暴露特定面的纳米氧化铈的可控合成与表征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米CeO2材料具有优异于体材料的抛光、催化、紫外吸收和离子导电等特性,因而广泛地应用于微电路抛光、空气净化以及固体氧化物燃料电池等众多领域。因此,实现CeO2纳米材料的可控制备成为合成领域具有重大意义的研究课题。CeO2纳米晶体的不同面的催化活性差异很大,因此关于特定暴露面CeO2纳米晶体可控合成的研究开始引起了研究者极大的研究热情。水热法已经成为实现CeO2纳米材料可控制备的有效方法。然而在实际的水热法制备的过程中,试剂的选择存在盲目性。因此迫切地需要有可以预测控制形貌的实验试剂。
     本文的主要目的就是建立矿化剂的筛选机制,从而达到对纳米材料的可控合成,以及对所制备不同暴露面的纳米氧化铈的结构进行表征,为其催化性能提供理论解释。目前,广泛地采用第一性原理对材料科学特别是半导体材料的原子结构及电子性能等方面进行理论研究。本文是将纳米材料的制备与第一性原理相结合:通过建立氧化铈特定面上的原子吸附模型,并基于第一性原理对氧化铈特定的暴露面表面吸附原子后的表面能进行理论计算,分别建立了制备不同暴露面氧化铈的矿化剂的筛选机制,再经过工艺参数的优化制备不同暴露面的纳米氧化铈,验证了吸附原子模型建立矿化剂筛选机制从而达到特定暴露面纳米颗粒可控合成的可行性,对所制备的样品利用XRD,SEM,TEM, STEM等手段进行表征,最后进行UV-VIS检测。主要结果如下:
     (1)利用水热法制备了无特定暴露面的纳米杆:一种直径为~30nm,长度为~100nm短粗纳米杆,一为直径为~10nm,长度为~400nm的细长纳米杆纳米杆是沿着<112>方向生长。氧化铈纳米杆具有很强的紫外线吸收性能,与体材料400nm相比发生大约25nm的蓝移现象。同时利用简便的方法制备了氧化铈纳米八面体和纳米杆的混合体系。只通过调节矿化剂的种类和浓度而不添加模板和表面活性剂来控制产物的形貌。纳米杆的分布各异:有的从八面体的表面生长出来,有的是伴随着纳米八面体产生并且共同生长。纳米杆与纳米八面体的非常有趣的结构有着广泛的应用前景,且提供了一种经济的途径:一步同时合成不止一种典型的纳米颗粒。
     (2)采用第一性原理研究了不同的非金属元素吸附氧化铈(111)面对表面能的影响,表面吸附了F,B,C,Si,P,S等元素,其表面能降低,而吸附H,N,O,Cl,Br,I等元素,其表面能升高,可以选取含F,B,C,Si,P,S等元素的化合物作为矿化剂来稳定氧化铈的(111)表面,进而建立矿化剂筛选机制。利用硝酸铈作为铈源,选取含F和c元素的NaF和NH4Ac作为矿化剂,通过调节合成参数,含C元素的NH4Ac作为矿化剂成功制备的纳米氧化铈八面体,XRD显示制备的为面心立方结构的氧化铈,没有其他杂质,SEM显示了结晶性好,分散性较好,粒度均匀的纳米八面体,对其进行TEM表征,纳米氧化铈暴露的为{111},且少数颗粒存在缺陷,STEM观察纳米氧化铈的表面存在大量缺陷。对于能跟Ce3+发生反应产生不溶性铈盐,可以在矿化剂很低的浓度下制备结晶较好的八面体。纳米氧化铈八面体对紫外线具有强烈吸收性能,相对于体材料发生约30nm的蓝移,但其紫外线屏蔽性能弱于纳米杆。
     (3)采用第一性原理研究了不同的非金属元素以及金属元素吸附对氧化铈(001)面对表面能的影响,其表面吸附了Sr, La,Mg,Na,Ba,K, Y, Ca等元素,其表面能降低,而吸附Be元素,其表面能大幅度地升高,而表面吸附了F,B,C,Si,P,S,OH,Cl,Br等元素,其表面能降低,而吸附H,N,O, I等元素,其表面能是升高的,根据矿化剂选择原则,进而建立矿化剂筛选机制。利用硝酸铈作为铈源,选取KOH作为矿化剂,通过调节工艺参数成功制备了CeO2纳米方块, XRD显示制备的为面心立方结构的氧化铈,没有其他杂质,SEM显示了结晶性好,分散性较好,粒度均匀的纳米氧化铈,对其进行TEM表征,纳米氧化铈暴露的为{001},纳米氧化铈方块结晶性很好,没有发现缺陷,利用STEM技术对试样进行观察,可以发现纳米氧化铈方块表面存在一定的重构现象。反应温度形貌有很一定的影响。温度低导致氧化铈方块的不均匀性,且试样粘结现象严重,温度升高,结晶性越好,方块趋于均匀。纳米氧化铈方块能强烈吸收紫外线,其紫外线的屏蔽性能大大优越于纳米氧化铈八面体和纳米杆。与体材料(400nm)相比,纳米氧化铈的方块发生了约22nm的蓝移。
Nano CeO2materials have excellent properties than bulk material in polishes,catalysts, ultraviolet ABForption and ion conductivity, thus widely used in micro-circuitpolishing, air purification, and solid oxide fuel cells, and many other fields. Therefore,controllable preparation of CeO2nano-materials is a major significance in the synthesisfield. Specific exposure of CeO2Nano-crystals has greatly effect to the catalytic activity.Controllable synthesize of CeO2Nano-Crystal have started to attract great passion ofresearchers. Hydrothermal method is an effective method of achieving controllablesynthesize of CeO2nano-materials. However in an actual hot water preparation process,the reagent of choice is blind. There is an urgent need for predictive experimentalreagents to control the morphology of products.
