面包酵母催化不对称还原2-羰基-4-苯基丁酸乙酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α–羟基酯易被转化为其它功能基团而被作为天然产物及手性药物合成中重要的“手性砌块”,(R)-2-羟基-4-苯基丁酸乙酯((R)-EHPB)是其中一种重要的手性物质,被广泛应用于普利系列血管紧张肽转化酶(ACE,全称angiotensin converting enzyme)抑制剂的合成工业。生物法合成(R)-EHPB因其自身的优点而备受关注,本论文利用廉价易得的面包酵母作为生物催化剂,直接催化2-氧代-4-苯基丁酸乙酯(EOPB)不对称还原合成(R)-EHPB。目前,此过程中仍存在如产物立体选择性不高,明显的底物及产物抑制作用,化学添加剂的毒性,缺少能源供体(糖类等难溶于有机溶剂)难以实现辅酶的原位再生等诸多问题。
     水相中面包酵母催化还原EOPB,产物以(S)-EHPB为主,e.e. (S)为70-80%。通过研究反应进程,分析了副产物苯丙醇的生成机理,并提出了可行的抑制副反应的方法。有机溶剂中面包酵母催化不对称还原EOPB反应的研究表明,选择合适的有机溶剂作为反应介质,有利于提高酵母催化EOPB合成(R)-EHPB的反应立体选择性。经筛选,市售桃花牌酵母在乙醚单相体系中催化EOPB的反应效果最佳。最适酵母浓度、初始加水量和反应温度分别为50 g L-1,30 g L-1和30 oC。向反应体系中直接添加氯代苯乙酮(α-PC),可有效地提高酵母催化EOPB(5 mmol L-1)合成(R)-EHPB的反应立体选择性,但α-PC长时间与酵母接触也存在毒性影响,降低酵母催化活性,减小EHPB产率。为此设计了4种α-PC添加策略,发现策略4 (Strategy 4)中,经α-PC预处理操作后的面包酵母既提高立体选择性,又改善了催化活性。面包酵母经α-PC (8 g L-1)预处理仅4 h后,催化还原EOPB转化率、EHPB产率及e.e. (R)-EHPB分别由86.8%,60.8%和62.7% (未使用α-PC)提高至95.9%,90.2%和92.0% (Strategy 4)。使用结构如α-PC分子中含被羰基活化的卤甲基的化学添加剂预处理酵母后,反应的立体选择性均有所提高,说明起作用的关键官能团可能是α-PC分子中的活泼氯甲基。利用紫外及荧光光谱观察酵母预处理过程中α-PC对酵母醇脱氢酶的影响,经α-PC处理之后的面包酵母样品的醇脱氢酶吸收峰的峰位和强度均发生变化,但经苯乙酮预处理的酵母样品的紫外吸收光谱曲线较空白样品未发生变化。激发波长在295 nm时的荧光光谱也得出相似结果。这些实验结果表明,α-PC的活泼氯甲基确实与酵母醇脱氢酶发生了某种不可逆相互作用,较大地改变了酵母的催化行为。
     利用液液双相体系作为反应介质,克服了单相体系中的底物及产物抑制、底物浓度偏低、有机溶剂的毒性及无法实现辅酶原位再生等不利影响。在水/苯双相体系中面包酵母(经过预处理)表现出较好的催化活性及立体选择性,底物浓度较有机单相体系提高了近四倍(20 mmol L-1),在合适的反应条件下,即Vaq/Vben = 20: 40,磷酸盐缓冲液pH 8.0,30 oC,添加乙醇(1.5%, v/v)辅底物等,EOPB转化率、EHPB产率及e.e. (R)-EHPB分别达到95.4%、83.2%和97.0%。在[BMIM][PF_6]/水(10:1, v/v)双相体系中,面包酵母催化EOPB反应产物立体选择性由微水离子液体[BMIM][PF_6]单相体系中的S构型转变为R构型。添加辅底物乙醇1% (v/v),e.e. (R)-EHPB由6.42%提高至82.5%。使用3.2.2节Strategy 4中的经α-PC预处理的面包酵母催化还原EOPB,反应立体选择性达到89.4% (e.e. (R)),且EHPB产率增至56.4%。尽管[BMIM][PF_6]粘度大,极性较高,但面包酵母在离子液体[BMIM][PF_6]/水(10:1, v/v)双相体系中仍具有较好的催化立体选择性,说明[BMIM][PF_6]/水双相体系中的酵母催化反应具有进一步研究价值。首次设计并主要合成了两类结构如下所示的离子液体。
     测定了不同乙氧基链长的上述离子液体在有机溶剂中的溶剂性能,找到了具有“室温均相,高温分相”的温控离子液体/有机溶剂液液双相体系。在由含乙氧基链的季胺盐型离子液体IL2、乙二醇二甲醚组成的温控离子液体双相体系中,可以进行酵母不对称催化还原EOPB反应,在合适的反应温度下反应于均相体系中进行,反应结束后,适当升温,离子液体析出体系呈两相,含生物催化剂的离子液体相与含产物的有机溶剂相简单相分离后可循环使用。实验结果表明,该体系中酵母催化EOPB反应的立体选择性较单独使用乙二醇二甲醚提高了25%?30%,通过简单分离后,酵母仍具有催化活性。
Ethyl (R)-2-hydroxy-4-phenylbutyrate ((R)-EHPB) is a versatile key intermediate for the synthesis of a variety of angiotensin converting enzymes (ACE) inhibitors such as Cilazapril, Benazepril, and Enalapril etc. Special attention has been paid to the production of (R)-EHPB by the biosynthesis method. In this study, we systematically studied microbial asymmetric reduction of EOPB to optically active (R)-EHPB catalyzed by baker's yeast (Saccharomyces cerevisiae). However, there are still some disadvantages as follow in this process: a relatively low enantiomeric excess value of (R)-EHPB and high biomass: substrate ratio; the severe substrate and product inhibition to the enzymes activity; the toxicity of alpha–phenacyl chloride (α–PC) and organic solvents to the yeast; the reproduction of the coenzyme hardly achieved in an organic solvent, et al.
     The asymmetric reduction of EOPB catalyzed by baker's yeast in aqueous phase to synthesize EHPB was investigated in detail. The enantiomeric excess value (e.e.) of product (S)-HPBE reached up to 80%. The reaction process and the mechanism of the production of the byproduct PPN were also explored in order to inhibit the side reaction and improve the enantioselectivity of the reduction.
     In order to improve the enantioselectivity of the asymmetric reduction of EOPB to produce (R)-EHPB, different organic solvents were employed as reaction media in place of water. The enantioselectivity of this reduction could be reversed by using different organic solvents. The enantioselectivity of the asymmetric reduction of EOPB to synthesize (R)-EHPB catalyzed with baker's yeast in diethyl ether can be improved by the introduction ofα-PC. We designed different strategies ofα–PC addition in order to overcome the toxicity ofα-PC to the yeast. The catalytic activity of yeast and the enantioselectivity of the reduction were improved with special pretreatment process of yeast (Strategy 4). The effect ofα-PC on selective inhibition of S-enzymes within yeast cells was investigated.Α-PC as a good alkylating agent can easily react with those residues belong to the active site of the enzyme in yeast cells because of its reactive chloromethyl group binding to its carbonyl group, which might be the major reason of the enhanced enantioselectivity of enzymatic reaction. The change of catalytic behavior of baker's yeast after the chemical pretreatment, which might be caused by an interaction between the yeast andα-PC in ethyl ether, was studied via spectrum analysis (UV and FS). In addition, under the optimum pretreatment conditions, the conversion of EOPB, the yield of EHPB and the e.e. of (R)-EHPB reached 96%、90% and 92% from 6.8%, 60.8% and 62.7%, respectively.
     The water/organic biphasic system was adopted to overcome the inhibition of a high substrate/product concentration. The baker’s yeast showed the best catalytic activity and enantioselectivity in the water/benzene biphasic system. When EOPB concentration was 20 mmol L-1, 95.4% of EOPB conversion, 83.2% of EHPB yield and 97.0% of e.e. (R)-EHPB was obtained by using the chemical-pretreated yeast, respectively, under the following appropriate reaction conditions: 30 oC, Vaq/Vben = 20:40, pH 8.0 phosphate buffer, 1.5% (v/v) of ethanol as the co-substrate. In ionic liquid-water (10:1, v/v) biphasic system, the enantioselectivity of the reduction was shifted towards (R)-side from the (S)-side in [BMIM][PF_6] (27.7%, e.e. (S)), and e.e. (R)-EHPB was increased from 6.6% to 82.5% with the addition of ethanol (1%, v/v) as a co-substrate. The effect of the use of [BMIM][PF_6] as an additive in relatively small amounts on the reduction was also studied. We find that there is a decline in the enantioselectivity of the reduction in benzene. That is little affected in organic solvent-water biphasic systems. In addition, a decrease in the conversion of EOPB and the yield of EHPB with increasing [BMIM][PF_6] concentrations occurs in either organic solvent-water biphasic systems or benzene.
     The quarternary ammonium salts ionic liquids modified with poly-(ethylene glycol) chain was synthesized for the first time. The solubility of these ionic liquids in different organic solvents was investigated under the different temperature. It was found that these ionic liquids possess the thermoregulated function of“mono-phase under low temperature, biphase under high temperature”. A novel concept of thermoregulated ionic liquid biphasic biocatalysis (TILBB) based on the thermoregulated function of ionic liquids for separating the catalyst from the reaction mixure was proposed. The asymmetric reduction of EOPB catalyzed by baker’s yeast was investigated in thermoregulated ionic liquid biphasic system composed of IL2 and ethylene glycol dimethyl ether. The enantioselectivity of the reduction in in thermoregulated ionic liquid biphasic system was increased by 25%-30% compared with that in ethylene glycol dimethyl ether. The yeast separated from the ionic liquid can be recycled.
