bulk-heterojunction polymer solar cells.Macromolecules,2011,44:5994-6001.
    [122] Zhu Z., Waller D., Gaudiana R., Morana M., Muhlbacher D., Scharber M.,Brabec C. Panchromatic conjugated polymers containing alternating donor/acceptor unitsfor photovoltaic applications. Macromolecules,2007,40:1981-1986.
    [123] Muhlbacher D., Scharber M., Morana M., Zhu Z., Waller D., Gaudiana R.,Brabec C. High photovoltaic performance of a low-bandgap polymer. Adv. Mater.,2006,18:2884-2889.
    [124] Peet J., Kim J. Y., Coates N. E., Ma W. L., Moses D., Heeger A. J., Bazan G. C.Efficiency enhancement in low-bandgap polymer solar cells by processing with alkanedithiols. Nat. Mater.,2007,6:497-500.
    [125] Li Z., Ding J. F., Song N. H., Lu J. P., Tao Y. Development of a news-tetrazine-based copolymer for effcient solar cells. J. Am. Chem. Soc.,2010,132:13160-13161.
    [126] Hou J., Park M. H., Zhang S., Yao Y., Chen L. M., Li J. H., Yang Y. Bandgapand molecular energy level control of conjugated polymer photovoltaic materials based onbenzo[1,2-b:4,5-b']dithiophene. Macromolecules,2008,41:6012-6018.
    [127] Li Z., Lu J. P., Tse S. C., Zhou J. Y., Du X. M., Tao Y., Ding J. F. Synthesis andapplications of difuorobenzothiadiazole based conjugated polymers for organicphotovoltaics. J. Mater. Chem.,2011,21:3226-3233.
    [128] Zhou H. X., Yang L. Q., Price S. C., Knight K. J., You W. Enhancedphotovoltaic performance of low-bandgap polymers with deep LUMO levels. Angew.Chem. Int. Ed.,2010,49:7992-7995.
    [129] Hou L. J., Hou J. H., Zhang S. Q., Chen H. Y., Yang Y. Apolybenzo[1,2-b:4,5-b']dithiophene derivative with deep HOMO level and its applicationin high-performance polymer solar cells. Angew. Chem. Int. Ed.,2010,49:1500-1503.
    [130] Zou Y. P., Najari A., Berrouard P., Beaupré S., A ch B. R., Tao Y., Leclerc M. Athieno[3,4-c]pyrrole-4,6-dione-based copolymer for effcient solar cells. J. Am. Chem.Soc.,2010,132:5330-5331.
    [131] Zhang Y., Hau S. K., Yip H. L., Sun Y., Acton O., Jen A. K. Y. Efficientpolymer solar cells based on the copolymers of benzodithiophene and thienopyrroledione.Chem. Mater.,2010,22:2696-2698.
    [132] Yao Y., Liang Y., Shrotriya V., Xiao S., Yu L., Yang Y. Plastic near-infraredphotodetectors utilizing low band gap polymer. Adv. Mater.,2007,19:3979-3983.
    [133] Liang Y. G., Xiao S. Q., Feng D. Q., Yu L. P. Control in energy levels ofconjugated polymers for photovoltaic application. J. Phys. Chem. C,2008,112:7866-7871.
    [134] Liang Y. Y., Wu Y., Feng D. Q., Tsai S. T., Son H. J., Li G., Yu L. P.Development of new semiconducting polymers for high performance solar cells. J. Am.Chem. Soc.,2009,131:56-57.
    [135] Kleinhenz N., Yang L. Q., Zhou H. X., Price S. C., You W. Low-band-gappolymers that utilize quinoid resonance structure stabilization by thienothiophene:Fine-tuning of HOMO level. Macromolecules,2011,44:872-877.
    [136] Allard N., Beaupré S., A ch B. R., Najari A., Tao Y., Leclerc M. Synthesis andcharacterization of new poly(thieno[3,4-d]thiazole)derivatives for photovoltaicapplications. Macromolecules,2011,44:7184-7187.
