非正定介质的超常电磁特性及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的各向异性电磁性质使电磁波在其中传播时产生很多奇异的现象,其中,由非正定介质的强各向异性产生的全角负折射、传导倏逝波等超常电磁特性,具有重要的研究价值与应用前景,近年来受到国内外研究者的广泛关注。目前,非正定介质的研究主要集中在具有非正定介电张量的超材料及其负折射行为,其应用研究主要是实现具有亚波长分辨率的超透镜成像。本论文主要通过对具有层状结构晶体的介电性能的研究、对磁谐振单元阵列材料的磁导率的研究,提出了基于自然晶体中本征介电性能的非正定电介质以及基于超材料的非正定磁介质,深入研究了这些材料的超常电磁行为,设计了三种基于非正定介质超常电磁特性的新型光学器件。本论文的主要创新点如下:
     首次在自然材料中得到电磁波的全角负折射现象。首先,通过椭圆偏振测量术研究石墨单晶、MgB_2单晶的介电常数的非正定性,发现了石墨在紫外频段、MgB_2单晶在蓝紫光频段的负折射行为。其次,通过研究铜基高温超导材料以及Ruddlesden-Popper相锁钌氧材料等具有层状晶体结构的化合物的反射谱发现这些材料在某些特定频段具有非正定介电张量,分析了这些材料的非正定介电常数并预测了可以发生负折射的频段。最后,对目前已发现的自然非正定介质的机理进行了总结与分类。
     提出了一种基于椭圆偏振测量术来验证材料折射性质的测试方法。与传统的透射测试法相比,这种方法避免了光频段测试尺度的限制,简单易行。文中以此方法验证了石墨与MgB_2单晶材料的负折射行为。
     提出了一种基于材料非正定磁导率的低损耗负折射现象。制备了具有非正定磁导率的密排SRR阵列超材料并验证了该超材料的低损耗负折射行为;通过分析测试结果研究了该超材料反射、透射性能,并利用电磁学经典理论研究了密排SRR环之间的耦合作用,解释了密排SRR阵列超材料低损耗的原因。
     提出了利用非正定介质的强各向异性改善基于双折射晶体的传统光学器件的性能的思路,设计了一种基于非正定介质的具有大分束角的高性能平行偏振光分束器。此外,提出了利用具有极强各向异性的非正定介质控制电磁波传播的方法,与目前基于变换光学设计的超材料实现电磁波控制的方法相比,非正定介质结构简单、质地均匀,工业上更容易实现。
The anisotropic electromagnetic (EM) property of the materials usually brings inmany extraordinary phenomena when the EM wave propagates in these mateirals.Among of them, indefinite medium, due to its strong anisotropy, can realize an allangle negative refraction of the EM wave and support the propagation of theevanescent waves, which is of significant value for the scientific research and potentialapplications, and has attracted much attention in the world. So far, the research on theindefinite media mainly focuses on the fabrication of the metamaterial with indefinitedielectric tensor and its negative refraction behavior, with the main application as ahyperlens whose resolution can break through the diffraction limit. In this dissertation,the abnormal EM behaviors in the natural indefinite media with layered crystalstructure and metamaterial of indefinite permeability produced by the magneticresonance unite are studied theoretically and experimentally. Additionally, three noveloptical devices are designed based on the indefinite media. The key findings andinnovation points of this dissertation are as follows:
     An all angle negative refraction is realized by natural materials for the first time.Firstly, indefinite permittivity in the single crystalline graphite and MgB_2are studiedand all angle negative refractions in these two materials are verified by ellipsometerexperimentally. Secondly, by analyzing the reflection spectra of the cuprates andRuddlesden-Popper materials of Sr^+iRu^Os^+i, indefinite permittivities are found andthe anticipated negative refraction frequency regions are computed in these material.Finally, the natural indefinite mechanism is derived, summarized and classified basedon all the known natural indefinite media currently.