引文
1. Herold P, Indolese A F, Studer M, et al. New technical synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate of high enantiomeric purity. Tetrahedron, 2000, 56(35): 6497?6499.
    2. Nohira H, Yoshida S. Precess for the optical resolution of racemic 2-hydroxy- 4-phenylbutanoic acid [P]. EP, 329156, 1989.
    3. Chigusa Y, Yamanishi M. Optical resolution of 2-hydroxyl-4-phenylbutanoic acid [P]. JP, 2000136163, 2000.
    4. Cabre Castellvi J, Palomo Coll A L. Preparation of (S)- and (R)-2-substituted- 4-phenylbutyric acids and their salts and derivatives, via resolution with 1-(p-nitrophenyl)-2-amino-1, 3-propanedid enatiomers [P]. ES, 2035800, 1993
    5. Baldro E, Darrigo P, Pedrocchi-Fantoni G, et al. Pen G acylase catalyzed resolution of phenylacetate esters of secondary alcohols. Tetrahedron Asymmetry, 1993, 4(5): 1031-1034.
    6. Coffen D L, Kataritis P, Patridge J J. Process for the preparation of optically pure hydroxyarlalkanoic acids and esters [P]. EP, 325 971, 1989.
    7. Inada Y, Oda S. Microbial manufacture of optically active 2-hydroxycarboxylic acid esters [P]. JP 10304894, 1999.
    8. Miyata R, Yonehara T. Microbial manufacture of optically active 2-hydroxy- 4-phenylbutyric acid [P]. JP 02142196, 1990.
    9. Huerta F F, Laxmi Y R S, B?ckvall J E. Dynamic kinetic resolution ofα-hydroxy acid esters. Org Lett, 2000, 2(10): 1037-1040.
    10. Yanagisawa H, Ishihara S, Ando A, et al. Angiotensin-converting enzyme inhibitors. Perhydro-1,
    4-thiazepin-5-one derivatives. J Med Chem, 1987, 30:1984-1991.
    11. Andréa C, Delgado M, Pedrosa R, et al. A novel highly diastereoselective synthesis of cyano ethers by regioselective ring opening of chiral oxazolidinium methiodides with sodium cyanide. Tetrahedron Lett, 1993, 34(51): 8325-8328.
    12. Belzecki C Panfil I. Cycloaddition of chiral nitrones. Asymmetric synthesis of isoxazolidines. J Org Chem, 1979, 44(8): 1212.
    13. Murauchi O, Ikebe T, Kitajima H. Prepation of (R)-2-hydroxy-4-phenyl-3-butenoic acid [P]. JP 0418050, 1992.
    14. Kurauchi M, hagiwara Y, Matsueda H, et al. Process for producing optically active 2-hydroxy-4-arylbutyric acid or its ester, and Intremediate Therefor [P]. EP 0759424, 1997.
    15. Hashimoto M, Aoki M, Osanai Y. Preparation of arylhydroxyalkanoic acid derivatives as intermediates for pharmaceuticals [P], JP 62212329, 1987.
    16. Takahashi K, Tamaura Y, Kodera Y, et al. Magnetic lipase active in organic solvents. Biochem Biophys Res Commun, 1987, 142(2): 291-296.
    17. Khelifa N, Dugay A, Tessedre A C, et al. Bioconversion of 2-amino acids to 2-hydroxy acids by Clostridium butyricum. FEMS Microbiol Lett, 1998, 169(1): 199-205.
    18. Benincori T, Cesarotti E, Piccolo O, et al. 2,2',5,5'-Tetramethyl-4, 4'-bis (diphenylphoshino)-3, 3'-bithiophene: A new, very efficient, easily accessible, chiral biheteroaromatic ligand for homogeneous stereoselective catalysis. J Org Chem, 2000, 65(7): 2043-2047.
    19. Blaser H U, Jalett H P, Monti D M, et al. Enantioselective hydrogenation ofα-keto esters: temperature-programmed reduction study of liquid-phase Pt/Al2O3 hydrogenation catalysts. Appl Catal, 1989, 52(1-2): 19-32.
    20. LeBlond C, Wang J, Liu J, et al. Highly enantioselective heterogeneously catalyzed hydrogenation alpha-ketoesters under mild conditions. J Am Chem Soc, 1999, 121(20): 4920-4921.
    21. Oda S, Inada Y, Kobayashi A, et al. Production of ethyl (R)-2-hydroxy-4-phenylbutanoate via reductionof ethyl 2-oxo-4-phenylbutanoate in an interface bioreactor. Biosci Biotechnol Biochem, 1998, 62(9): 1762-1767.
    22. Bradshaw C W, Wong C H, Hummel W, et al. Enzyme-catalyzed asymmetric synthesis of (S)-2-amino-4-phenylbutanoic acid and (R)-2-hydroxy-4-phenylbutanoic acid. Bioorg Chem, 1991, 19(1): 29-39.
    23. Chadha A, Manohar M. Enzymatic resolution of 2-hydroxy-4-phenylbutanoic acid and 2-hydroxy-4-phenylbutenoic acid. Tetrahedron Asymmetry, 1995, 6(3): 651-652.
    24. Chadha A, Manohar M, Soundararajan T, et al. Asymmetric reduction of 2-oxo- 4-phenylbutanoic acid ethyl ester by Daucus carota cell cultures. Tetrahedron Asymmetry, 1996, 7(6): 1571-1572.
    25. Matsuyama A, Nikaido T, Kobayashi Y. Miorobial process for preparing optically active 2-hydry-4-phenylbutyric acids. WO8907147, 1989.
    26. Myata R Yonehara T., Manufacture of Optically Active 2-Hydroxy-4-phenylbutyric Acidwith Bacteria, JP0216987, JP0216987 1990.
    27. Kaluzna I, Andrew A A, Bonilla M, et al. Enantioselective reductions of ethyl 2-oxo-4-phenylbutyrate by Saccharomyces cerevisiae dehydrogenases. J Mol Catal B Enzym, 2002, 17(2) 101-105.
    28. Lacerda P S B, Ribeiro J B, Leite S G F, et al. Microbial reduction of ethyl 2-oxo-4-phenylbutyrate. Searching for R-enantioselectivity. New access to the enalapril like ACE inhibitors. Tetrahedron Asymmetry, 2006, 17(8): 1186-1188.
    29. Lacerda P S B, Ribeiro J B, Leite S G F, et al. Microbial enantioselective reduction of ethyl-2-oxo-4-phenyl-butanoate. Biochem Eng J, 2006, 28(3): 299-302.
    30. Tseng T C, Duo T H, Wang Y F. Enantioselective synthesis of N-[(S)-ethoxycarbonyl- 3-phenylpropyl]-L-alanyl-L-proline from chiral synthon prepared enzymatically; a practical method for large-scale synthesis. J Chin Chem Soc (TaiPei), 1991, 38(5): 487-490.
    31. Hashimoto Y, Endo T, Tamura K, et al. Process for producing optically active alpha-hydroxy carboxylic acid having phenyl group [P]. EP, 610048, 1994.
    32. Hashimoto Y, Endo T, Tamura K, et al. Process for producing pptically active alpha-hydroxy carboxylic acid having phenyl group [P]. EP, 610049, 1994.
    33. Dao D H, Okamura M, Akasaka T, et al. Stereochemical control in microbial reduction. Part 31: Reduction of alkyl 2-oxo-4-arylbutyrates by baker's yeast under selected reaction conditions. Tetrahedron Asymmetry, 1998, 9(15): 2725-2737.
    34. Li Y N, Shi X A, Zong M H, et al. Asymmetric reduction of 2-octanone in water/organic solvent biphasic system with Baker’s yeast FD-12. Enzyme Microb Technol, 2007, 40(5): 1305-1311.
    35. Lou W Y, Zong M H, Fan X D, et al. Asymmetric microbial reduction of organosilyl ketone with immobilized Saccharomyces cerevisiae cells in water/organic solvent biphasic system. Prog Biochem Biophys, 2002, 29(2): 297-301.
    36.石玉刚,方云,蒋南等.面包酵母催化水相合成手性2-羟基-4-苯基丁酸乙酯的研究[J].化学研究与应用, 2006, 18(4): 426-430.
    37.石玉刚,方云,蒋南等.面包酵母催化溶剂相不对称还原合成(R)-2-羟基-4-苯基丁酸乙酯[J].食品与生物技术学报, 2006, 25(2): 66-73.
    38. Nakamura K, Kondo S. Reduction by baker's yeast in benzene. Tetrahedron Lett, 1991, 32(48): 7075-7078.
    39.杨忠华.水相中酵母细胞催化前手性羰基不对称还原合成手性醇的研究[D]:[博士学位论文].杭州:浙江大学, 2005.
    40. Howarth J, James P, Dai J. Immobilized baker's yeast reduction of ketones in an ionic liquid, [Bmim]PF6 and water mix. Tetrahedron Lett, 2001, 42(42): 7517-7519.
    41.陈殿军.新型聚醚季铵盐离子液体的合成与性能研究[D]: [硕士学位论文].大连:大连理工大学, 2006.
    42.蒋景阳,魏理,熊燕,王艳华,刘春.温控离子液体两相体系及其在络合催化加氢中的应用[P].中国专利.1847222A.2006-10-18.