     The main purpose of this paper is to establish a mineralizer filtering mechanism, soas to achieve the controlled synthesis of nano-materials. Furthermore nano-structure ofceria with different exposure surfaces was characterized, providing theoreticalexplanations for their catalytic properties.
     At present, the extensive use of first-principles to do theory research in materialsscience filed in particular the atomic structure and electronic properties ofsemiconductor materials.
     This paper integrated the preparation of Nano material with the first-principles,established atomic adsorption model of specific surface ceria, and based onfirst-principles to calculate the surface energy by the elements adsorption to the ceriaspecific of exposed. In addition, we respectively established the filter mechanism ofmineralizer to control the ceria with the different exposed surface, and optimized thetechnology parameter to synthesis nano ceria. Verified the feasibility of controllablesynthesis of nano ceria with specific exposures, which prepared by the filter mechanismof mineralizer agent established by adsorption atomic mode. Additional, the sampleswere characterized by using such as XRD, SEM, TEM, STEM technology, finally theUV-VIS properties were tested. The main results are as follows:
     (1) The nano-rods prepared with cerium nitrate hexahydrate and sodium phosphateare thicker and shorter with diameter of~30nm and length of~100nm, and thoseprepared with cerium acetate hydrate and dibasic sodium phosphate are thinner andlonger with~10nm in diameter and~400nm in length. Microstructural analyses reveal that the two species of nano-rods have the low-energy {111} surfaces and grow alongthe <112> direction. The CeO2nano-rods show well properties of ultraviolet shielding.Three kinds of hybrid architectures with two different types of ceria nanoparticles, thenano-rods and nano-octahedrons were synthesized, within one step via a facile yetefficient hydrothermal process. We demonstrate that morphology of the synthesizedCeO_2nanomaterials can be manipulated via tuning the type and concentration of themineralizer. The synthesis mechanism and chemical evolution of the harvestednanomaterials are also discussed in light of the role played by the mineralizer. Such asimple method to synthesize the functional nano-crystallites with tunable morphologyby tailoring the concentration of mineralizer alone should be applicable to other types ofnanomaterials and significant for a wide range of applications. And we also synthesizedof two types of CeO2nano-rods via the facile and efficient hydrothermal process freefrom any surfactant and template. The synthesized nano-rods are chemically identifiedas CeO2with the standard fluorite structure but their morphologies are different.
     (2)The affection of the surface energy of ceria (111) surfaces by the differentnon-metals adsorption by first-principles. The surface energy could be reduced, whenF, B,C,Si,P,S, adsorbed while its surface energy rising by H, N,O, Cl,Br,Iadsorption. Thus we could select the mineralizer containing F, B,C,Si,P, S elementsto stabilize oxidation cerium of (111) surface, thus established filter mechanism ofmineralizer. Uses nitric acid cerium as cerium source, selected NaF and NH4Accontaining f and c element as mineralizer agent, through adjusted synthesis parameter.The nono-octahedrons were synthesized successfully by mineralizer NH4Ac whichcontaining c element. To determine chemical composition of the prepared samples, wefirst conducted XRD analysis, the diffraction peaks of the sample stem from the oxideCeO2only, no other impurities. SEM displayed the sample have better dispersibility, thesize of the nano octahedrons was uniform of. From TEM characterization, the exposuresof the Nano ceria were all {111}, and some particles have defects, STEM observationalso shown many defects of nano-ceria surface. As to the mineralizer containing anionreact with Ce3+to produce insoluble cerium, could use them to prepare the nano CeO2under very low concentrations. Nano-ceria octahedral has strong UV adsorption, alsohave20nm blue-shift relative to bulk material. The ultraviolet shielding properties ofCeO2nano-octahedrons were significantly inferior to nano-rods.
     (3)The affection of the surface energy of ceria (001) surfaces by the differentnon-metals and metals adsorption by first-principles. The surface energy could be reduced, when Sr, La,Mg,Na,Ba,K, Y, Ca metal elements adsorbed while itsdramatically rise by Be adsorption. The surface of (001) plane adsorbed F,B,C,Si,P,S,OH,Cl,Br non-metal elements could reduce surface energy, while adsorbed H,N,O, I were opposite. Based on the principle of the mineralizer of selection, filtermechanism of mineralizer was established. Uses nitric acid cerium as cerium source,selected KOH as mineralizer agent. The nono-cubes were synthesized successfully viaadjusting synthesis parameter. To determine chemical composition of the preparedsamples, we first conducted XRD analysis, the diffraction peaks of the sample stemfrom the oxide CeO2only, no other impurities. SEM presented the sample have betterdispersibility, the size of the nano octahedrons was uniform of. From TEMcharacterization, the exposures of the Nano ceria were all {001}, no defect wasobserved, STEM observation also shown many restructure of nano-ceria surface.Temperature may affect the crystallinity of nano-cube. The ultraviolet shieldingproperties of CeO2nano-cubes were significantly superior to nano-ceria octahedronsand nano-rods. Compared to bulk material, the strongest UV ABForption wave lengththe CeO2nano-cube had22nm blue-shift
引文
[1] A. Trovarelli (Ed.). Catalysis by Ceria and Related Materials[M].Imperial College Press,London,2002.