     A new method of refraction behavior exploration is proposed based on theellipsometry. In contrast to the traditional measurement by transmission, this methodavoids the scale constraints in the optical measurement, which is quite easy tomanipulate. It has been used to verify the negative refraction behavior in the singlecrystalline graphite and MgB_2
     A low loss negative refraction is realized by a metamateiral with an indefinitepermeability. A metamaterial of closely arranged SRRs arrays is fabricated and the negative refraction behavior in the metamaterial is observed experimentally. Thereflection and transmission properties are analyzed according to the experiment results.Moreover, the coupling effect in the closely arranged SRRs array is derived by theclassic electromagnetism, which explains the low loss effect of the metamateiral.
     The idea of improving the conventional birefringence crystal based optical devicesthough the strong anisotropy of the indefinite medium is proposed and is used to designan eiffcient polarization beam splitter with large splitting angle. Additionally, indefinitemedia with extremely strong anisotropy are used to control the propagation of theelectromagnetic wave. Compared with the contemporary metamateiral obtained by thetransformation optics, the structure of the indefinite medium is simple and homogenous,which is feasible to realize by the current technology.
引文
[1] Smith D R, Schuirg D. Electromagnetic wave propagation in media with indefinitepermittivity and permeability tensors. Phys Rev Lett,2003,90:077405-077409.
    [2]波恩,沃耳夫.光学原理.杨葭荪,译.7版.北京:电子工业出版社,2009:661-673.
    [3] Veselago V G. The electrodynamics substances with simutaniously negative values ofs and//. Sov Phys Usp,1968,10:509-514.
    [4] Smith D R, Kroll N, et al. Negative refractive index in left-handed materials. PhysRev Lett,2000,85:2933-2936.
    [5] Notomi M. Negative refraction in photonic crystals. Opt Quant Electron,2002,34:133-143.
    [6] Lindell I V, Tretyakov S A, Nikosklnen K I, et al. BW media-media with negative parameters,capable of supporting backward waves. Microw Opt Technol Lett,2001,31:129-133.
    [7] Gajic R, Meisels R, Kuchar F, Hingerl K. Refraction and rightness in photonic crystals.Opt. Express,2005,13:8596-8605.
    [8] Liu Y M, Bartal G, Zhang X. All-angle negative refraction and imaging in a bulkmedium made of metallic nanowires in the visible region. Opt Exp,2008,16:15439-15448.
    [9] Pendry J B. Negative Refraction Makes a Perfect Lens. Phys Rev Lett,2000,85:3966-3969.
    [10] Fang A, Koschny T, Soukoulis C M, et al. Optical anisotropic metamateirals: Negativerefraction and focusing. Phys Rev B,2009,79:245127-245133.
    [11] Shelby R A, Smith D R, Schultz. Experimental verification of a negative index ofrefraction. Science,2001,292:77-79.
    [12] Houck A A, Brock J B, Chuang I L. Experimental observations of a left-handed material that'obeys Snells law. Phys Rev Lett,2003,90(13):137401-137404.
    [13] Dolling G, Wegener M, Soukoulis C M, Linden S. Negative-index metamateiral at780nmwavelength. Opt Lett,2005,30,53-55.
    [14] Soukoulis C M, Linden S, Wegener, M. Negative refractive index at optical wavelengths.Science,2007,315:47-49.
    [15] Shalaev V M. Optical negative-index metamateirals. Nat Photon,2007,1:41-48
    [16] Cubukcu E, Aydin K, Ozbay E, et al. Negative refraction by photonic crystals. Nature,2003,423:604-605.
    [17] Berrier A, Mulot M, Swillo M, et al. Negative refraction at Infrared Wavelengths in aTwo-Dimensional Photonic Crystal. Phys Rev Lett,2004,93:073902-073905.
    [18] Zhang X D. Image resolution depending on slab thickness and object distance in atwo-dimensional photonic-crystal-based superlens. Phys Rev B,2004,70:195110-195118.