    43. Schofer S H, Kaftzik N, Wasserscheid P Kragl U. Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity. Chem Commun, 2001, 5: 4215-4216.
    44.谢渝春,刘会洲,陈家镛.有机相中酶促拆分过程[J].化学进展, 1997, 9(3): 291-297.
    45. Fronza G, Fuganti C, Mendozza M, et al. Stereochemistry of the double saturation in the formation in baker's yeast of 4-(4-hydroxyphenyl)-2-butanone (Raspberry ketone). Tetrahedron, 1996, 52(11): 4041-4052.
    46. Van Dyk M S, Rensburg E, Rensburg I P B, et al. Biotransformation of monoterpenoid ketones by yeasts and yeast-like fungi. J Mol Cata B Enzym, 1998, 5(1-4): 149-154.
    47. Ferraboschi P, Grisenti P, Manzocchi A, et al. Baker's yeast-mediated preparation of optically active aryl alcohols and diols for the synthesis of chiral hydroxy acids. J Chem Soc, Perkin Trans 1, 1990, 9: 2469-2474.
    48. Forni Arrigo, Moretti I, Prati F, et al. Stereochemcial control in yeast reduction of Fluorinatedβ-Diketones. Tetrahedron, 1994, 50(41): 11995-12000.
    49. Tzianabos O. Polysaccharide immunomoduators as therapeutic agents: structure and biologic function. Clinic Microbio Rev, 2000, 13(4): 523-533.
    50. Simon T, Lisbeth O, Jens N. Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 2000, 64(1):34-51.
    51. Matsuda T, Nakajima Y, Harada T, et al. Asymmetric reduction of simple aliphatic ketones with dried cells of Geotrichum candidum. Tetrahedron Asymmetry, 2002, 13(9): 971-974.
    52. Nakamura K, Matsuda T, Ohno A. Asymmetric synthesis of (S)-arylalkanols by microbial reduction. Tetrahedron Asymmetry, 1996, 7(10): 3021-3024.
    53. Nakamura K, Takenaka K, Fujii M, et al. Asymmetric synthesis of both enantiomers of secondary alcohols by reduction with a single microbe. Tetrahedron Lett, 2002, 43(20): 3629-3631.
    54. ?urawiński R, Nakamura K, Drabowicz J, et al. Biocatalytic syntheses of chiral non-racemic 2-hydroxyalkanephosphonates. Tetrahedron Asymmetry, 2001, 12(22): 3139-3145.
    55. Yadav J S, Nanda S, Reddy P T. Efficient enantioselective reduction of ketones with Daucus carota root. J Org Chem. 2002, 67(11): 3900-3903.
    56. Bruni R, Fantin G, Medici A, et al. Plants in organic synthesis: an alternative to baker’s yeast. Tetrahedron Lett, 2002, 43(18): 3377–3379.
    57. Itoh K, Sakamaki H, Nakamura K, et al. Biocatalytic asymmetric reduction of 3-acetylisoxazoles. Tetrahedron Asymmetry, 2005, 16(7): 1403-1408.
    58.松正孝,李晓敏,王诤等.固定化米曲霉菌体细胞光学拆分DL-丙氨酸[J].生物工程学报, 1997, 13(1): 168-173.
    59. Noashima Y, Maeda J Munakata Y. Contro of the enantioselectivity of the bioreduction with immobilized baker's yeast in a hexane solvent system. J Chem Soc, Perkin Trans, 1992, 6: 659-660.
    60. Nakamura K, Kawai Y, Oka S Ohno A. A new method for stereochemical control of microbial reduction. Reduction ofβ-keto esters with baker's yeast immobilized by magnesium alginate. Tetrahedron Lett, 1989, 30(17): 2245-2246.
    61. Nakamura K, Higaki M, Ushio K, Oka S Ohno A. Stereochemical control of microbial reduction. 2.1 reduction ofβ-keto esters by immobilized baker's yeast. Tetrahedron Lett, 1985, 26(35): 4213-4216.
    62. Nakamura K, Ushio K, Oka Shinazaburo Ohno A. Stereochemical control in yeast reduction. Tetrahedron Lett, 1984, 25(36): 3979-3982.
    63. Ushio K, Inouye K, Nakamura K, Oka S Ohno A. Stereochemical control in yeast reduction 4. Effect of cultivation conditions on the reduction ofβ-keton esters by methylotrophic yeasts. Tetrahedron Lett,1986, 27(23): 2657-2660.
    64. Crocq V, Masson C, Winter J, et al. Synthesis of trimegestone: The first industrial application of baker's yeast mediated reduction of a ketone. Org Process Res Dev, 1997, 1(1): 2-3.
    65. Nakamura K, Kawai Y, Nakajima N Ohno A. Stereochemical control of microbial reduction. 17. A method for controlling the enantioselectivity of reduction with baker's yeast. J Org Chem, 1991, 56(15): 4778-4783.
    66. Yasohara Y, Kizaki N, Hasegawa J, et al. Synthesis of optically active ethyl 4-chloro-3-hydroxybutanoate by microbial reduction. Appl Microbial Biotechnol, 1999, 51(6): 847-851.
    67. Wada M, Kawabata H, Yoshizumi A, et al. Occurrence of multiple ethyl 4-chloro-3-oxobutanoate reducing enzymes in Candida Magnoliae. J Biosci Bioeng, 1999, 87(2): 144-148.
    68. Grober S K, Yanovskaya L A, Chizhov O S, et al. An unusual reaction of para-Nitrophenyl aldehydes with acetone Cyanohydrin. Tetrahedron Lett, 1971, 12(4): 357-360.
    69. Miya H, Kawada M, Sugiyama Y. Stereoselective reduction of ethyl 2-methyl-3-oxobutanoate by Bacteria. Biosci Biotech Biochem, 1996, 60(1): 95-98.
    70. Sarah S, Randolph G, Michel C. Implementation of a rapid microbial screening procedure for biotransformation activities. J Biosic Bioeng, 2000, 89(4): 367-371.
    71. Shieh W R, Gopalan A S, Sih C. J. Stereochemical control of yeast reduction. 5. Characterization of the oxidoreductases involved in the reduction ofβ-keto esters. J Am Chem Soc, 1985, 107(10): 2993-2994.
    72. Itoh T, Yonekawa Y, Sato T, et al. Stereocontrol by introduction of a sulfur functional group in the asymmetric reduction ofβ-ketoesters with baker's yeast; Preparation of optically pure 3-S-hydroxydithioesters as a new chiral synthon of natural product synthesis. Tetrahedron Lett, 1986, 27(44): 5405-5408.
    73. Yadav J S, Thirupathi R P, Samik N. A facile synthesis of R-(-)-2-azido-1-arylethanols from 2-azido-1-arylketones using baker's yeast. Tetrahedron Asymmetry, 2001, 12(1): 63-67.
    74. Hayakawa R, Shimizu M, Fujisawa T. Ethyl (R)-3-hydroxy-4-phenylthiobutyrate: Synthesis by the baker's yeast reduction and use as a precursor of enantiomerically pureβ-lactam. Tetrahedron Lett, 1996, 37(42): 7533-7536.
    75. Nakamura K, Kawai Y, Oka S. Stereochemical control in microbial reduction 8. Stereochemical control in microbial reduction ofβ-keto esters. Bull Chem Soc Jpn, 1989, 62(3): 875-879.
    76. Dahl A C, Fjeldberg M, Medsen J ?. Baker's yeast: Improving the D-stereoselectivity in reduction of 3-oxo esters. Tetrahedron Asymmetry, 1999, 10(3): 551-559.
    77. Nakamura K, Kawai Y, Ohno A. A novel method to synthesized (L)-β-hydroxyl esters by the reduction with baker's yeast. Tetrahedron Lett, 1990, 31(2): 267-270.
    78. Ushio K, Hada J, Tanaka Y. Allyl Bromide, a powerful inhibitor against R-enzyme activities in baker's yeast reduction of ethyl 3-oxoalkanoates. Enzyme Microb Technol, 1993, 15(3): 222-228.
    79. Hayakawa R, Nozawa K, Shimizu M, et al. Control of Enantioselectivity in the baker's yeast reduction ofβ-keto ester derivatives in the presence of a sulfur compound. Tetrahedron Lett, 1998, 39(1-2): 67-70.
    80. Patel R N, McNamee C G, Banerjee A, et al. Stereoselective reduction ofβ-keto esters by Geotrichum candidum. Enzyme Microb Technol, 1992, 14(9): 731-738.
    81. Pham V T, Phillips R S, Ljungdahl L G. Temperature-dependent enantiospecificity of secondary alcohol dehydrogenase from thermoanaerobacter ethanolicus. J Am Chem Soc, 1989, 111(5): 1935-1936.
    82. Wipf B, Kufor E, Bertazzi R. Production of (+)-(S) ethyl-3-hydroxybutyrate and (-)-ethyl-3-hydroxybutyrate by microbial reduction of ethyl acetoacetate. Helve Chim Acta, 1983, 66(2): 485-488.
    83. Sih C J, Chen C S. Microbial asymmetric catalysis-enantioselective reduction of ketones. Ang ChemInt Ed Engl, 1984, 23(8): 570-578.
    84. Wendhausen Jr R, Moran P J S, Joekes I J, et al. Continuous process for Large-scale preparation of chiral alcohols with baker's yeast immobilized on chrysotile fibers. J Mol Catal B Enzym, 1998, 5(1-4): 69-73.
    85. Buque E M, Chinjoe I, Straathof A J J, et al. Immobilization affects the rate and enantioselectivity of 3-oxo ester reduction by baker's yeast. Enzyme Microb Technol, 2002, 31(5): 656-664.