    [2]张立德,牟季美.纳米材料和纳米结构[M].科学出版社,2001.
    [3]薛宽宏,包建春.纳米化学[M].化学工业出版社,2006.
    [4] Gleiter H. Nanostructured materials: basic concepts and microstructure[J]. Acta Mater.,2000,48(1):1-29.
    [5] Henglein A.Small-particle research:physicochemical properties of extremely small colloidalmetal and semiconductor particles[J]. Chem.Rev.,1989,89:1861-1873.
    [6] Wang Y L,Jiang X C,Herricks T,et al.Single crystalline nanowires of Lead: large-scalesynthesis,mechanistic studies,and transport measurements [J]. J.Phys.Chem.B.,2004,108:8631-8640.
    [7] Jiang C L,Zhang W Q,Zou G F,et al.Synthesis and characterization of ZnSe hollownanospheres via a hydrothermalroute [J]. Nanotechnology,2005,16:551-554.
    [8] Liu Z P,Liang J B,Li S,et al.Synthesis and growth mechanism of Bi2S3nanoribbons[J].Chem.Eur.J.,2004,10:634-640.
    [9] Zhao A W,Xu L Q,Luo T,et al.Synthesis of Nickel selenide nanocables andnanotubes[J].Chem.Let.,2005,34:136-137.
    [10] Xie B,Jiang Y,Yuan S W,et al.Synthesis of NiS nanowhiskers via surfactant-aidhydrothermal reaction[J].Chem.Let.,2002,31:254-255.
    [11] Xi G C,Peng Y Y,Yu W C,et al. Synthesis,characterization, and growth mechanism ofTellurium nanotubes[J].Cryst.Growth Des.,2005,5:325-328.
    [12] Xiong S L,Xi B J,Wang W Z,et al.The fabrication and characterization of single-crystallineSelenium nanoneedles[J].Cryst.Growth Des.,2006,6:1711-1716.
    [13] Chan Y F,Duan X F,Chan S K,et al.ZnSe nanowires epitaxially grown on GaP.111.substratesby molecular-beam epitaxy[J]. Appl.Phys.Lett.,2003,83:2665-2667.
    [14] Tang Q,Zhou W J,Shen J M,et al.A template-free aqueous route to ZnO nanorod arrays withhigh optical property[J]. Chem.Commun.,2004,6:712-713.
    [15] Xia Y N,Yang P D,Sun Y G,et al.One-dimensional nanostructurals: synthesis,characteraziton and pplications [J].Adv.mater.,2003,15:353-389.
    [16] Lv R T,Cao C B,Zhai H Z,et al.Growth and characterization of single-crystal ZnSe nanorodsvia surfactant soft-template method[J].Solid State Commun.,2004,130:241-245.
    [17] Du J,Gao Y Q,Chai L L,et al.Hausmannite Mn3O4nanorods:synthesis, characterization andmagnetic properties[J].Nanotechnology,2006,17:4923-4928.
    [18] Ru1hle S,L.Vugt van K,Li H Y,et al.Nature of sub-band gap luminescent eigenmodes in aZnO nanowire[J].Nano Lett.,2008,8:119-123.
    [19] Tang Q,Shen J M,Zhou W J,et al.Preparation,characterization and optical properties ofterbium oxide nanotubes [J]. J.Mater.Chem.,2003,13:3103-3106.
    [20] Li Z Q,Ding Y,Xiong Y J,et al.Rational Growth of Various r-MnO2Hierarchical Structuresanda-MnO2Nanorods via a Homogeneous Catalytic Route[J].Cryst. GrowthDes.,2005,5:1953-1958.
    [21] Alivisatos A P.Semiconductor clusters,nanocrystals,and quantum dots.[J].Science,1996,271:933-934.
    [22] Wang W S,Zhen L,Xu C Y,et al.Room temperature synthesis,growthmechanism,photocatalytic and photoluminescence properties of cadmium molybdatecore-shell microspheres[J].Cryst.Growth Des.,2009,9:1558-1568.
    [23] Li C X,Yang J,Yang P P,et al.Hydrothermal Synthesis of Lanthanide Fluorides LnF3(Ln)Lato Lu)Nano-/Microcrystals with Multiform Structures andMorphologies[J].Chem.Mater.,2008,20:4317-4326.
    [24] Wang Z L,Quan Z W,Lin J,et al.Remarkable changes in the optical properties of CeO2nanocrystals induced by lanthanide ions doping[J].Inorg. Chem.,2007,46:5237-5242.
    [25] Zhou K B,Wang X,Sun X M,et al.Enhanced catalytic activity of ceria nanorods fromwell-defined reactive crystal planes[J].J.Catal.,2005,229:206-212.
    [26] Yamashita m,Kameyama K,Yabe S,et al.Synthesis and microstructure of calcia doped ceriaas UV filters[J].J.Mater Sci,2002,37:683-687.
    [27] Robinson R D,Jonathan E S,Zhang F,et al.Visible thermal emission from sub-band-gap laserexcited cerium dioxide particles[J]. J.Appl.Phys.,2002,92:1936-1941.
    [28] Shimonosono T,Hirata Y,Sameshima S,et al.Electronic conductivity of La-doped ceriaceramics[J].J.Am.Ceram.Soc.,2005,88:2114-2120.