    [137] Kim J. K., Yu J. W., Hong J. M., Cho H. N., Kim D. Y., Kim C. Y. Analternating copolymer consisting of light emitting and electron transporting units. J. Mater.Chem.,1999,9:2171-2176.
    [138] Lu H. F., Chan H. S. O., Ng S. C. Synthesis, characterization, and electronicand eoptical properties of donor acceptor conjugated polymers based on alternatingbis(3-alkylthiophene) and pyridine moieties. Macromolecules,2003,36:1543-1552.
    [139] Karastatiris P., Mikroyannidis J. A., Spiliopoulos I. K., Fakis M., PersephonisP. Luminescent poly(phenylene vinylene) derivatives with m-terphenyl or2,6-diphenylpyridine kinked segments along the main chain: Synthesis, characterization,and stimulated emission. J. Polym. Sci., Part A: Polym. Chem.,2004,42:2214-2224.
    [140] Wu C. G., Lin Y. C., Wu C., Huang P. H. Synthesis and photophysics of newhighly luminescent poly(alkylthiophene) derivatives with pyridine in the backbone.Polymer,2005,46:3748-3757.
    [141] Thompsom B. C., Madrigal L. G., Pinto M. R., Kang T., Schanze K. S.,Reynolds J. R. Donor-acceptor copolymers for red-and near-infrared-emitting polymerlight-emitting diodes. J. Polym. Sci., Part A: Polym. Chem.,2005,43:1417-1431.
    [142] Jung Y. K., Lee J., Lee S. Y., Cho H. J., Shim H. K. Fluorene copolymerscontaining bithiophene/2,5-or2,6-pyridine units: A study of their optical, electrochemical,and electroluminescence properties. J. Polym. Sci., Part A: Polym. Chem.,2006,44:4611-4620.
    [143] Cave G. W. V., Raston C. L., Scott J. L. Recent advances in solventless organicreactions: Towards benign synthesis with remarkable versatility. Chem. Commun.,2001,2159-2169.
    [144] Adib M., Tahermansouri H., Koloogani S. A., Mohammadi B., Bijanzadehb H.R. Kr hnke pyridines: An efficient solvent-free synthesis of2,4,6-triarylpyridines.Tetrahedron Lett.,2006,47:5957-5960.
    [145] Cimrova V., Hlidkova H., Prachticky D., Karastatiris P., Spiliopoulos I. K.,Mikroyannidis J. A. Photophysics, electrochemical properties, and electroluminescence ofpoly(p-phenylenevinylene) derivatives with1,3,5-triphenylbenzene or2,4,6-triphenyl-pyridine segments along the backbone. J. Polym. Sci., Part B: Polym. Phys.,2006,44:524-533.
    [146] Jiang H. J., Gao Z. Q., Liu F., Ling Q. D., Wei W., Huang W. Novelphotoluminescent polymers containing fuorene and2,4,6-triphenyl pyridine moieties:Effects of noncoplanar molecular architecture on the electro-optical properties of parentmatrix. Polymer,2008,49:4369-4377.
    [147] Mikroyannidis J. A., Damouras P. A., Maragos V. G., Tsai L. R., Chen Y.Synthesis, photophysics and electroluminescence of new vinylene-copolymers with2,4,6-triphenylpyridine kinked segments along the main chain. Euro. Polym. J.,2009,45:284-294.
    [148] Liu B., Bao Y. Y., Du F. F., Wang H., Tian J., Bai R. K. Synthesis andcharacterization of a fuorescent polymer containing2,6-bis(2-thienyl)pyridine moieties asa highly efficient sensor for Pd2+detection. Chem. Commun.,2011,47:1731-1733.
    [149] Ponomarenko1S. A., Kirchmeyer S., Elschner1A., Huisman B. H., KarbachA., Drechsler D. Star-shaped oligothiophenes for solution-processible organic field-effecttransistors. Adv. Funct. Mater.,2003,13:591-596.
    [150] Kanibolotsky A. L., Perepichkaz I. F., Skabara P. J. Star-shaped π-conjugatedoligomers and their applications in organic electronics and photonics. Chem. Soc. Rev.,2010,39:2695-2728.