    86.潘冰峰,顾建新,冯青.白地霉G38生物转化制备抗忧郁药(R)-fluoxetine[J].微生物学报, 1995, 35(5): 353-357.
    87. Jiang Q, Yao S J, Mei L H. Tolerance of immobilized baker's yeast in organic solvents. Enzyme Microb Technol, 2002, 30(6): 721-725.
    88. Klibanov A M. Improving Enzymes by using them in organic solvents. Nature, 2001, 409(6818): 241-246.
    89. Nakamura K, Kondo S, Nakajima N, et al. Mechanistic study for stereochemical control of microbial reduction ofα-keto esters in an organic solvent. Tetrahedron Lett, 1995, 51(3): 687-694.
    90. Brzezinska-Rodak M, Zymanczyk-Duda E, Kafarski P, et al. Application of fungi as biocatalysts for the reduction of diethyl 1-oxoalkylphosphonates in anhydrous hexane. Biotechnol Prog, 2002, 18(6): 1287-1291.
    91. Griffin D R, Gainer J L, Garta G. Asymmetric ketone redution with immobilized yeast in hexane: Biocatalyst deactivation and regeneration. Biotechnol Prog, 2001, 17(2): 304-310.
    92. Medson C, Smallridge A J, Trewhella M A. Baker's yeast activity in an organic solvent system. J Mol Catal B Enzym, 2001, 11(4-6): 897-903.
    93. Athanasion N, Smallridge A J, Trewhella M A. Baker's yeast mediated reduction ofβ-keto amides in an organic solvent system. J Mol Catal B Enzym, 2001, 11(4-6): 893-896.
    94. North M. Baker's yeast reduction ofβ-keto esters in petrol. Tetrahedron Lett, 1996, 37(10): 1699-1702.
    95. Fukui T, Kawamoto T, Tanaka A. Doubly entrapped baker's yeast survives during the long-term stereoselective reduction of ethyl 3-oxobutanoate in an organic solvent. Appl Microbiol Biotechnol, 1998, 49(4): 377-381.
    96. Yajima A, Naka K, Yabuta G. Immobilized baker's yeast reduction in fluorous media. Tetrahedron Lett, 2004, 45(23): 4577-4579.
    97. Medson C, Smallridge A J, Trewhella M A. The stereoselective preparation ofβ-hydroxy esters using a yeast reduction in an organic solvent. Tetrahedron Asymmetry, 1997, 8(7): 1049-1054.
    98. Bertau M. How cell physiology affects enantioselectivity of the biotransformation of ethyl 4-chloro-acetoacetate with Saccharomyces cerevisiae. Biocatal Biotransform, 2002, 20(5): 363-367.
    99. Dahl A C, Madsen J ?. Baker's yeast: Production of D- and L-3-hydroxy esters. Tetrahedron Asymmetry, 1998, 9(24): 4395-4417.
    100. Gervais T R, Carta G, Gainer J L. Effect of aeration during cell growth on ketone reactions by immobilized yeast. Biotechnol Prog, 2000, 16(2): 208-212.
    101. Ema T, Sugiyama Y, Fukumoto M, et al. Highly enantioselective reduction of carbonyl compounds using a reductase purified from baker's yeast. J Org Chem, 1998, 63(15): 4996-5000.
    102. Yamamoto H, Matsuyama A, Kobayashi Y. Synthesis of ethyl (S)-4-chloro- 3-hydroxybutanoate using fabG-Homologues. Appl Microbial Biotechnol, 2003, 61(2): 133-139.
    103. Yamamoto H, Matsuyama A, Kobayash Y. Synthesis of ethyl (R)-4-chloro- 3-bydroxybutanoate with recombinant Escherichia coli Cells Expressing (S)-Specific secondary alcohol dehydrogenase. Biosci Biotechnol Bioeng, 2002, 66(2): 481-483.
    104. Katz M, Sarvary I, Frejd T, et al. An improved stereoselective reduction of a bicyclic diketone by Saccharomyces cerevisiae combining process optimization and strain engineering. Appl Microbiol Biotechnol, 2002, 59(6): 641-648.
    105. Ross-Macdonald P, Coelho P S R, Roemer T, et al. Large-scale analysis of the yeast genome bytransposon tagging and gene disruption. Nature, 1999, 402(6760): 413-418.
    106. Rodriguez S, Kayser M M, Stewart J D. Improving the stereoselectivity of baker's yeast reductions by genetic engineering. Org Lett, 1999, 1(8): 1153-1155.
    107. Kayser M M, Mihovilovic M D, Kearns J, et al. Baker's yeast-mediated reductions ofα-keto-β-Lactam. Two routes to the paclitaxel sidechain. J Org Chem, 1999, 64(18): 6603-6608.
    108. Zaks A, Klibanov A M. Enzyme catalysis in organic media at 100 oC. Science, 1984, 224(4654): 1249-1251.
    109. Lee M Y, Dordick J S. Enzyme activation for nonaqueous media. Curr Opin Biotech, 2002, 13(4): 376-384.
    110. Zaks A, Klibanov A M. Enzymatic catalysis in non-aqueous solvents. Journal of Biological Chemistry, 1988, 263(7): 3194-3200.
    111. Bracey E, Stenning R A, Brooker B E. Relating the microstructure of enzyme dispersions in organic solvents to their kinetic behavior. Enzyme Microb Technol, 1998, 22(3): 147-151.
    112. Ducret A, Giroux A, Trani M, et al. Enzymatic preparation of biosurfactants from sugar or sugar alcohols and fatty acids in organic media under reduced pressure. Biotechnol Bioeng, 1995, 48(3): 214-221.
    113. Knez Z, Habulin M. Compressed gases as alternative enzymatic-reaction solvents: a short review. J Supercrit Fluid, 2002, 23(1): 29-42.
    114. Matsuda T, Harada T, Nakamura K, et al. Asymmetric synthesis using hydrolytic enzymes in supercritical carbon dioxide. Tetrahedron Asymmetry. 2005, 16(5): 909-915.
    115. Matsuda T, Kanamaru R, Watanabe K, et al. Control of enantioselectivity of lipase-catalyzed esterification in supercritical carbon dioxide by tuning the pressure and temperature. Tetrahedron Asymmetry. 2003, 14(14): 2087-2091.
    116. Krishna S H. Developments and trends in enzyme catalysis in nonconventional media. Biotechnol Adv, 2002, 20(3-4): 239-267.
    117. Park S, Kazlauskas R J. Biocatalysis in ionic liquids-advantages beyond green technology. Curr Opin Biotechnol, 2003, 14(4): 432-437.
    118. Sheldon R A, van Rantwijk F, Lau R M. Biotransformations in ionic liquids: an overview. ACS Sym Ser, 2003, 856: 192-205.
    119. Rantwijk F V, Lau R M, Sheldon R A. Biocatalytic transformations in ionic liquids. Trends Biotechnol, 2003, 21(3): 131-138.
    120. Lau R M, van Rantwijk F, Seddon K R, et al. Lipase-catalyzed reactions in ionic liquids. Org Lett, 2000, 2(26): 4189 -4191.
    121. Kiran K R, Karanth N G, Divakar S. Hydrogen ions in microaqueous phase during lipase catalysed esterification in-non-aqueous media. Indian J Biochem Biophys, 2002, 39(2): 101-105.
    122. Liu P, Tian G L, Lee K S, et al. Full enzymatic synthesis of a precursor of bioactive pentapeptide OGP (10-14) in organic solvents. Tetrahedron Lett, 2002, 43(13): 2423-2425.
    123. Bauer M, Griengl H, Steiner W. Parameters influencing stability and activity of a S-hydroxynitrile layse from Hevea brasiliensis in two-phase systems. Enzyme Microb Tech, 1999, 24(8-9): 514-522.
    124. Guvenc A, Kapucu N, Mehmetoglu U. The production of isoamyl acetate using immobilized lipases in a solvent-free system. Process Biochem, 2002, 38(3): 379-386.
    125. Pujic M, Jampel E, Loupy A, et al. Enzymatic glycosidations in dry media on mineral supports. Tetrahedron, 1997, 53(51): 17247-17252.
    126. Dordick J S, Khmelnitsky Y L, Sergeeva M V. The evolution of biotransformation technolgies. Curr Opin Microbiol, 1998, 1(3): 311-318.
    127. Sawada K, Ueda M. Enzyme processing of textiles in reverse micellar solution. J Biotechnol, 2001, 89(2-3): 263-269.
    128. Xing G W, Liu D J, Ye Y H, et al. Enzymatic synthesis of oligopeptides in mixed reverse micelles.Tetrahedron Lett, 1999, 40(10): 1971-1974.
    129. Chen S X, Wei D Z, Hu Z H. Synthesis of galacto-oligosaccharides in AOT/isooctane reverse micelles byβ-galactosidase. J Mol Catal B Enzym, 2001, 16(2): 109-114.
    130. Mutua L N, Akoh C. Synthesis of alkyl glycoside fatty acid esters in non-aqueous media by Candida sp. Lipase. J Am Oil Chem Soc, 1993, 70(1): 43-46.
    131. Degn P, Zimmermann W. Optimization of carbohydrate fatty acid ester synthesis in organic media from Candida antarctica. Biotechnol Bioeng, 2001, 74(6): 483-491.
    132. Ferrer M, Cruces M A, Bernabe M, et al. Lipase-catalyzedregioselective acylation of sucrose in two-solvent mixtures. Biotechnol Bioeng, 1999, 65(1): 10-16.
    133. Kitagawa M, Fan H, Raku T et al. Selective enzymatic preparation of vinyl sugar esters using DMSO as a denaturing co-solvent. Biotechnol Lett, 1999, 21(4): 355-359.