    [29] Du J X,Su J X,Wan X Y,Ning X,et al.Material removal characteristic of silicon wafers inchemical mechanical polishing[J].Journal of University of Science and TechnologyBeijing,2009,31:608-611.
    [30] Yang W P,Wu Y B.Method of measurement material micro-remove rate of silicon waferedge treatment by chemical-mechanical polishing[J].Tool Engineering,2010,44:109-110.
    [31] Li X Z,Chen Y,Chen Z G,et al.Preparation of CeO2nanoparicles and their chemicalmechanical polishing as abrasives[J].Tribology,2007,27:1-5.
    [32] Xiu S D,Ni Z J,Chen M J.Advancement of chemical mechanical polishing [J].Mechanicalresearch&application,2008,21:10-13.
    [33] Chen Y,Chen Z G,Chen A L.Chemical effect mechanism in chemical mechanical polishingsilicon wafer using nano-sized CeO2abrasives[J]. Lubrication engineering,2006,3:67-72.
    [34] He Q M,Ye L L.Nanocatalytic techniques for the purification of automobile exhaust gases[J].广州化工,2006,34:14-16.
    [35] Zheng L M,Liu Z M,Zhu Q C,et al. Pt/La-Ba-Al2O3/H-ZSM-5catalyst for treatinghydrogen-powered vehicle exhaust[J]. Chinese Journal of Catalysis,2009,30:381-383.
    [36] Tan K,Kang H Y,Dong X J.Research on treatment of motor exhaust gas by plasmatechnology in low temperature[J].China Environmental Protection Industry,2011,2:27-29.
    [37] Kas par J,Fornasiero P,Graziani M.Use of CeO2-based oxides in the three-waycatalysis[J].Catal Today,1999,50:285-298.
    [38] Borchert H,Frolova Y V,Kaichev V V,et al.Electronic and chemical properties ofnanostructured cerium dioxide doped with praseodymium[J]. J.Phys.Chem.B,2005,109:5728-5738.
    [39] Han Q F,Yang X J,W X.Development and application of rare earth catalyst for automoticexhaust gas purification[J].Environmental Protection,2002,7:4-5.
    [40] Ho C M,Yu J C,Kwong T,et al.Morphology-controllable synthesis of mesoporous CeO2nano-and microstructures[J].Chem.Mater.,2005,17:4514-4522.
    [41] Jing Z,Ohara S,Umetsu M,et al.Colloidal ceria nanocrystals: atailor-made crystalmorphology in supercritical water[J]. Adv.Mater.,2007,19:203-206.
    [42] Z Y Guo,F F Jian,F L Du.A simple method to controlled synthesis of CeO2hollowmicrospheres[J].Scripta Materialia,2009,61:48-51.
    [43] Liang X,Wang X,Zhuang Y,et al.Formation of CeO2-ZrO2solid solution nanocages withcontrollable structures via kirkendall effect[J]. J.Am.Chem.Soc.,2008,130:2736-2737.
    [44] Zhan Z L,Wen T L,Tu H Y,et al.AC impedance investigation of samarium-dopedceria[J].J.Electrochem Soc,2001,148:A427-A432.
    [45] Moore J.Hydrogen fuel cells:The long road to commercialization [J].Fuel CellsBulletin,2009,1:12-14.
    [46] Corre G,Kim G,Cassidy M,et al.Activation and ripening of impregnated manganesecontaining perovskite SOFC electrodes under redox cycling[J].Chem.Mater.,2009,21:1077–1084.
    [47] T. Omata, Y. Goto, S. Otsuka-Yao-Matsuo, Sci. Technol. Adv. Mater.2007,8:524.
    [48] Tarancon A,Skinner S J,Chater R J,et al.Layered perovskites as promising cathodes forintermediate temperature solid oxide fuel cells [J]. J.Mater.Chem.,2007,17:3175-3181.
    [49] Ding H P,Xue X J.A novel cobalt-free layered GdBaFe2O5+δcathode for proton conductingsolid oxide fuel cells[J].J.Power Sources,2010,195:4139-4142.
    [50] Karen P,Woodward P M.Synthesis and structural investigations of the double perovskitesREBaFe2O5+δ(RE=Nd,Sm)[J].J.Mater.Chem.,1999,9:789-797.
    [51] Tsunekawal S,Sahara R,Kawazoe Y,et al.Origin of the blue shift in ultraviolet ABForptionspectra of nanocrystalline CeO2-xparticles[J].Mater Trans, JIM,2000,41:1104-1107.
    [52] Masui T,Machida K,Sakata T,et al.Preparation and characterization of cerium oxide ultrafineparticles dispersed in polymer thin films[J].J.Alloys Compd.,1997,256:97-101.
    [53] Huang X S,Sun H,Wang L C,et al.Morphology effects of nanoscale ceria on the activity ofAu/CeO2catalysts for low-temperature CO oxidation[J].Appl Catal B-Environ,2009,
    [54] Xiao X L,Luan Q F,Yao X,et al.Single-crystal CeO2nanocubes used for the direct electrontransfer and electrocatalysis of horseradish peroxidase[J]. Biosensors andBioelectronics,2009,24:2447-2451
    [55] Bondioli F, Bonamartini C A,Leonelli C, ManfrediniT. Nanosized CeO2powdersobtained by flux method. Materials Research Bulletin,1999,34(14-15):2159-2167.