    [151] Mikroyannidis J. A., Vellis P. D., Yang S. H., Hsu C. S. Synthesis,electroluminescence, and photovoltaic cells of new vinylene-copolymers with4-(anthracene-10-yl)-2,6-diphenylpyridine segments. J. Appl. Polym. Sci.,2010,115:731-739.
    [152] Leclerc N., Sanaur S., Galmiche L., Mathevet F., Attias A., Fave J. L., RousselJ., Hapiot P., Lemaitre N., Geffroy B.6-(Arylvinylene)-3-bromopyridine derivatives aslego building blocks for liquid crystal, nonlinear optical, and blue light emittingchromophores. Chem. Mater.,2005,17:502-513.
    [153] Foroumadi A., Emami S., Mehni M., Moshafc M. H., Shafee A. Synthesis andantibacterial activity of N-[2-(5-bromothiophen-2-yl)-2-oxoethyl] and N-[(2-5-bromothiophen-2-yl)-2-oximinoethyl] derivatives of piperazinyl quinolones. Bioorg. Med.Chem. Lett.,2005,15:4536-4539.
    [154] Ismail M. A., Boykin D. W. Synthesis of novel bithiophene-substitutedheterocycles bearing carbonitrile groups. Synth. Commun.,2011,41:319-330.
    [155] Fujimori T., Wirsching P., Janda K. D. Preparation of a Kr hnke pyridinecombinatorial library suitable for solution-phase biological screening. J. Comb. Chem.,2003,5:625-628.
    [156] Zhao L. X., Moon Y. S., Basnet A. Synthesis, topoisomerase I inhibition andstructure-activity relationship study of2,4,6-trisubstituted pyridine derivatives. Bioorg.Med. Chem. Lett.,2004,14:1333-1337.
    [157] Frere P., Raimundo J. M., Blanchard P., Delaunay J., Richomme P., Sauvajol J.L., Orduna J., Garin J., Roncali J. Effect of local molecular structure on the chain-lengthdependence of the electronic properties of thiophene-based π-conjugated systems. J. Org.Chem.,2003,68:7254-7258.
    [158] Leenen M. A. M., Cucinotta F., Pisula W., Steiger J., Anselmann R., ThiemaH., Cola L. D. Benzo[1,2-b:4,5-b']dithiophene-based copolymers applied inbottom-contact feld-effect transistors. Polymer,2010,51:3099-3107.
    [159] Li Y. F., Cao Y., Gao J., Wang D., Yu G., Heeger A. J. Electrochemicalproperties of luminescent polymers and polymer light-emitting electrochemical cells.Synth. Met.,1999,99:243-248.
    [160] Huo L. J., Hou J. H. Benzo[1,2-b:4,5-b']dithiophene-based conjugatedpolymers: Band gap and energy level control and their application in polymer solar cells.Polym. Chem.,2011,2:2453-2461.
    [161] Sista P.; Biewer M. C.; Stefan M. C. Benzo[1,2-b:4,5-b']dithiophene buildingblock for the synthesis of semiconducting polymers. Macromol. Rapid Commun.,2012,33:9-20.
    [162] Sista P., Nguyen H., Murphy J. W., Hao J., Dei D. K., Palaniappan K., ServelloJ., Kularatne R. S., Gnade B. E., Xue B., Dastoor P. C., Biewer M. C., Stefan M. C.Synthesis and electronic properties of semiconducting polymers containingbenzodithiophene with alkyl phenylethynyl substituents. Macromolecules,2010,43:8063-8070.
    [163] Zou Y. P., Wu W. P., Sang G. Y., Yang Y., Liu Y. Q., Li Y. F. Polythiophenederivative with phenothiazine-vinylene conjugated side chain: Synthesis and itsapplication in field-effect transistors. Macromolecules,2007,40:7231-7237.
    [164] Park J. W., Lee D. H., Chung D. S., Kang D. M., Kim Y. H., Park C. E., KwonS. K. Conformationally twisted semiconducting polythiophene derivatives withalkylthiophene side chain: High solubility and air stability. Macromolecules,2010,43:2118-2123.