    134. Lozano P, Diego T, Gmouh S, et al. Criteria to design green enzymatic processes in ionic liquid/supercritical carbon dioxide systems. Biotechnol Prog, 2004, 20(3): 661 -669.
    135. Jain N, Kumar A, Chauhan S, et al. Chemical and biochemical transformations in ionic liquids. Tetrahedron, 2005, 61(5): 1015-1060.
    136. Kaar J L, Jesionwski A M, Berberich J A, et al. Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc, 2003, 125(14): 4125-4131.
    137. Seddon K R. Ionic liquids for clean technology. J Chem Tech Biotechnol, 1997, 68(4): 351-356.
    138. Laane C, Boeren S, Vos K. Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioengl, 1987, 30(1): 81-87.
    139. Yang Z, Russell A J. Fundamentals of non-aqueous enzymology[C]. In: Koskinen A M P, Klibanov A M, eds, Enzymatic reactions in organic media. London: Blackie Academic, 1996. 43-69.
    140. Kazlauskas R, Park S, Viklund F, Hult K. Dramatically more efficient lipase-catalyzed acylations of polar substrates in ionic liquids[C]. In: Rogers R D, Seddon K R, eds. Ionic liquids as green solvents: progress and prospects. In ACS symposium Series. 2003.
    141. Yang Z, Pan W B. Ionic liquids: Green solvents for nonaqueous biocatalysis. Enzyme Microb Technol, 2005, 37(1): 19-28.
    142. Rantwijk F V, Lau R M, Sheldon R A. Biocatalytic transformations in ionic liquids. Trends Biotechnol, 2003, 21: 131-138.
    143. Park S, Kazlauskas R J. Biocatalysis in ionic liquids–advantages beyond green technology. Curr Opin Biotechnol, 2003, 14(4): 432-437.
    144. Heintz A, Klasen D, Lehmann J K. Excess molar volumes and viscosities of binary mixtures of methanol and the ionic liquid 4-methyl-n-butylpyridinium tetrafluoroborate at 25, 40, and 50°C. J Solution Chem, 2002, 31(6): 467-476.
    145. Lozano P, de Diego T, Guegan J P, et al. Stabilization of alpha-chymotrypsin by ionic liquids in transesterification reactions. Biotechnol Bioeng, 2001, 75(5): 563-569.
    146.李汝雄,王建基.绿色溶剂—离子液体的制备与应用[J].化工进展, 2002, 21(1): 43-48.
    147. Elaiwi A, Hitchcock P B, Seddon K R, et al. Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids. J Chem Soc, Dalton Trans, 1995, 21: 3467-3472.
    148. Hirao M, Sugimoto H, Ohno H. Preparation of novel room-temperature molten salts by neutralization of amines. J Electro Chem Soc, 2000, 147(11): 4168-4172.
    149. Suarez P A Z, Dullius J E L, Einloft S, et al. The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. J Polyhedron, 1996, 15(7): 1217-1219.
    150. Bonhote P, Dias A P, Papageorgiou N, et al. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem, 1996, 35(5): 1168-1178.
    151. Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun, 1992, 13(3): 965-967.
    152. Fuller J, Carlin R T, Osteryoung R A. The Room Temperature lonic liquid l-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties. J Electrochem Soc, 1997, 144(67): 3881-3885.
    153. Holbrey J D, Seddon K R. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc, Dalton Trans, 1999, 13: 2133-2139.
    154. Katayama Y, Dan S, Miura T, et al. Electrochemical behavior of silver in 1-ethyl- 3-methylimidazolium tetrafluoroborate molten salt. J Electrochem Soc, 2001, 148(2): 102-105.
    155. Fuller J, Carlin R T, Haworth H C. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. J Chem Soc, Chem Commun, 1994, 3: 299-300.
    156. Dzyuba S V, Bartsch R A. Efficient synthesis of 1-alkyl(aralkyl)- 3-methyl(ethyl)imidazolium halides: precursors for room-temperature ionic liquids. J Heterocy1. Chem, 2001, 38: 265-268.
    157. Huddleston J G, Visser A E, Reichert W M, et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem, 2001, 3: 156-164.
    158. Xu D Q, Liu B Y, Luo S P, et al. Synthesis of 2-Arylimidazo[1,2-a]pyrimidines in ionic liquids. Synthesis, 2003, 17: 2626-2628.
    159. Heintz A, Lehmann J K, Wertz C J. Thermodynamic properties of mixtures containing ionic liquids. 3. liquid-liquid equilibria of binary mixtures of 1-ethyl- 3-methylimidazolium bis(trifluoromethylsulfonyl)imide with propan-1-ol, butan-1-ol, and pentan-1-ol. J Chem Eng Data, 2003, 48(3): 472-474.
    160. Hasan M, Kozhevnikov I V, Siddiqui M R H, et a1. Gold compounds as ionic liquids. Synthesis, structures, and thermal properties of N,N'-dialkylimidazolium tetrachloroaurate salts. Inorg Chem, 1999, 38(25): 5637-5641.
    161. Lall S, Behaj V, Mancheno D, et al. Polycations-12. The synthesis of liquid ionic phosphates (LIPs) from mono- and polycationic ammonium halides. Synthesis, 2002, 11: 1530-1540.
    162. Visser A E, Swatloski R P, Reichert W M, et al. Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: Synthesis, characterization, and extraction studies. Environ Sci Technol, 2002, 36(11): 2523-2529.
    163. Bates E D, Mayton R D, Ntai L, et al. CO2 Capture by a task-specific ionic liquid. J Am Chem Soc, 2002, 124(6): 926-927.
    164. Huddleston J G, Willauer H D, Rogers R D et al. Room Temperature ionic liquids as novel media for‘clean’liquid.1iquid Extraction. Chem Commun, 1998, 16: 1765-1766.
    165. Ronald A C ,Lowell A K, Richard E L, John C N Charles L. H. Electric conductivity and viscosity of several N-alkylpyridinium halides and their mixtures with aluminum chloride. J Am Ehem Soc, 1979, 126(10): 1644-1650.
    166. Khadilkar B M, Rebeiro G L. Microwave-assisted synthesis of room-temperature ionic liquid precursor in closed vessel. Org Pro Res Dev, 2002, 6(6): 826-828.
    167. Abbott A P, Capper G, Davies D L, et al. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Commun, 2001, 19: 2010-2011.
    168. Sherif F G, Shyu L J, Lacroix P M, et al. Alkylation reaction using supported ionic liquid catalyst composition. Chem Abstr, 1999, 129: 318-548.
    169. Knifton J F. Syngas reactions. XI: The ruthenium melt catalyzed oxonation of internal olefins. J Mol Catal, 1987, 43(1): 65-78.
    170. Wasserscheid P, B?smann A, Bolm C. Synthesis and properties of ionic liquids derived from the 'chiral pool'. Chem Commun, 2002, 3: 200-201.
    171. Levillain J, Dubant G, Abrunhosa I, et al. Synthesis and properties of thiazoline based ionic liquids derived from the chiral pool. Chem Commun, 2003, 23: 2914-2915.
    172.石顺存,易平贵,曹晨忠等.新型离子液体的合成及其阳离子基团缓蚀性能[J].化工学报, 2005, 55(6): 1112-1119.
    173.张青山,刘爱霞,郭炳南等.新型N-甲基-N-烯丙基吗啡啉季铵盐类离子液体的合成[J].高等学校化学学报, 2005, 26(2): 340-342.
    174.段海峰,张所波,林英杰等.新型室温离子液体六烷基胍盐的制备及性质[J].高等学校化学学报, 2003, 24(11): 2024-2026.
    175. Mori M, Gomez Garcia R, Belleville M P, et al. A new way to conduct enzymatic synthesis in an active membrane using ionic liquids as catalyst support. Catal Today, 2005, (2-4): 313-317.
    176. Turner M B, Spear S K, Huddleston J G, et al. Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem, 2003, 5: 443-447.
    177. Turner M B, Spear S K, Holbrey J D, et al. Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules, 2004, 5(4): 1379-1384.
    178. Eckstein M, Sesing M, Kragl U, et al. At low water activityα-chymotrypsin is more active in an ionic liquid than in non-ionic organic solvents. Biotechnol Lett, 2002, 24(11): 867-872.
    179. Erbeldinger M, Mesian A J, Russell A J. Enzymatic catalysis of formation of Z-aspartame in ionic liquid ? an alternative to enzymatic catalysis in organic solvents. Biotechnol Prog, 2000, 16(6): 1129-1131.
    180. Sheldon R A, Lau R M, Sorgedrager M J, et al. Biocatalysis in ionic liquids. Green Chem, 2002, 4: 147-151.
    181. Magnuson D K, Bodley J W, Evans D F. The activity and stability of alkaline phosphatase in solutions of water and the fused salt ethylammonium nitrate. J Solution Chem, 1984, 13(8): 583-587.
    182. Sanfilippo C, Antona N D, Nicolosi G. Chloroperoxidase from Caldariomyces fumago is active in the presence of an ionic liquid as co-solvent. Biotechnol Lett, 2004, 26(23): 1815-1819.
    183. Sch?fer S H, Kaftzik N, Kragl U, et al. Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity. Chem Commun, 2001, 5: 425-426.
    184. Eckstein M, Wasserscheid P, Kragl U. Enhanced enantioselectivity of lipase from Pseudomonas sp. at high temperatures and fixed water activity in the ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnol Lett, 2002, 24(10): 763-767.