    [56] Valenzuela R X,Bueno C,Solbes A, et al. Nanostructured ceria-based catalysts foroxydehydrogenation of ethane with CO2.ToPics in Catalysis,2001,15(2-4):181-188.
    [57] Jackie Y Y, Andreas T. Synthesis and characteristics of non-stoichiometric nanocrystallinecerium oxide-based catalysts. The Chemical Engineering Journal,1996,64:225-237.
    [58] Sammalkorpi M,Karttunen M,Haataja M. Micelle Fission through Surface Instability andFormation of an Interdigitating Stalk[J]. J.Am.Chem.Soc.,2008,130:17977-17980.
    [59] Khanal A,Inoue Y,Yada M,et al.Synthesis of Silica hollow nanoparticles templated bypolymeric micelle with core-shell-corona structure[J].J.Am.Chem. Soc.,2007,129:1534-1535.
    [60] Hu G,O’Hare D.Unique layered double hydroxide morphologies using reversemicroemulsion synthesis[J]. J.Am.Chem.Soc.,2005,127:17808-17813.
    [61] Chiu Y W,Huang M H.Formation of hexabranched GeO2nanoparticles via a reverse micellesystem[J].J.Phys.Chem.C,2009,113:6056-6060.
    [62] Wu H P,Liu J F,Ge M Y,et al.Preparation of monodisperse GeO2nanocubes in a reversemicelle system[J].Chem.Mater.,2006,18:1817-1820.
    [63] Liu D X,Yates M Z.Formation of rod-shaped calcite crystals by microemulsion-basedsynthesis[J].Langmuir,2006,22:5566-5569.
    [64] Sacanna S,Koenderink G H,Philipse A P.Microemulsion synthesis of fluorinated latexspheres[J].Langmuir,2004,20:8398-8400.
    [65] Sarraguca J M G,Pais A A C C,Linse P.Structure of microemulsion-aba triblock copolymernetworks[J].Langmuir,2008,24:11153-11163.
    [66]石硕,鲁润华,汪汉卿.W/O微乳液中CeO2超细粒子的制备.化学通报,1998,12:51~53.
    [67] Hench,L L,West J K.The sol-gel process[J].Chem.Rev.,1990,90:33-72.
    [68] Abbaspour A,Ghaffarinejad A.Method for Preparation of a sol-gel-derived carbon ceramicelectrode using microwave irradiation [J]. Anal.Chem.,2009,81:3660-3664.
    [69] Armelao L D,Barreca D,Bottaro G,et al.Au/TiO2nanosystems:a combinedrf-sputtering/sol-gel approach[J]. Chem.Mater.,2004,16:3331-3338.
    [70] Gavalas V G,Andrews R,Bhattacharyya D,et al.Carbon nanotube sol-gel compositematerials[J].Nano Lett.,2001,1:719-721.
    [71] Lei S,Zhang J,Wang,J R,et al.Self-catalytic sol-gel synergetic replication of uniform silicananotubes using an amino acid amphiphile dynamically growing fibers astemplate[J].Langmuir,2010,26:4288–4295.
    [72] Nolan N T,Seery M K,Pillai S C.Crystallization and phase-transition characteristics ofsol-gel-synthesized zinc titanates [J].Chem.Mater.,2011,23:1496-1504.
    [73] Lopez T L,Espinoza K A,Kozina A,et al.Influence of water/alkoxide ratio in the synthesis ofnanosized sol-gel titania on the release of phenytoin [J].Langmuir,2011,27:4004-4009.
    [74] Xiao H Y,Ai Z H,Zhang L Z.Nonaqueous sol-gel synthesized hierarchical CeO2nanocrystalmicrospheres as noveladsorbents for wastewater treatment[J].J.Phys.Chem.C,2009,113:16625-16630.
    [75] Guo H,Qiao Y M.Preparation,structural and photoluminescent properties of CeO2:Eu3+filmsderived by Pechini sol-gel process[J].Appl Surf Sci,2008,254:1961-1965.
    [76] Zhang X L, Zheng X C,Wang X Y, et al. Alcohothermal synthesis and Properties of ceriananoparticles. Journal of Zhengzhou University (Natural Seience Edition),2007,39(3):145-149.
    [77]潘湛吕,肖楚民,张环华等.液相法制备纳米二氧化铈的方法比较.中国有色金属学会第五届学术年会论文集,2003,8:178-180.
    [78]李秀珍,湛吕,楚民等.纳米二氧化铈的制备方法研究.化工装备技术,2002,23(6):20-22.
    [79] Mosby J M,Prieto A L.Direct electrodeposition of Cu2Sb for lithium-ionbatteryanodes[J].J.Am.Chem.Soc.,2008,130:10656-10661.
    [80] Zhao L Y,Siu A C,Leung K T.Anomalous electrodeposition of metallic Mn nanostructuredfilms on H-terminated Si(100)at anodic potential[J].Chem. Mater.,2007,19:6414-6420.
    [81] Pullini D,Mataix D.B.Electrodeposition efficiency of Co and Cu in the fabrication ofmultilayer nanowires by polymeric track-etched templates[J].Appl.Mater.Interfaces,2011,3:759-764.
    [82] Carim A I,Gu J S,Maldonado S.Overlayer Surface-enhanced Raman spectroscopy forstudying the electrodeposition and interfacial chemistry of ultrathin Ge on a nanostructuredsupport[J].ACSNANO,2011,5:1818-1830.