    [19] Luo C Y, Johnson S G, Joannopoulos J D, et al. All-angle negative rerfaction without negativeeffective index. Phys Rev B,2002,65:201104-201107.
    [20] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refraction index.Science,2004,305:788-792.
    [21] Dolling G, Enkrich C, Wegener M, et al. Simultaneous negative phase and groupvelocity of light in a metamaterial. Science,2006,312:892-894.
    [22] Ziolkowski R W, Heyman E. Wave propagation in media having negative permittivityand permeability. Phys Rev E,2001,64,056625-056639.
    [23] Gajic R, Kuchar F, Meisels R et al. Physical and materials aspects of photonic crystalsfor microwaves and millimeter waves. Zeitschrift fuer metallkunde,2004,95:618-623.
    [24] Meisels R, Gajic R, Kuchar F, Hingerl K. Negative refraction and flat-lens focusing ina2D square lattice photonic crystal at microwaves and millimeter waves. Opt Express,2006,14:6766-6777.
    [25] Lu Z, Shi S, Schuetz C A, et al. Three-dimensional photonic crystal flat lens by full3D negative refraction. Opt Express,2005,13:5592-5599.
    [26] Jiang L, Wu H, Li X. Alternative approach to realize all-angle negative refraction andfar-field imaging effects via two-dimensional all-solid photonic crystals. Opt Commun,2012,285:2462-2465.
    [27] Dong G Y, Zhou J, Yang X L, Cai L Z. Dual-negative refraction in photonic crystalswith hexagonal lattices. Opt Express,2011,19:12119-12124.
    [28] Hofman M, Fabre N, Melique X,Lippens D, Vanbesien O. Defect assistedsubwavelength resolution in III-V semiconductor photonic crystal flat lenses withn=-l. Opt Commun,2010,283:1169-1173.
    [29] Chen X L, He M, Du Y X, et al. Negative refraction: an intirnsic property of uniaxial crystals.Phys Rev B,2005,72:113111-113114.
    [30] Zhang W Q, Yang F. Negative refraction at various crystal interfaces. Opt commun,2008,281:3081-3086.
    [31] Brazhe R A, Meftakhutdinov. Negative Optical refraction in Crystals with strongbirefringence. Tech Phys.2007,52:793-795.
    [32] Jacob Z, Alekseyev L V, Narimanov E. Optical hyperlens: far-field imaging beyondthe diffraction limit. Opt Exp,2006,14:8247-8256.
    [33] Rao X S. Subwavelength imaging by a left-handed material superlens. Phys Rev E,2003,68:067601-067603.
    [34] Fang N, Lee H, Sun C, Zhang X. Sub-diffraction limited optical imaging with a silversuperlens. Science,2005,308:534-537.
    [35] Aydin K, Bulu I,Ozbay E. Focusing of electromagnetic waves by a left-handedmetamaterial flat lens. Opt Express,2005,13:8753-8759.
    [36] Shen N H, Foteinopoulou S, Kafesaki M, et al. Compact planar far-field superlensbased on anisotropic left-handed metamaterials. Phys Rev B,2009,80:115123-115131.
    [37] Zharov A A, Noskov R E. Surface-wave mechanism of subwavelength imaging by aflat left-handed superlens. J Exp Theor Phys Lett,2009,109:734-750.
    [38] Lee H, Liu Z W, Xiong Y, et al. Development of optical hyperlens for imaging belowthe diffraction limit. Opt Express,2007,15:15886-15891.
    [39] Liu Z W, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifyingsub-diffraction-limited objects. Science,2007,315:1686.
    [40] Wood B, Pendry J B, Tsai D P, Directed subwavelength imaging using a layeredmetal-dielectric system. Phys Rev B,2006,74:115116-115123.
    [41] Lu W T, Sridhar S. Superlens imaging theory for anisotropic nanostructuredmetamaterials with broadband all-angle negative refraction. Phys Rev B,2008,77:233101-233104.
    [42] Meng Q, Zhang X,Cheng L, et al. Deep subwavelength focusing of light by a trumpethyperlens. J Opt,2011,13:075102-075105.