    185. Kielbasiński P, Albrycht M, Luczak J, et al. Enzymatic reactions in ionic liquids: lipase-catalysed kinetic resolution of racemic, P-chiral hydroxymethanephosphinates and hydroxymethylphosphine oxides. Tetrahedron Asymmetry, 2002, 13(7): 735-738.
    186. Ulbert O, Fráter T, Bélafi-BakóK, et al.. Enhanced enantioselectivity of Candida rugosa lipase in ionic liquids as compared to organic solvents. J Mol Catal B Enzym, 2004, 31(1-3): 39-45.
    187. Kim M J, Choi M Y, Lee J K, et al. Enzymatic selective acylation of glycosides in ionic liquids: significantly enhanced reactivity and regioselectivity. J Mol Catal B Enzym, 2003, 26(3-6): 115-118.
    188. Lau R M, Rantwijk F V, Sheddon K R, et al. Lipase-catalyzed reactions in ionic liquids. Org Lett, 2001, 2(26): 4189-4191.
    189. Park S, Kazlauskas R J. Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J Org Chem, 2001, 66(25): 8395-8401.
    190. Itoh T, Akasaki E, Kudo K, et al. Lipase-catalyzed enantioselective acylation in the ionic liquid solvent system: reaction of enzyme anchored to the solvent. Chem Lett, 2001, 30(3): 262-263.
    191. Xin J Y, Zhao Y J, Shi Y G, et al. Lipase-catalyzed naproxen methyl ester hydrolysis in water-saturated ionic liquid: significantly enhanced enantioselectivity and stability. World J Microbiol Biotechnol, 2005, 21(2): 193-199.
    192. Zhao H, Malhotra S V. Enzymatic resolution of amino acid esters using ionic liquid N-ethyl pyridinium trifluoroacetate. Biotechnol Lett, 2002, 24(15): 1257-1260.
    193. Kaftzik N, Wasserscheid P, Kragl U. Use of ionic liquids to increase the yield and enzyme stability intheβ-galactosidase catalysed synthesis of N-acetyllactosamine. Organ Proc Res Dev, 2002, 6(4): 553-557.
    194. Hinckley G., Mozhaev V V, Budde C, et al. Oxidative enzymes possess catalytic activity in systems with ionic liquids. Biotechnol Lett., 2002, 24(24): 2083-2087.
    195. Okrasa K, Guibé-Jampel E, Therisod M. Ionic liquids as a new reaction medium for oxidase–peroxidase-catalyzed sulfoxidation. Tetrahedron Asymmetry, 2003, 14(17): 2487-2490.
    196. Howarth J, James P, Dai J F. Immobilized baker's yeast reduction of ketones in an ionic liquid, [bmim]PF6 and water mix. Tetrahedron Lett, 2001, 42(42): 7517-7519.
    197.吴红平.面包酵母不对称还原EOPB:(R)-HPBE合成中溶剂相的选择及离子液体的初步研究[D]:[本科学位论文],无锡:江南大学化学与材料工程学院, 2004.
    198. Blanchard L A, Hancu D, Beckman E J, et al. Green processing using ionic liquids and CO2. Nature, 1999, 399(6731): 28-29.
    199. Blanchard L A, Gu Z, brennecke J F. High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B, 2001, 105(12): 2437-2444.
    200. Reetz M T, Wiesenhoefer W, FranciòG, et al. Continuous flow enzymatic kinetic resolution and enantiomer separation using ionic liquid/supercritical carbon dioxide. Adv Synth Catal, 2003, 345: 1221-1228.
    201. Lozano P, de Diego T, CarriéD, et al. Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chem Commun, 2002, 1: 692-693.
    202. Reetz M T, Wiesenh?fer W, FranciòG, et al. Biocatalysis in ionic liquids: batchwise and continuous flow processes using supercritical carbon dioxide as the mobile phase. Chem Commun, 2002, 9: 992-993.
    1. Fronza G, Fuganti C, Mendozza M, et al. Stereochemistry of the double saturation in the formation in baker's yeast of 4-(4-hydroxyphenyl)-2-butanone (Raspberry ketone). Tetrahedron, 1996, 52(11): 4041-4052.
    2.杜维力,王敏,陈蓉等.高活性面包干酵母复水活化温度对酵母活力损失的影响[J].酿酒科技, 2007, 2(152): 38-40.
    3. Kazandlian R Z, Dordick J S, Klibanov A M. Enzymatic analyses in organic solvents. Biotechnol Bioeng, 1986, 28: 417-421.
    4. León R, Fernandes P, Pinheiro H M.. Whole-cell biocatalysis in organic media Enzyme Microb Technol, 1998, 23(7-8): 483-500.
    5. Oda S, Inada Y, Kobayashi A, et al. Production of ethyl (R)-2-hydroxy-4-phenylbutanoate via reduction of ethyl 2-oxo-4-phenylbutanoate in an interface bioreactor. Biosci Biotechnol Biochem, 1998, 62(9): 1762-1767.
    6. Chadha A, Manohar M, Soundararajan T, et al. Asymmetric reduction of 2-oxo- 4-phenylbutanoic acid ethyl ester by Daucus carota cell cultures. Tetrahedron Asymmetry, 1996, 7(6): 1571-1572.
    7. Lacerda P S B, Ribeiro J B, Leite S G F, et al. Microbial enantioselective reduction of ethyl-2-oxo-4-phenyl-butanoate. Biochem Eng J, 2006, 28(3): 299-302.
    8. Hummel W, Schütte1 H, Schmidt E, et al. Isolation of l-phenylalanine dehydrogenase from Rhodococcus sp. M4 and its application for the production of l-phenylalanine. Appl Microbiol Biotechnol, 1987, 26(5):409-416.
    9. Dao D H, Kawai Y, Hida K, et al. Stereochemical control in microbial reduction. 30. Reduction of alkyl 2-oxo-4-phenylbutyrate as precursors of angiotensin converting enzyme (ACE) inhibitors. Bull Chem Soc Jpn, 1998, 71(2): 425-432.
    10. Kaluzna I, Andrew A A, Bonilla M, et al. Enantioselective reductions of ethyl 2-oxo-4-phenylbutyrate by Saccharomyces cerevisiae dehydrogenases. J Mol Catal B Enzym, 2002, 17(2) 101-105.
    11. Nakamura K, Kondo S, Kawai Y, et al. Amino acid sequence and characterization of aldo-keto reductase from bakers' yeast. Biosci Biotechnol Biochem, 1997, 61(2): 375-377.
    12. Kobayashi Y, Kawada K, Ando A, et al. Photoisomerization of bis(trifluoromethyl) thiophenes. Tetrahedron Lett, 1984. 25(18): 1917-1920.
    13. Attwood M R, Fraancis R J, Hassel C H, et al. Guanosine triphosphate catabolism in purine nucleoside phosphorylase deficient human B lymphoblastoid cells. FEBS Lett, 1984, 165: 201-206.
    14. Blaser H U, Jalett H P, Monti D M, et al. Enantioselective hydrogenation ofα-keto esters: temperature-programmed reduction study of liquid-phase Pt/Al2O3 hydrogenation catalysts. Appl Catal, 1989, 52(1-2): 19-32.
    15. Blaser H U, Enantioselective synthesis using chiral heterogeneous catalysts. Tetrahedron Asymmetry, 1991, 2: 843-866.
    16. Minamikaea H, Hayakawa S, Yamada T, et al. Asymmetric hydrocyanation of aldehydes using chiral titanium reagents. Bull Chem Soc Jpn, 1988, 61: 4374.
    17. Hirose Y, Kariya K, Sasaki I, et al. Drastic solvent effect on lipase-catalyzed enantioselective hydrolysis of prochiral 1, 4-dihydropyridines. Tetrahedron Lett, 1992, 33(47):7157-7160.
    18. Wu S H, Guo Z W, Sih C J. Enhancing the enantioselectivity of Candida Lipase catalyzed ester hydrolysis via noncovalent enzyme modification. J Am Chem Soc, 1990, 112(5): 1990-1995.
    19.石玉刚,方云,蒋南等.面包酵母催化水相合成手性2-羟基-4-苯基丁酸乙酯的研究[J].化学研究与应用, 2006, 18(4): 426-430.
    20.杨晓达,张天蓝,王夔.细胞无机化学中值得研究的问题[J].化学进展, 2004, 16(5): 836-841.
    21.朱显峰,丁涛.常见金属离子对漆酶酶活的影响[J].化学研究, 2003, 9:50-54.
    22. Hashimoto Y, Endo T, Tamura K, et al. Process for producing optically active alpha-hydroxy carboxylic acid having phenyl group [P]. EP, 610048, 1994.
    23. Zaks A, Klibanov A M. Subtrate specificity of enz ymes in organic solvents vs water is reversed. J Am Chem Soc, 1986. 108(10): 2767-2768.
    24. Tsai A W, Dordick J S. Extraordinary enantiospecificity of lipase catalysis in organic media induced by purification and catalyst engineering. Biotechnol Bioeng, 2000, 52(2): 296-300.
    25.刘峥,夏之宁.光谱法在分子之间相互作用研究中的应用[J].激光杂志, 2001, 22(6): 9-10.
    26.任伟民,王兴涌,李峰等.面包酵母非水相催化乙酰乙酸乙酯的不对称还原反应[J].苏州科技学院学报(自然科学版), 2006. 23(2): 22-23.
    27.曹书霞,赵玉芬.分子吸收光谱在生物大分子研究中的应用[J].光谱学与光谱析, 2004. 24(10):1197-1201.
    28.李锐,任海平,孙艳亭等.小分子与生物大分子间非共价相互作用分析方法研究进展[J].分析化学, 2006. 6(12): 1-13.