    [83] Jongh P E D,Vanmaekelbergh D,Kelly J J.Cu2O:electrodeposition ancharacterization[J].Chem.Mater.,1999,11:3512-3517.
    [84] Herman D J,Goldberger J E,Chao S,et al.Orienting periodic organic-inorganic nanoscaledomains through one-step electrodeposition[J]. ACSNANO,2011,5:565-573.
    [85] Rauber M,Bro¨tz J,Duan J L,et al.Segmented all-platinum nanowires with controlledmorphology through manipulation of the local electrolyte distribution in fluidic nanochannelsduring electrodeposition[J]. J.Phys.Chem.C,2010,114:22502-22507.
    [86] Xu L F,Chen Q W,Xu D S.Hierarchical ZnO nanostructures obtained byelectrodeposition[J].J.Phys.Chem.C,2007,111:11560-11565.
    [87] Kwak W C,Han S H,Kim T G,et al.Electrodeposition of Cu(In,Ga)Se2crystals onhigh-density CdS nanowire arrays for photovoltaic applications[J]. Cryst. GrowthDes.,2010,10:5297-5301.
    [88] Singh K V,Martinez-Morales A A,Andavan G T S,et al.A simple way of synthesizingsingle-crystalline semiconducting copper sulfide nanorods by using ultrasonication duringtemplate-assisted electrodeposition[J]. Chem.Mater.,2007,19:2446-2454.
    [89] Yamaguchi I,Watanabe M,Shinagawa T,et al.Preparation of core/shell and hollownanostructures of cerium oxide by electrodeposition on a polystyrene sphere template[J].Appl.Matter Inter.,2009,1:1070-1075.
    [90] Li G R,Qu D L,Yu X L,et al.Microstructural evolution of CeO2from porous structures toclusters of nanosheet arrays assisted by gas bubbles viaelectrodeposition[J].Langmuir,2008,24:4254-4259.
    [91] Gonza′lez-Rovira L,Sa′nchez-Amaya J,Lo′pez-Haro M,et al. Single-step process to prepareCeO2nanotubes with improved catalytic activity[J].Nano Lett.,2009,9:1395-1400.
    [92]潘湛吕,杨文霞,张环华.纳米二氧化饰的电化学制备与表征[Jl.化工新型材料,2004,32(10):312-341.
    [93] Lu X M,Ziegler K J,Ghezelbash A,et al.Synthesis of germanium nanocrystals in hightemperature supercritical fluid solvents[J].Nano Lett.,2004,4:969-974.
    [94] Cassaignon S,Koelsch M,Jolivet E P.Selective synthesis of brookite,anatase and rutilenanoparticles:thermolysis of TiCl4in aqueous nitric acid [J].J Mater Sci,2007,42:6689-6695.
    [95] Chen Y H,Lin A,Gan F X.Preparation of nano-TiO2from TiCl4by dialysishydrolysis[J].Powder Technology,2006,167:109-116.
    [96] A.I.Y.Tok, F.Y.C.Boey, Z.Dong, X.L.Sun. Hydrothermal synthesis of CeO2nano-Partieles. Journal of Materials Processing Technology,2007,190(1):217-222.
    [97] Chai B,Peng T Y,Zeng P,et al.Template-free hydrothermal synthesis of ZnIn2S4floriatedmicrosphere as an efficient photocatalyst for H2production under visible-light irradiation[J].J.Phys.Chem.C,2011,115:6149-6155.
    [98] Kibombo H S,Zhao D,Gonshorowski A,et al.Cosolvent-induced gelation and thehydrothermal enhancement of the crystallinity of titania-silica mixed oxides for thephotocatalytic remediation of organic pollutants[J].J.Phys.Chem.C,2011,115:6126-6135.
    [99] Ge M,Li Y F,Liu L,et al.Bi2O3-Bi2WO6composite microspheres: hydrothermal synthesis andphotocatalytic performances [J]. J.Phys.Chem.C,2011,115:5220-5225.
    [100] Esteban B F,Zaldo C,Cascales C.Hydrothermal Tm3+-Lu2O3nanorods with highly efficient2μm emission [J].Inorg.Chem.,2011,50:2836-2843.
    [101] Cao T P,Li Y J,Wang C H,et al.A facile in situ hydrothermal method to SrTiO3/TiO2nanofiber heterostructures with high photocatalytic activity[J].Langmuir,2011,27:2946-2952.
    [102] Wang X J,Zhang Q L,Wan Q,et al.Controllable ZnO architectures by ethanolamine-assistedhydrothermal reaction for enhanced photocatalyticactivity[J].J.Phys.Chem.C,2011,115:2769-2775.
    [103] Han H,Francesco G D,Maye M M.Size control and photophysical properties of quantum dotsprepared via a novel tunable hydrothermal route[J].J.Phys.Chem. C,2010,114:19270-19277.
    [104] Huang Y J,You H P,Jia G,et al.Hydrothermal synthesis,cubic structure,and luminescenceproperties of BaYF5:Re (Re=Eu,Ce,Tb) nanocrystals[J].J.Phys. Chem.C,2010,114:18051-18058.
    [105] Chen R G,Bi J H,Wu L,et al.Template-free hydrothermal synthesis and photocatalyticperformances of novel Bi2SiO5nanosheets [J]. Inorg.Chem.,2009,48:9072-9076.
    [106] Liu X M,He J H.One-Step hydrothermal creation of hierarchical microstructures towardsuperhydrophilic and superhydrophobic surfaces[J]. Langmuir,2009,25:11822-11826.