    [43] Shalaev V M, Cai W S, Chettiar U K, et al. Negative index of refraction in opticalmetamaterials. Opt Lett,2005,30:3356-3358.
    [44] Dolling G, Enkrich C, Wegener M, et al. Low-loss negative-index metamaterial attelecommunication wavelengths. Opt lett,2006,31:1800-1802.
    [45] Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons inmetallic mesostrucures. Phys Rev Lett,1996,76:4773-4776.
    [46] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from Conductors and EnhancedNonlinear Phenomena. IEEE Trans Microwave Theory Tech1999,47:2075-2084.
    [47] Lagarkov A N, Kissel V N. Near-perfect imaging in a focusing system based on aleft-handed-material plate. Phys Rev Lett,2004,92:077401-077404.
    [48] Chen H, Ran L, Huangfu J, et al. Magnetic properties of S-shaped split-ring resonators.PIER,2005,51:231-247.
    [49] Ran L, Huangfu J, Chen H, et al. Microwave solid-state left-handed material with abroad bandwidth and an ultralow loss. Phys Rev B,2004,70:073102-073104.
    [50] Chen H, Ran L, Wang D, et al. Metamaterial with randomized patterns for negativerefraction of electromagnetic waves. Appl Phys Lett,2006,88:031908-031910.
    [51] Li Z, Lin L L. Evaluation of lensing in photonic crystal slabs exhibiting. Phys Rev B,2003,68:245110-245116.
    [52] Wang X, Ren Z F, Kempa K, et al. Unrestricted superlensing in a tirangular two-dimensionalphotonic crystal. Opt Exp,2004,12:2919-2924.
    [53] Smith D R, Kolinko P, Schuirg D. Negative refraction in indefinite media. J Opt Soc Am B,2004,21:1032-1043.
    [54] Zhang Y, Fluegel B, Mascarenhas A, et al. Total negative refraction in real crystals forballistic electrons and light. Phys Rev Lett,2003,91:157404-157407
    [55] Kang L, Zhao Q, Li B, et al. Experimental verification of a tunable optical negativerefraction in nematic liquid crystals. Appl Phys Lett,2007,90:181931-181933
    [56] Yao J, Liu Z W, Liu Y M, et al. Optical negative refraction in bulk metamaterials ofnanowires. Science,2008,321:930.
    [57] Hoffman A J, Alekseyev L, Howard S S, et al. Negative refraction in semiconductormetamaterials. Nature mater,2007,6:946-950.
    [58] Yao J, Tsai K T, Wang Y, et al. Imaging visible light using anisotropic metamaterials slab lens.Opt Express,2009,17:22380-22385
    [59] Soukoulis C M, Wegener M. Past achievement and future challenges in thedevelopment of three-dimensional photonic metamaterials. Nature Photonics,2011,5:523-530.
    [60] Bayindir M, Aydin K, Ozbay E, Markos P, Soukoulis C M. Transmission properties ofcomposite metamaterials in free space. Appl Phys Lett,2002,81:120-122.
    [61] Greegor R B, Parazzoli C G, Li K and Tanielian M H. Origin of dissipative losses innegative index of refraction materials. Appl Phys Lett,2003,82:2356-2358.
    [62] Yen T J, Padilla W J, Fang N, et al. Terahertz magnetic response from artificialmaterials. Science,2004,303:1494-1496.
    [63] Katsarakis N, Konstantinidis G, Kostopoulos A, et al. Magnetic response of split-ringresonators in the far infrared frequency regime. Opt Lett,2005,30:1348-1350.
    [64] Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at100THz. Science,2004,306:1351-1353.
    [65] Zhang S, Fan W, Panoiu N C, et al. Experimental demonstration of near-infrarednegative-index metamaterials. Phys Rev Lett,2005,95:137404-137407.
    [66] Zhang S, Fan W, Minhas B K, et al. Mid-infrared resonant magnetic nanostructuresexhibiting a negative permeability. Phys Rev Lett,2005,94:037402-037405.