    [165] Zhao C. C., Zhang Y., Ng M. K. Derivatives of4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-4,9-dione: Synthesis and properties. J. Org. Chem.,2007,72:6364-6371.
    [166] Li Z. H., Wong M. S., Fukutani H., Tao Y. Full emission color tuning inbis-dipolar diphenylamino-end capped oligoarylfluorenes. Chem. Mater.,2005,17:5032-5040.
    [167] Elbing M., Garcia A., Urban S., Nguyen T. Q., Bazan G. C. In situ conjugatedpolyelectrolyte formation. Macromolecules,2008,41:9146-9155.
    [168] Min J., Peng B., He Y. J., Zhang M. J., Zhang Z. G., Zhang J., Guo X., Cui C.H., Deng D., Li Y. F. Synthesis and photovoltaic properties of alternative copolymers ofbenzo[1,2-b:4,5-b']dithiophene and thiophene. Polym. Bull.,2012,68:2107-2119.
    [169] Hundt N., Palaniappan K., Servello J., Dei D. K., Stefan M. C., Biewer M. C.Polymers containing rigid benzodithiophene repeating unit with extended electrondelocalization. Org. Lett.,2009,11:4422-4425.
    [170] Wang E. G., Ma Z. F., Zhang Z., Vandewal K., Henriksson P., Ingan s O.,Zhang F. L., Andersson M. R. An easily accessible isoindigo-based polymer forhigh-performance polymer solar cells. J. Am. Chem. Soc.,2011,133:14244-14247.
    [171] Zhang G. B., Fu Y. Y., Zhang Q., Xie Z. Y. Synthesis and photovoltaicproperties of conjugated copolymers with benzo[1,2-b:4,5-b']dithiophene andbis(thiophene)phthalimide units. Macromol. Chem. Phys.,2010,211:2596-2601.
    [172] Zhang M. J., Guo X., Zhang Z. G., Li Y. F. D-A copolymers based ondithienosilole and phthalimide for photovoltaic materials. Polymer.2011,52:5464-5470.
    [173] Guo X. G., Ortiz R. P., Zheng Y., Kim M. G., Zhang S. M., Hu Y., Lu G.,Facchetti A., Marks T. J. Thieno[3,4-c]pyrrole-4,6-dione-based polymer semiconductors:Toward high-performance, air-stable organic thin-film transistors. J. Am. Chem. Soc.,2011,133:13685-13697.
    [174] Zhang G. B., Fu Y. Y., Xie Z. Y., Zhang Q. Low bandgap polymers withbenzo[1,2-b:4,5-b']dithiophene and bisthiophene-dioxopyrrolothiophene units forphotovoltaic applications. Polymer,2011,52:415-421.
    [175] Chen G. Y., Cheng Y. H., Chou Y. J., Su M. S., Chen C. M., Wei K. H.Crystalline conjugated polymer containing fused2,5-di(thiophen-2-yl)thieno[2,3-b]thiophene and thieno[3,4-c]pyrrole-4,6-dione units for bulk heterojunction solar cells.Chem. Commun.,2011,47:5064-5066
    [176] Zhang Y., Zou J. Y., Yip H. L., Sun Y., Davies J. A., Chen K. S., Acton O., JenA. K. Y. Conjugated polymers based on C, Si and N-bridged dithiophene andthienopyrroledione units: Synthesis, feld-effect transistors and bulk heterojunctionpolymer solar cells. J. Mater. Chem.,2011,21:3895-3902.
    [177] Bijleveld J. C., Zoombelt A. P., Mathijssen S. G., Wienk M. M., Turbiez M.,Leeuw D. M., Janssen R. J. Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logicand photovoltaics. J. Am. Chem. Soc.,2009,25:16616-16617.
    [178] Zhang G. B., Fu Y. Y., Xie Z. Y., Zhang Q. Synthesis of low bandgap polymerbased on3,6-dithien-2-yl-2,5-dialkylpyrrolo[3,4-c]pyrrole-1,4-dione for photovoltaicapplications. Solar Energy Materials&Solar Cells,2011,95:1168-1173.