    [107] Titirici M M,Antonietti M,Thomas A.A generalized synthesis of metal oxide hollow spheresusing a hydrothermal approach [J].Chem.Mater.,2006,18:3808-3812.
    [108] Zhou K,Wang X,Sun X M,et al.Enhanced catalytic activity of ceria nanorods fromwell-defined reactive crystal planes[J]. J.Catal.,2005,229:206-212.
    [109] Sun C W,Li H,Chen L Q.Study of flowerlike CeO2microspheres used as catalyst supportsfor CO oxidation reaction[J].J.Physics Chem.Solids,2007,68:1785-1790.
    [110] Lu X W,Li X Z,Chen F,et al.Hydrothermal synthesis of prism-like mesocrystalCeO2[J].J.Alloys Compd.,2009,479:958-962.
    [111] Guo Z Y,Du F L,Cui Z L,et al.Hydrothermal synthesis of single-crystalline CeCO3OHflower-like nanostructures and their thermal conversion to CeO2[J].Mater.Chem.Phys.,2009,113:53-56.
    [112] Ta N,Zhang M L,Li J,et al.Facile synthesis of CeO2nanospheres[J]. Chin JCatal,2008,29:1070-1072.
    [113] Yan L,Yu R B,Chen J,et al.Template-free hydrothermal synthesis of CeO2nano-octahedronsand nanorods:investigation of the morphology evolution[J]. Cryst.GrowthDes.,2008,8:1474-1477.
    [114] Zhang Y J,Hu Q X,Fang Z Y,et al.Self-assemblage of single/multiwall hollow CeO2microspheres through hydrothermal method[J]. Chem.Lett.,2006,35:944-945.
    [115] Mai H X,Sun L D,Zhang Y W,et al.Shape-selective synthesis and oxygen storage behavior ofceria nanopolyhedra,nanorods, and nanocubes[J]. J.Phys. Chem.B,2005,109:24380-24385.
    [116] Yang S W,Gao L.Controlled synthesis and self-assembly of CeO2nanocubes[J].J.Am.Chem.Soc.2006,128:9330-9331.
    [117] Yu R B,Yan L,Zheng P,et al.Controlled synthesis of CeO2flower-like and well-alignednanorod hierarchical architectures by a phosphate-assisted hydrothermalroute[J].J.Phys.Chem.C,2008,112:19896-19900.
    [118] Lu J,Qi P F,Peng Y Y,et al.Metastable MnS crystallites through solvothermal synthesis[J].Chem.Mater.,2001,13:2169-2172.
    [119] Xu J,Ge J P,Li Y D.Solvothermal synthesis of monodisperse PbSe nanocrystals[J].J.Phys.Chem.B,2006,110:2497-2501.
    [120] Kunjara S,Ayudhya N,Tonto,P.Solvothermal synthesis of ZnO with various aspect ratiosusing organic solvents[J].Cryst.Growth Des.,2006,6:2446-2450.
    [121] Yang J,Zeng J H,Yu S H,et al.Formation process of CdS nanorods via solvothermalroute[J].Chem.Mater.,2000,12:3259-3263.
    [122] Cao M H,Wu X L,He X Y,et al.Microemulsion-mediated solvothermal synthesis of SrCO3nanostructures [J]. Langmuir,2005,21:6093-6096.
    [123] Zhang Z T,Blom D A,Gai Z,et al.High-yield solvothermal formation of magnetic CoPt alloynanowires[J].J.Am.Chem.Soc.2003,125:7528-7529.
    [124] Yang J,Li C X,Quan Z W,et al.One-step aqueous solvothermal synthesis of In2O3nanocrystals[J]. Cryst.Growth Des.,2008,8:695-699.
    [125] Wang H L,Robinson J T,Li X L,et al.Solvothermal reduction of chemically exfoliatedgraphene sheets[J]. J.Am.Chem.Soc.2009,131:9910-9911.
    [126] Deng D H,Pan X L,Yu L,et al.Toward N-doped graphene via solvothermal synthesis[J].Chem.Mater.,2011,23:1188-1193.
    [127] Sun C W,Li H,Zhang H R,et al.Controlled synthesis of CeO2nanorods by a solvothermalmethod[J]. Nanotechnology,2005,16:1454-1463.
    [128] Liu B,Liu B B,Li Q J,et al.Solvothermal synthesis of monodisperse self-assembly CeO2nanospheres and their enhanced blue-shifting in ultraviolet ABForption[J].J.AlloysCompd.,2010,503:519-524.
    [129] Yan L,Xing X R,Yu R B,et al.Facile alcohothermal synthesis of large-scale ceria nanowireswith organic surfactant assistance[J].Physica B,2007,390:59-64.
    [130] Zhang Y W,Si R,Liao C S,et al.Facile alcohothermal synthesis, size-dependent ultravioletABForption,and enhanced CO conversion activity of ceria nanocrystals[J].J.Phys.Chem.B,2003,107:10159-10167.
    [131] Sun C W,Xie Z,Xia C R,et al.Investigations of mesoporous CeO2-Ru as a reforming catalystlayer for solid oxide fuel cells[J]. Electrochem.Commun.,2006,8:833-838.
    [132] Tao Y,Gong F H,Wang H,et al.Microwave-assisted preparation of cerium dioxidenanocubes[J].Mater.Chem.Phys.,2008,112:973-976.