    [67] Enkrich C, Wegener M, Linden S, et al. Magnetic metamaterials at telecommunicationand visible frequencies. Phys Rev Lett,2005,95:203901-203904.
    [68] Dolling G, Enkrich C, Wegener M, Zhou J F, Soukoulis C M. Cut-wire pairs and platepairs as magnetic atoms for optical metamaterials. Opt Lett,2005,30:3198-3200.
    [69] Dolling G, Enkrich C, Wegener M, Soukoulis C M, Linden S. Simultaneous negativephase and group velocity of light in a metamaterial. Science,2006,312:892-894.
    [70] Chettiar U K, Kildishev A V, Yuan H K, et al. Dual-band negative index metamaterial:Double negative at813nm and single negative at772nm. Opt. Lett,2007,32:1671-1673.
    [71] Garcia-Meca C, Ortuno R, Rodriguez-Fortuno F J, Marti J, Martinez A.Double-negative polarization-independent fishnet metamaterial in the visible spectrum.Opt Lett,2009,34:1603-1605.
    [72] Xiao S M, Chettiar U K, Kildishev A V, Drachev V P, Shalaev V M. Yellow-lightnegative-index metamaterials. Opt Lett,2009,34:3478-3480.
    [73] Garcia-Meca C, Hurtado J, Marti J, Martinez A. Low-loss multilayered metamaterialexhibiting a negative index of visible of refraction at visible wavelengths. Phys RevLett,2011,106:067402-067405.
    [74] O'Brien S, Pendry J B. Magnetic activity at infrared frequencies in structured metallicphotonic crystals. J Phys-Condens Mat,2002,14:6383-6394.
    [75] V A Podolskiy, Sarychev A, Shalaev V. Plasmon modes and negative refraction inmetal nanowire composites. Opt Express,2003,11:735-745.
    [76] Valentine J, Zhange S, Zentgraf T, et al. Three-dimensional optical metamaterial witha negative refractive index. Nature,2008,455:376-379.
    [77] Zhou J F, Koschny T, Kafesaki M, Soukoulis C M. Negative refractive index responseof weakly and strongly coupled optical metamaterials. Phys Rev B,2009,80:035109-035114.
    [78] Smith D R, Schurig D, Mock J J, et al. Partial focusing of radiation by a slab ofindefinite media. Appl Phys Lett,2004,84:2244-2246.
    [79] Raub A K, Brueck S R J. Large area3D helical photonic crystals. J Vac Sci Technol B,2011,29:06FF02-06FF07.
    [80] Burgos S P, Waele R, Polman A, Atwater H A. A single-layer wide-anglenegative-index metamaterial at visible frequencies. Nature Mate,2010,9:407-412.
    [81] Guney D0,Koschny T, Soukoulis C M. Intra-connected three-dimensionally isotropicbulk negative index photonic metamaterial. Opt Express,2010,18:12348-12353.
    [82] Rockstuhl C, Lederer F, Etrich C, Pertsch T, Scharf T. Design of an artificialthree-dimensional composite metamaterial with magnetic resonances in the visiblerange of the electromagnetic spectrum. Phys Rev Lett,2007,99:017401-017404.
    [83] Fu N, Shu W, Luo H, Tang Z. Three-dimensional negative-refractive-indexmetamaterials based on all-dielectric coated spheres. Arxiv,2010,1004.4694.
    [84] Hoffman A J, Sridhar A, Braun P X,et al. Midinfrared semiconductor opticalmetamaterials. J Appl Phys,2009,105:122411-122417
    [85] Silveirinha G M, Belov P A, Simovski R C. Subwavelength imaging at infrared frequenciesusing an array of metallic nanorods. Phys Rev B,2007,75:035108-035129
    [86] Ikonen P, Simovski C, Tretyakov S, et al. Magnification of subwavelength ifeld distributionsat microwave frequencies using a wire medium slab operating in the canalization regime.Appl Phys Lett,2007,91:104102-104104
    [87] Klokkenburg M, Erne B H, Meeldijk J D, Wiedenmann A. In situ imaging offield-induced hexagonal columns in magnetite ferrolfuids. Phys Rev Lett,2006,97:185702-185705.