    29.杨缜,计亮年.低水有机介质中的酶催化[J].生物化学与生物物理进展, 1994, 21(2): 98-104.
    30. Dahl A C, Fjeldberg M, Medsen J ?. Baker's yeast: Improving the D-stereoselectivity in reduction of 3-oxo esters. Tetrahedron Asymmetry, 1999, 10(3): 551-559.
    31.杨忠华.水相中酵母细胞催化前手性羰基不对称还原合成手性醇的研究[D]:[博士学位论文].杭州:浙江大学, 2005.
    32. Gorman L S, Dordick J S. Organic solvents strip water off enzymes. Biotechnol Bioeng, 1992, 39(4): 392-397.
    33. Takahashi K, Tamaura Y, Kodera Y, et al. Magnetic lipase active in organic solvents. Biochem Biophys Res Commun, 1987, 142(2): 291-296.
    34. Ushio K, Hada J, Tanaka Y. Allyl Bromide, a powerful inhibitor against R-enzyme activities in baker's yeast reduction of ethyl 3-oxoalkanoates. Enzyme Microb Technol, 1993, 15(3): 222-228.
    35. Dao D H, Okamura M, Akasaka T, et al. Stereochemical control in microbial reduction. Part 31: Reduction of alkyl 2-oxo-4-arylbutyrates by baker's yeast under selected reaction
    1. Kayser M M, Mihovilovic M D, Kearns J, et al. Baker's yeast-mediated reductions ofα-keto-β-Lactam. Two routes to the paclitaxel sidechain. J Org Chem, 1999, 64(18): 6603–6608.
    2. Kaluzna I, Andrew A A, Bonilla M, et al. Enantioselective reductions of ethyl 2-oxo-4-phenylbutyrate by Saccharomyces cerevisiae dehydrogenases. J Mol Catal B Enzym, 2002, 17(2) 101–105.
    3. Nakamura K, Kondo S, Kawai Y, et al. Amino acid sequence and characterization of aldo-keto reductase from bakers' yeast. Biosci Biotechnol Biochem, 1997, 61(2): 375–377.
    4. Iwamoto M, Kawada H, Tanaka T, et al. Preparation of new chiral building blocks via asymmetric catalysis. Tetrahedron Lett, 2003, 44(39): 7239–7243.
    5.杨忠华.水相中酵母细胞催化前手性羰基不对称还原合成手性醇的研究[D]:[博士学位论文].杭州:浙江大学, 2005.
    6. Dahl A C, Fjeldberg M, Medsen J ?. Baker's yeast: Improving the D-stereoselectivity in reduction of 3-oxo esters. Tetrahedron Asymmetry, 1999, 10(3): 551–559.
    7. Takahashi K, Tamaura Y, Kodera Y, et al. Magnetic lipase active in organic solvents. Biochem Biophys Res Commun, 1987, 142(2): 291–296.
    8. Gorman L S, Dordick J S. Organic solvents strip water off enzymes. Biotechnol Bioeng, 1992, 39(4): 392–397.
    9. Cui JN, Ema T, Sakai T, et al. Control of enantioselectivity in the baker’s yeast asymmetric reduction ofγ-chloroβ-diketones toγ-chloro (S)-β-hydroxy ketones. Tetrahedron Asymmetry, 1998, 9(15):2681–2692.
    10. Nakamura K, Inoue K, Ushio K, et al. Effect of allyl alcohol on reduction ofβ-keto esters by bakers’yeast. Chem Lett, 1987, 16:679–682.
    11. Yang ZH, Yao SJ. An effect method for controlling the stereoselectivity in asymmetric reduction ofβ-oxo ester with yeast cells. Chinese J Cata, 2004, 25:805–808.
    12. Nakamura K, Kawai Y, Oka S, et al. Stereochemical control in microbial reduction. 8. Stereochemical control in microbial reduction ofβ-keto esters. Bull Chem Soc Jpn, 1989, 62(3):875–879.
    13. Nakamura K, Kawai Y, Nakajima N, et al. Stereochemical control of microbial reduction. 17. A method for controlling the enantioselectivity of reduction with baker’s yeast. J Org Chem, 1991, 56:4778–4783.
    14. Nakamura K, Kawai Y, et al. A novel method to synthesize (L)-beta-hydroxyl esters by the reduction with bakers' yeast. Tetrahedron Lett, 1990, 31(2):267–270.
    15. Forni A, Moretti I, Prati F and Torre G, Stereochemical control in yeast reduction of fluorinatedβ-diketones. Tetrahedron, 1994, 50(41):11995–12000.
    16. Ushio K, Hada J, Tanaka Y, et al. Allyl bromide, a powerful inhibitor against R-enzyme activities in bakers' yeast reduction of ethyl 3-oxoalkanoates. Enzyme Microb Technol, 1993, 15(3):222–228.
    17. Nakamura K, Kawai Y, Oka S, et al. A new method for stereochemical control of microbial reduction. Reduction ofβ-keto esters with baker’s yeast immobilized by magnesium alginate. Tetrahedron Lett, 1989, 30:2245–2246.
    18. Dao D H, Okamura M, Akasaka T, et al. Stereochemical control in microbial reduction. Part 31: Reduction of alkyl 2-oxo-4-arylbutyrates by baker's yeast under selected reaction conditions. Tetrahedron Asymmetry, 1998, 9(15): 2725–2737.
    19. Dao D H, Kawai Y, Hida K, et al. Stereochemical control in microbial reduction. 30. Reduction of alkyl 2-oxo-4-phenylbutyrate as precursors of angiotensin converting enzyme (ACE) inhibitors. Bull Chem Soc Jpn, 1998, 71(2): 425–432.
    20. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding. Anal Biothem, 1976, 72(1-2):248–254.
    21. Vitinius U, Schaffner K, Demuth M. New strategies improve the efficiency of the baker's yease reduction of ketoesters: near UV irradiation and a two-substrate application. J Photochem. Photobiol A Chem, 2005, 169(2): 197–210.
    22. Barbieri C, Bossi L, D'Arrigo P, et al. Bioreduction of aromatic ketones: preparation of chiral benzyl alcohols in both enantiomeric forms. J Mol Catal B Enzym, 2001, 11(4-6): 415–421.
    23. Pocker Y. Bioinorganic and bioorganic studies of liver alcohol dehydrogenase. Chem Biol Interact, 2001, 130-132: 383–393.
    24. Turner J J, Healy J P, Dobson R C J, et al. Two new irreversible inhibitors of dihydrodipicolinate synthase: diethyl (E,E)-4-oxo-2,5-heptadienedioate and diethyl (E)-4-oxo-2-heptenedioate. Bioorg Med Chem Lett, 2005. 15(4): 995–998.
    1. Chadha A, Manohar M, Soundararajan T, et al. Asymmetric reduction of 2-oxo-4-phenylbutanoic acid ethyl ester by Daucus carota cell cultures. Tetrahedron Asymmetry, 1996, 7(6): 1571-1572.
    2. Kaluzna I, Andrew A A, Bonilla M, et al. Enantioselective reductions of ethyl 2-oxo-4-phenylbutyrate by Saccharomyces cerevisiae dehydrogenases. J Mol Catal B Enzym, 2002, 17(2) 101-105.
    3. Dao D H, Kawai Y, Hida K, et al. Stereochemical control in microbial reduction. 30. Reduction of alkyl 2-oxo-4-phenylbutyrate as precursors of angiotensin converting enzyme (ACE) inhibitors. Bull Chem Soc Jpn, 1998, 71(2): 425-432.
    4.石玉刚,方云,蒋南等.面包酵母催化溶剂相不对称还原合成(R)-2-羟基-4-苯基丁酸乙酯[J].食品与生物技术学报, 2006, 25(2): 66-73.
    5. Fadnavis N W, Radhika K R. Enantio- and regiospecific reduction of ethyl 4-phenyl- 2,4-dioxobutyrate with baker’s yeast: preparation of (R)-HPB ester. Tetrahedron Asymmetry, 2004, 15(21): 3443-3447.
    6. Nakamura K, Kondo S, Kawai Y, et al. Stereochemical Control in Microbial Reduction. XXI. Effect of Organic Solvent on Reduction of alpha-Keto Esters Mediated by Bakers' Yeast. Bull Chem Soc Jpn, 1993; 66(9): 2738-2743.
    7. Nakamura K, Kondo S, Nakajima N, et al. Mechanistic study for stereochemical control of microbial reduction ofα-keto esters in an organic solvent. Tetrahedron Lett, 1995, 51(3): 687-694.
    8. Ross A C, Bell G, Halling P J. Organic solvent functional group effect on enzyme inactivation by the interfacial mechanism. J Mol Catal B Enzym, 2000, 8(4): 183-192.
    9.石玉刚,方云,蒋南等.面包酵母催化水相合成手性2-羟基-4-苯基丁酸乙酯的研究[J].化学研究与应用, 2006, 18(4): 426-430.
    10. Li Y N, Shi X A, Zong M H, et al. Asymmetric reduction of 2-octanone in water/organic solvent biphasic system with Baker’s yeast FD-12. Enzyme Microb Technol, 2007, 40(5): 1305-1311.
    11. Yang F X, Russell A J. Optimization of bakers' yeast alcohol dehydrogenase activity in an organic solvent. Biotechnol Prog, 1993, 9(3): 234-241.
    12. Hermann H J, Weber F J, Sikkema J, et al. Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol, 1994, 12(10): 409-415.