    [179] Li Z., Zhang Y. G., Tsang S. W., Du X. M., Zhou J. Y., Tao Y., Ding J. F.Alkyl side chain impact on the charge transport and photovoltaic properties ofbenzodithiophene and diketopyrrolopyrrole-based copolymers. J. Phys. Chem. C,2011,115:18002-18009.
    [180] Wang X. C., Luo H., Sun Y. P., Zhang M. J., Li X. Y., Yu G., Liu Y. Q., Li Y.F., Wang H. Q. Narrow band gap D-A copolymer of indacenodithiophene anddiketopyrrolopyrrole with deep HOMO Level: Synthesis and application in field-effecttransistors and polymer solar cells. J. Polym. Sci. Part A: Polym. Chem.,2012,50:371-377.
    [181] Mei J. G., Graham K. R., Stalder R., Reynolds J. R. Synthesis ofisoindigo-based oligothiophenes for molecular bulk heterojunction solar cells. Org. Lett.,2010,12:660-663.
    [182] Zhang G. B., Fu Y. Y., Xie Z. Y., Zhang Q. Synthesis and photovoltaicproperties of new low bandgap isoindigo-based conjugated polymers. Macromolecules,2011,44:1414-1420.
    [183] Liu B., Zou Y. P., Peng B., Zhao B., Huang K. L., He Y. H., Pan C. Y. Lowbandgap isoindigo-based copolymers: Design, synthesis and photovoltaic applications.Polym. Chem.,2011,2:1156-1162.
    [184] Lei T., Cao Y., Fan Y. L., Liu C. J., Yuan S. C., Pei J. High-performanceair-stable organic field-effect transistors: Isoindigo-based conjugated polymers. J. Am.Chem. Soc.,2011,133:6099-6101.
    [185] Stalder R., Grand C., Subbiah J., So F., Reynolds J. R. An isoindigo anddithieno[3,2-b:2',3'-d]silole copolymer for polymer solar cells. Polym. Chem.,2012,3:89-92.
    [186] Cai W. Z., Wang M., Zhang J., Wang E. G., Yang T. B., He C., Moon J. S., WuH. B., Gong X., Cao Y. Solvent effect leading to high performance of bulk heterojunctionpolymer solar cells by novel polysilafluorene derivatives. J. Phys. Chem. C,2011,115:2314-2319.
    [187] Zhang Y., Zou J. Y., Yip H. L., Chen K. S., Davies J. A., Sun Y., Jen A. K. Y.Synthesis, characterization, charge transport, and photovoltaic properties ofdithienobenzoquinoxaline-and dithienobenzopyridopyrazine-based conjugated polymers.Macromolecules,2011,44:4752-4758.
    [188] Duan R. M., Ye L., Guo X., Huang Y., Wang P., Zhang S. Q., Zhang J. P., HuoL. J., Hou J. H. Application of two-dimensional conjugated benzo[1,2-b:4,5-b']dithiophenein quinoxaline-based photovoltaic polymers. Macromolecules,2012,45:3032-3038.
    [189] Li S., He Z. C., Yu J., Chen S., Zhong A. S., Wu H. B., Zhong C., Qin J. G., LiZ.2,3-Bis(5-Hexylthiophen-2-yl)-6,7-bis(octyloxy)-5,8-di(thiophen-2-yl)quinoxaline: Agood construction block with adjustable role in the donor-π-acceptor system for bulk-heterojunction solar cells. J. Polym. Sci. Part A: Polym. Chem., DOI:10.1002/pola.26086.
    [190] Kitazawa D., Watanabe N., Yamamoto S., Tsukamoto J. Conjugated polymersbased on quinoxaline for polymer solar cells. Solar Energy Materials&Solar Cells,2012,98:203-207.
    [191] Lee P., Hsu S. L. C., Lee J. F., Chuang H. Y., Lin P. New conjugatedcopolymers based on benzo[1,2-b;3,4-b']dithiophene and derivatives ofbenzo[g]quinoxaline for bulk heterojunction solar cells. J. Polym. Sci. Part A: Polym.Chem.,2011,49:662-670.