    [88] Gao Y, Huang J P, Liu L, et al. Optical negative refraction in ferrofluids withmagnetocontrollability. Phys Rev Lett,2010,104:034501-034504.
    [89]崔万照,马伟,邱乐德,张洪太.电磁超介质及其应用.北京:国防工业出版社,2008:98-99.
    [90] Ran L, Huangfu J, Chen H, et al. Beam shifting experiment for the characterization ofleft-handed properties. J Appl Phys,2004,95:2238-2241.
    [91] Smith D R, Schultz S. Determination of effective permittivity and permeability ofmetamaterials from reflection and transmission coefficients. Phys Rev B,2002,65:195104-195108.
    [92] Markos P, Soukoulis C M, Transmission studies of left-handed materials. Phys Rev B,65:033401-033404.
    [93] Smith D R, Vier D C, Koschny T, Soukoulis C M. Electromagnetic parameter retrievalfrom inhomogeneous metamaterials. Phys Rev E,2005,71:036617-036627.
    [94] Chen X,Grzgorczyk T M, Wu B I,et al. Robust method to retrieve the constitutiveeffective parameters of metamaterials. Phys Rev E,2004,70:016608-016614.
    [95] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneouslynegative permeability and permittivity. Phys Rev Lett,2000,84:4184-4187.
    [96] Shelby R, Smith D R, Nemat N S, C, et al. Microwave transmission through atwo-dimensional, isotropic, left-handed metamaterial. Appl phys lett,2001,78:489-491.
    [97] Zhao Q, Kang L, Du B, et al. Experimental demonstration of isotropic negativepermeability in a three-dimensional dielectric composite. Phys Rev Lett,2008,101:027402-027405.
    [98] Lam V D, Kim J B, Lee S J, Lee Y P. Left-handed behavior of combined and fishnetstructures. J appl phys,2008,103:033107-033110.
    [99] Drachev V P, Cai W, Chettiar, et al. Expeirmental veirfication of an optical negative-indexmateiral. Laser Phys Lett,2006,3:49-55.
    [100] Katsnelson M. Graphene: carbon in two dimensions. Materials today,2007,10:20-27.
    [101]张淑娟,王俐,吕洪全.浅析热解石墨的制造与应用.炭素,1995,1:13-16.
    [102]李海英.高定向石墨材料的研究进展.山西科技.2009,4:83-84.
    [103] Taft E A, Philipp H R. Optical properties of graphite. Phys Rev,1965,138:A197-A202.
    [104]Philipp H R, Ehrenreich H. Optical properties of semiconductors. Phys Rev,1963,129:1550-1560.
    105Johnson L G. Optical properties of graphite. Phys Rev B,1973,7:2275-2285.
    106Djuirsic A B, Li E H. Optical properties of graphite. J Appl Phys,1999,85:7404-7410.
    107Greenaway D L, Harbeke G. Anisotropy of the optical constants and the band structureof graphite. Phys Rev,1969,178:1340-1348.
    108Palik E D. Handbook of Optical Constants of Solids II. London: Academic Press,1991.
    109Azzam R M A, Bashara N M. Ellipsometry and polarized light. Amsterdam: NorthHolland,1977.
    110Jellison Jr G E, Baba J S. Pseudodielectric functions of uniaxial materials in certainsymmetry directions. J Opt Soc Am A.2005,23:468-475.
    111Sun J B, Zhou J, Kang L, et al. Negative refraction at deep-ultraviolet frequency inmonocrystalline graphite. Arxiv,2010,1002.0186.
    112Jones M E, Marsh R E. The preparation and structure of magnesium Boride, MgB2. JAm Chem Soc,1954,76:1434-1436.