    13. Lou W Y, Zong M H, Fan X D, et al. Asymmetric microbial reduction of organosilyl ketone with immobilized Saccharomyces cerevisiae cells in water/organic solvent biphasic system. Prog Biochem Biophys, 2002, 29(2): 297-301.
    14.朱文洲,许建和,俞俊棠.面包酵母催化乙酰乙酸乙酯的不对称还原反应[J].华东理工大学学报, 2000, 26(2): 154-156.
    15. Dahl A C, Fjeldberg M, Medsen J ?. Baker's yeast: Improving the D-stereoselectivity in reduction of 3-oxo esters. Tetrahedron Asymmetry, 1999, 10(3): 551-559.
    16. Cabral J M S, Aeres2Barros M R, Pinheiro H, et al. Biotransformation in organic media by enzymes and whole cells. Biotechnology, 1999, 59(3): 133-143.
    17. León R, Fernandes P, Pinheiro H M.. Whole-cell biocatalysis in organic media. Enzyme Microb Technol, 1998, 23(7-8): 483-500.
    18.郭勇.酶学[M].广州:华南理工大学出版社, 2000.
    19.廖鲜艳.金属离子对面包酵母合成ATP的影响机制初探[J].过程工程学报, 2005,5(4):420-424.
    20.许松伟,姜忠义.醇脱氢酶结构和作用机理研究进展[J].有机化学, 2005, 25: 629-633.
    1. Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun, 1992, 13(3): 965-967.
    2. Kaar J L, Jesionwski A M, Berberich J A, et al. Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc, 2003, 125(14): 4125-4131.
    3. Magnuson D K, Bodley J W, Evans D F. The activity and stability of alkaline phosphatase in solutions of water and the fused salt ethylammonium nitrate. J Solution Chem, 1984, 13(8): 583-587.
    4. Eckstein M, Sesing M, Kragl U, et al. At low water activityα-chymotrypsin is more active in an ionic liquid than in non-ionic organic solvents. Biotechnol Lett, 2002, 24(11): 867-872.
    5. Maruyama T, Nagasawa S, Goto M. Poly(ethylene glycol)-lipase complex that is catalytically active for alcoholysis reactions in ionic liquids. Biotechnol Lett, 2002, 24(16): 1341-1345.
    6. Eckstein M, Wasserscheid P, Kragl U. Enhanced enantioselectivity of lipase from Pseudomonas sp. at high temperatures and fixed water activity in the ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnol Lett, 2002, 24(10): 763-767.
    7. Ulbert O, Fráter T, Bélafi-BakóK, et al.. Enhanced enantioselectivity of Candida rugosa lipase in ionic liquids as compared to organic solvents. J Mol Catal B Enzym, 2004, 31(1-3): 39-45.
    8. Kim M J, Choi M Y, Lee J K, et al. Enzymatic selective acylation of glycosides in ionic liquids: significantly enhanced reactivity and regioselectivity. J Mol Catal B Enzym, 2003, 26(3-6): 115-118.
    9. Kielbasinski P, Albrycht M, Luczak J, et al. Enzymatic reactions in ionic liquids: lipase-catalysed kinetic resolution of racemic, P-chiral hydroxymethanephosphinates and hydroxymethylphosphine oxides. Tetrahedron Asymmetry, 2002, 13(7): 735-738.
    10. Magnusson D K, Bodley J W, DF Evans D F. The activity and stability of alkaline phosphatase in solutions of water and the fused salt ethylammonium nitrate. J Sol Chem, 1984, 13(2): 583-587.
    11. Fuller J, Carlin R T, De Long H C, et al. Structure of 1-ethyl-3-methylimidazoluim hexafluosphate: model for room temperature molten salts. J Am Chem Soc, 1996, 35: 1168-1178.
    12. Cull S G, Holbrey J D, Vargas-Mora V, et al. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol Bioeng, 2000, 69(2): 227-229.
    13. Sch?fer S H, Kaftzik N, Kragl U, et al. Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity. Chem Commun, 2001, 5: 425-426.
    14. Park S, Kazlauskas R J. Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J Org Chem, 2001, 66(25): 8395-8401.
    15. Howarth J, James P, Dai J. Immobilized baker's yeast reduction of ketones in an ionic liquid, [Bmim]PF6 and water mix. Tetrahedron Lett, 2001, 42(42): 7517-7519.
    16. Holger P, Ross J, Dirk W B. Water immiscible ionic liquids as solvents for whole cell biocatalysis. J Biotechnol, 2006, 124(1): 182-190.
    17.李汝雄,王建基.绿色溶剂—离子液体的制备与应用[J].化工进展, 2002, 21(1): 43-48.
    18. Huddleston J G, Willauer H D, Rogers R D et al. Room Temperature ionic liquids as novel media for‘clean’liquid.1iquid Extraction. Chem Commun, 1998, 16: 1765-1766.
    19. Brennecke J F, Chateauneuf J E. Homogeneous organic reactions as mechanistic probes in supercritical fluids. Chem Rev, 1999, 99(2): 433-452.
    20. Armstrong D W, He L F, Liu Y S. Examination of ionic liquids and their interaction with molecules, when used as stationary phase in gas chromatography. Anal Chem, 1999, 71(17): 3873-3876.
    21.卢泽湘,袁霞等.咪唑类离子液体的合成和光谱表征[J].化学世界, 2005, 46(3):148-150.
    22. Wasserscheid P, Gordon C M, Hilgers C, et al. Ionic liquids: polar, but weakly coordinating solvents for the first biphasic oligomerisation of ethene to higher a-olefins with cationic Ni complexes. ChemCommun, 2001, 13:1186-1187.
    23. Ross A C, Bell G, Halling P J. Organic solvent functional group effect on enzyme inactivation by the interfacial mechanism. J Mol Catal B Enzym, 2000, 8(4): 183-192.
    24. Li Y N, Shi X A, Zong M H, et al. Asymmetric reduction of 2-octanone in water/organic solvent biphasic system with Baker’s yeast FD-12. Enzyme Microb Technol, 2007, 40(5): 1305-1311.
    25. Nakamura K, Kinoshita M, Ohno A. Structure of solvent affects enantioselectivity of lipase-catalyzed transesterification. Tetrahedron, 1995, 51(32): 8799-8808.
    26. Yang F X, Russell A J. Optimization of bakers' yeast alcohol dehydrogenase activity in an organic solvent. Biotechnol Prog, 1993, 9(3): 234-241.
    27. Rantwijk F V, Lau R M, Sheldon R A. Biocatalytic transformations in ionic liquids. Trends Biotechnol, 2003, 21(3): 131-138.
    28. Toral A R, Rantwijk F V, Sheldon R A, et al. Cross-linked Candida antarctica lipase B is active in denaturing ionic liquids. Enzyme Microb Technol, 2007, 40(5): 1095-1099.
    29. Lou W Y, Zong M H, Wu H. Enhanced activity, enantioselectivity and stability of papain in asymmetric hydrolysis of D, L-p-hydroxyphenylglycine methyl ester with ionic liquid. Biocatal Biotransform, 2004, 22(3): 171-176.
    30. Dahl A C, Fjeldberg M, Medsen J ?. Baker's yeast: Improving the D-stereoselectivity in reduction of 3-oxo esters. Tetrahedron Asymmetry, 1999, 10(3): 551-559.
    31. Lozano P, de Diego T, Guegan J P, et al. Stabilization of alpha-chymotrypsin by ionic liquids in transesterification reactions. Biotechnol Bioeng, 2001, 75(5): 563-569.
    32. Hermann H J, Weber F J, Sikkema J, et al. Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol, 1994, 12(10): 409-415.
    1. Howarth J, James P, Dai J. Immobilized baker's yeast reduction of ketones in an ionic liquid, [Bmim]PF6 and water mix. Tetrahedron Lett, 2001, 42(42): 7517-7519.
    2.陈殿军.新型聚醚季铵盐离子液体的合成与性能研究[D]: [硕士学位论文].大连:大连理工大学, 2006.
    3. Abbott A P, Davies D L. Preparation of novel moisture-stable, Lewis-acidic ionic liquids containing quaternary alumunium salt with functional side chains. Chem Commun, 2001, 19: 2010.
    4. Seddon K R, Stark A, Torres M. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem, 2000, 72 (12): 2275-2287.
    5. Branco L C, Rosa J N, Ramos J J M, et al. Preparation and characterization of new room temperature ionic liquids. Chem Eur J, 2002, 8(16):3671-3677.
    6. Cammarata L, Kazarian S G, Salter P A, et al. Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys, 2001, 3(23):5192-5200.
    7. Swatloski R P, Visser A E, Reichert W M, et al. Solvation of 1-butyl-3-methylimidazolium hexafluorophosphate in aqueous ethanol–a green solution for dissolving‘hydrophobic’ionic liquids. Chem Commun, 2001, (20): 2070-2071.
    8. Hashimoto Y, Endo T, Tamura K, et al. Process for producing optically active alpha-hydroxy carboxylic acid having phenyl group [P]. EP, 610049, 1994.
    9. Wang T T, Su G M. Solvent effect and structural effect of tertiary. Amines on the reactivity of the quaternization of these amines with butyl iodide”, J CIChE, 2002, 33(2): 1-10.
    10. Bethmont V, Fache F, Lemaire M. An alternative catalytic method to the Williamson's synthesis of ethers. Tetrahedron Lett, 1995, 36(24): 4235-4236.
    11. Kaar J L, Jesionwski A M, Berberich J A, et al. Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc, 2003, 125(14): 4125-4131.
    12.蒋景阳,魏理,熊燕,王艳华,刘春.温控离子液体两相体系及其在络合催化加氢中的应用[P].中国专利. 1847222A. 2006-10-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700