    [133] Zhang,Y J,Cheng T,Hu Q X,et al.Study of the preparation and properties of CeO2single/multiwall hollow microspheres [J]. J.Mater.Res.,2007,22:1472-1478.
    [134] Chen G Z,Xu C X,Song X Y,et al.Template-free synthesis of single-crystalline-like CeO2hollow nanocubes[J].Cryst.Growth Des.,2008,8:4449-4453.
    [135] Tang B,Zhuo L H,Ge J H,et al.A surfactant-free route to single-crystalline CeO2nanowires[J].Chem.Commun.,2005,28:3565-3567.
    [136] Guo Z.Y, Du F.L, Li G.C, Cui Z.L. Synthesis and characterization of single crystalCe(OH)CO3and CeO2triangular,microplates [J]. Inorganic Chemistry,2006,45(l):4167一4169.
    [137] Zhang Y W, Si R, Liao C L, Yan C H.Facile alcoholthermal synthesis, size-dependentultraviolet ABForption,and enhanced CO conversion activity of ceria nanocrystals.Journalof Physical Chemistry B,2003.107(I):10159-10167.
    [138] Ho C M, Jimmy C. Yu, Tszyan Kwong, Angelo C. Mak, Sukyin Lai.Morphology-controllable synthesis of mesoporous CeO2nano-and microstructures.Chemistry of Materials,2005,17(l):4514-4522.
    [139]王成云,苏庆德,钱逸泰.非水溶剂水热法制备CeO2纳米粉末[J].化学研究与应用,2001,13(4):402-405.
    [140] Yang Z J,Han D Q,Ma D L,et al.Fabrication of Monodisperse CeO2Hollow SpheresAssembled by Nano-octahedra[J].Cryst.Growth Des.,2010,10:291-295.
    [141] Zhou F,Zhao X M,Xu H,et al.CeO2spherical crystallites:synthesis, formationmechanism,size control,and electrochemical property study[J].J.Phys.Chem.C,2007,111:1651-1657.
    [142] Kim S,Lee J S,Mitterbauer C,et al.Anomalous electrical conductivity ofnanosheaves ofCeO2[J].Chem.Mater.,2009,21:1182-1186.
    [143] Yue L,Zhang X M.Preparation of highly dispersed CeO2/TiO2core-shellnanoparticles[J].Mater.Lett.,2008,62:3764-3766.
    [144] Shchukin D G,Caruso R A.Template synthesis and photocatalytic properties of porous metaloxide spheres formed by nanoparticle[J]. Chem.Mater.,2004,16:2287-2292.
    [145] Mlondo S N.,Thomas P J,O’Brien Paul.Facile deposition of nanodimensional ceria particlesand their assembly into conformal films at liquid-liquid interface with a phase transfercatalyst[J].J.Am.Chem.Soc.,2009,131:6072-6073.
    [146] Chen Y, P. Hua, Ming-Hsien Lee, Wang H F.Au on (111) and (110) surfaces of CeO2: Adensity-functional theory study[J]. Surface Science,2008,602:1736–1741.
    [147] Sayle T.X.T., Parker S.C., Catlow C.R.A. The role of oxygen vacancies on ceria surfaces inthe oxidation of carbon monoxide, Surface Science,1994,316:329.
    [148] C. Conesa, Computer modeling of surfaces and defects on cerium dioxide[J]. SurfaceScience,1995,339:337.
    [149] Yang Z, Woo T.K., Baudin M., Hermansson K., Atomic and electronic structure ofunreduced and reduced CeO2surfaces: A first-principles study [J], J. Chem. Phys.2004,120:7741-7750.
    [150] Nolan M., Parker S.C., Watson G.W., CeO2catalysed conversion of CO, NO2and NO fromfirst principles energetics[J] Phys. Chem. Chem. Phys.2006,8:216-218.
    [151] Yan L, Yu R B, Chen J, Xing X R.Template-Free Hydrothermal Synthesis of CeO2Nano-octahedrons and Nanorods: Investigation of the Morphology Evolution[J].CrystalGrowth&Design,2008,8:1474-77.
    [152] Yang P D. A simple method has been developed to control the shape of nanoscale cuprousoxide crystals. Some shapes turn out to be much better than others as catalysts for alight-activated reaction[J]. Nature,2012;482:41–42.
    [153] Pan C S, Zhang D S, Shi L Y, and Fang J H Template-Free Synthesis, Controlled Conversion,and CO Oxidation Properties of CeO2Nanorods, Nanotubes, Nanowires, andNanocubes[J].Eur. J. Inorg. Chem.2008,2429–2436.
    [154] Laudise R.A, Kolb E.D., Caporaso A.J..Hydrothermal Growth of Large Sound Crystals ofZinc Oxide[J]. J.Am.Ceram,Soc.,1964,47:9-12.
    [155] Li L, Chen Y. Preparation of nanometer-scale CeO2particles via a complexthermo-decomposition method[J]. Materials Science and Engineering: A,2005,406:180–185.
    [156] Huang P X, Wu F, Zhu B L, Gao X P. Zhu H Y, Yan T Y, Huang W P, Wu S H, Song D Y,CeO2Nanorods and Gold Nanocrystals Supported on CeO2Nanorods as Catalyst[J]. J.Physical. Chemistry. B2005;109:19169-19174.
    [157] Sun C W, Li H, Zhang H R, Wang Z X, Chen L Q, Controlled synthesis of CeO2nanorodsby a solvothermal method[J].Nanotechnology2005;16:1454-1463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700