    113Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at39K inmagnesium diboride. Nature,2001,410:63-64.
    114Buzea C, Yamashita T. Review of the superconducting properties of MgB2. SupercondSci Technol,2001,14: R115-R146.
    115Zelezny V, Chvostova D, Tarasenko A, Klein N, Xi X X. Anisotropy in the opticalrespond of the superconducting MgB2films. Thin solid films.2008,516:7758-7763.
    116Kovac P, Kopera L. Electromechanical properties of filamentary MgB2wires. IEEETrans appl supercond,2012,22:8400106-8400106.
    117Kang W N, Kim H J, Choi E M, et al. MgB2superconducting thinfilms with atransition temperature of39Kelvin. Science,2001,292:1521-1523.
    118Jorgensen J D, Hinks D G, Short S. Lattice properties of MgB2versus temperature andpressure. Phys Rev B,2001,63:224522-224526.
    119Kortus J, Mazin I I,Belashchenko K D, Antropov V P, Boyer L L. Superconductivityof Metallic Boron in MgB2. Phys Rev Lett,2001,86:4656-4659.
    120Guritanu V, Kuzmenko A B, Marel DVD. Anisotropic optical conductivity and twocolors of MgB2. Phys Rev B,2006,73:104509-104519.
    121Belashchenko K D, Schilfgaarde M, Antropov V P. Coexistence of covalent andmetallic bonding in the boron intercalation superconductor MgB2. Phys Rev B,2001,64:092503-092506.
    122An J M, Pickett W E. Superconductivity of MgB2: Covalent bonds driven metallic.Phys Rev Lett,2001,86:4366-4369.
    [123] Karpinski J, Angst M, Jun J, et al. MgB2single crystals: high pressure growth andphysical properties. Supercond Sci Technol,2003,16:221-230.
    [124]马天星.铜氧化物高温超导材料超导机理及反常物理性质的研究:[博士学位论文].北京:北京师范大学,2008.
    [125] Collins R T, Schlesinger Z, Chandrashekhar G V, Shafer M W. Infrared study ofanisotropy in single-crystal La2-xSrxCu04. Phys Rev B,1989,39:2251-2254.
    [126] Kunert J, Backer M, Falter M. Comparison of CSD-YBCO growth on different singlecrystal substrates. J Phys: Conference series,2008,97:012148-012152.
    [127] Zibold A, Durrler M, Geserich H P, et al. Polarized reflectance spectra of a (001)surface of YBa2Cu30v before and detwinning. Phys C,1990,171:151-155.
    [128] Nee T. Anisotropic optical properties of YBa2Cu307_x. JAppl Phys,1992,71:6002-6007.
    [129] Koch B, Geserich H P, Wolf T. Anisotropy of the reflectance spectrum and of thedielectric function of YBa2Cu30v within the (001) plane. Solid State Commun,1989,71:495-499.
    [130] Li G Z, Yang W M, Cheng X F, et al. Fabrication of single-grain GdBa2Cu307_x bulksuperconductors with a new kind of liquid source by the top seeded infiltration andgrowth technique, J Phys,2010,74:827-832.
    [131] Zelezny V, Tanner D B, Kamaras K, Kozeeva L P, Pavlyuk A A. Anisotropic opticalproperties of single-crystal GdBa2Cu307_^. Z Phys B,1995,96:313-318.
    [132] Tanaka I, KojimaH. Superconducting single crystals. Nature,1989,337:21-22.
    [133] Kim J H, Bozovic, Mitzi D B. Optical anisotropy of Bi2Sr2CaCu208. Phys Rev B,1990,41:7251-7253.
    [134] Quijada M A, Tanner D B, Kelley R J, Onellion M. a-b plane anisotropy ofsingle-domain crystals of Bi2Sr2CaCu208. Z Phys B,1994,94:255-259.
    [135] Ruddlesden S N, Popper P. The compound Sr3Ti207and its structure. Acta Cryst,1958,11:54-55.