    [192] Wang E. G., Hou L. T., Wang Z. Q., Ma Z. F., Hellstr m S., Zhuang W. L.,Zhang F. L., Ingan s O., Andersson M. R. Side-chain architectures of2,7-carbazole andquinoxaline-based polymers for efficient polymer solar cells. Macromolecules,2011,44:2067-2073.
    [193] Lindgren L. J., Zhang F. L., Andersson M., Barrau S., Hellstr m S., MammoW., Perzon E., Ingan s O., Andersson M. R. Synthesis, characterization, and devices of aseries of alternating copolymers for solar cells. Chem.Mater.,2009,21:3491-3502.
    [194] Kim J. S., Lee Y., Lee J. H., Park J. H., Kim J. K., Cho K. High-effciencyorganic solar cells based on end-functional-group-modifed poly(3-hexylthiophene). Adv.Mater.,2010,22:1355-1360.
    [195] Wang H. F., Wen Y. G., Yang X. D., Wang Y., Zhou W. Y., Zhang S. M.,Zhan X. W., Liu Y. Q., Shuai Z. G., Zhu D. B. Fused-ring pyrazine derivatives for n-typefield-effect transistors. ACS Appl. Mater. Interfaces,2009,1:1122-1129.
    [196] Ivanova S. M., Nolan B. G., Kobayashi Y., Miller S. M., Anderson O. P.,Strauss S. H. Relative Lewis basicities of six Al(ORF)4—Superweak anions and thestructures of LiAl{OCH(CF3)2}4and [1-Et-3-Me-1,3-C3H3N2]-[Li{Al{OCH(CF3)2}4}2].Chem. Eur. J.,2001,7:502-510.
    [197] Alameddine B., Aebischer O. F., Amrein W., Donnio B., Deschenaux R.,Guillon D., Savary C., Scanu D., Scheidegger O., Jenny T. A. Mesomorphichexabenzocoronenes bearing perfluorinated chains. Chem. Mater.,2005,17:4798-4807.
    [198] Foster E. J., Babuin J., Nguyen N. Williams V. E. Synthesis of unsymmetricaldibenzoquinoxaline discotic mesogens. Chem. Commun.,2004,2052-2053.
    [199] Mancilha F. S., Neto B. A. D., Lopes A. S., Moreira Jr. P. F., Quina F. H.,Goncalves R. S., Dupont J. Are molecular5,8-π-extended quinoxaline derivatives goodchromophores for photoluminescence applications? Eur. J. Org. Chem.,2006,4924-4933.
    [200] Yue W., Zhao Y., Tian H. K., Song D., Xie Z. Y., Yan D. H., Geng Y. H.,Wang F. S. Poly(oligothiophene-alt-benzothiadiazole)s: Tuning the structures ofoligothiophene units toward high-mobility “black” conjugated polymers. Macromolecules,2009,42:6510-6518.
    [201] Wakim S., Alem S., Li Z., Zhang Y. G., Tse S. C., Lu J. P., Ding J. F., Tao Y.New low band gap thieno[3,4-b]thiophene-based polymers with deep HOMO levels fororganic solar cells. J. Mater. Chem.,2011,21:10920-10928.
    [202] Son H. J., Wang W., Xu T., Liang Y. Y., Wu Y., Li G., Yu L. P. Synthesis offluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on thephotovoltaic properties. J. Am. Chem. Soc.,2011,133:1885-1894.
    [203] Huang Y., Huo L. J., Zhang S. Q., Guo X., Han C. C., Li Y. F., Hou J. H.Sulfonyl: A new application of electron-withdrawing substituent in highly effcientphotovoltaic polymer. Chem. Commun.,2011,47:8904-8906.
    [204] Myung-Jin B., Lee S. H., Zong K., Lee Y. S. Low band gap conjugatedpolymers consisting of alternating dodecyl thieno[3,4-b]thiophene-2-carboxylate and oneor two thiophene rings: Synthesis and photovoltaic property. Synth. Met.,2010,1601197-1203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700