    [136]林双妹,黄侦勇,孙妍,等.具有Ruddlesden Popper结构的Ca1+xMnx01+3x(x=l,2,3)的合成及层间Ca2+的抽出.北京师范大学学报:自然科学版,2009,45(4):370-374.
    [137] Lichtenberg F. The story of Sr2Ru04. Prog Solid State Ch,2002,30:103-131.
    [138] Hu B, McCandless G T, Menard M, et al. Surface and bulk structural properties ofsingle-crystalline Sr3Ru207. Phys Rev B,2010,81:184104-184121.
    [139] Mirri C, Baldassarre L, Lupi S, et al. Anisotropic optical conductivity of Sr3Ru207. Phys RevB,2008,78:155132-155137.
    [140] Maeno Y, Hashimoto H, Yoshida K, et al. Superconductivity in a layered perovskite withoutcopper. Nature,1994,372:532-534.
    [141] Katsufuji T, Kasai M, Tokura Y. In-plane and out-of-plane optical spectra of Sr2Ru04. PhysRev Lett,1996,76:126-129.
    142] Wang R, Sun J B, Zhou J. Indefinite permittivity in uniaxial single crystal at inrfaredfrequency. Appl Phys Lett,2010,97:031912-031914.
    143] Katsarakis N, Koschny T, Kafesaki M. Electric coupling to the magnetic resonance of splitirng resonators. Appl Phys Lett,2004,84:2943-2946.
    144] Chen H, Ran L, Huangfu J, et al. Equivalent circuit model for left-handed metamateirals. JAppl Phys,2006,100:024915-024920.
    145]廖延彪.偏振光学.北京:科学出版社,2003:207.
    146] Palik E D. Handbook of Optical Constants of Solids III. London: Academic Press,1998.
    147] Palik E D. Handbook of Optical Constants of Solids. London: Academic Press,1985.
    148] Sihvola A. Electromagnetic Mixing Formulas and Applications. London: Institution ofElectrical Engineers,1999.
    149] Foss C A, Hornyak G L, Stockert J A, Martin C R. Template synthesized nanoscopic goldparticles: optical spectra and the effects of particle size and shape. J Phys Chem,1994,9:2963-2971.
    150] Kildishev A V, Cai W, Chettiar U K, et al. Negative refractive index in optics ofmetal-dielectric composites. J Opt Soc Am B,2006,23:432-433.
    151] Pendry J B, Schuirg D, Smith D R. Controlling electromagnetic fields. Science,2006,312:1780-1782.
    152] Jiang W X,Cui T J, Ma F H, et al. Cylindrical-to-plane-wave conversion via embeddedoptical transformation. Appl Phys Lett,2008,92:261903-261905.
    153] Jiang W X,Yao J, Cui T J. Anisotropic metamaterial devices. Mater Today,2009,12:26-33.
    154] Kwon D H, Werner D H. Transformation electromagnetics: an overview of the theory andapplications. IEEE Antenn Propag M,2010,52:24-46.
    155] Landy N I, Padilla W J. Guiding light with conformal transformations. Opt Express,2009,17:14872-14879.
    156] Vasic B, Isic G, Gajic P, Hingerl K. Coordinate transformation based design of confinedmetamaterial structures. Phys Rev B,2009,79:085103-085110.
    157] Schuirg D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwavefrequencies. Science,2006,314:977-980.
    158] Cummer S A, Popa B I,Schuirg D, Smith D R, Pendry J B. Full-wave simulations ofelectromagnetic cloaking structures. Phys Rev E,2006,74:036621-036625.
    159] You Y, Kattawar G W, Zhai P W, Yang P. Invisibility cloaks for irregular particles usingcoordinate transformations. Opt Express,2008,16:6134-6145.
    160] Jiang W X,Cui T J, Yu G X,Lin X Q, Cheng Q, Chin J Y. Arbitrarily elliptical-cylindricalinvisible cloaking. J Phys D: App Phys,2008,41:085504-085508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700