靶向寡肽转运蛋白(PEPT1)的新型结构载体前药研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口服给药方便、经济,病患的依从性好,一直是最理想的给药途径,但口服生物利用度不高往往是造成许多药物无法口服给药的重要原因。在提高口服生物利用度的众多策略中,靶向转运体,尤其是靶向寡肽转运蛋白(PEPT1)的载体前药研究,一直是国内外近十年来的研究热点。
     作为膜蛋白的PEPT1,3D晶体结构至今未破解,基于靶标PEPT1结构的理性化设计难以实现,因此,目前研究思路一般集中在母体化合物的羟基位引入氨基酸修饰,形成氨基酸酯而做的PEPT1底物改造,同一母体化合物的二肽修饰效果优于单个氨基酸修饰。一般认为,肽键、羧基末端、氨基末端等是修饰后前药化合物被PEPT1识别和转运的必要结构特征。而在母体化合物的非羟基位修饰,却罕见文献报道。
     然而在后续研究中证实,除氨基末端以外,肽键和羧基末端并非PEPT1识别的必要结构,因此,PEPT1的底物模型特征还难有定论。
     我们通过对文献17个头孢菌素类化合物在Caco-2细胞单层膜的透过系数的数据分析,认为末端氨基也不是PEPT1底物识别和转运所必不可少的特征结构。因此,基于PEPT1底物的可能设计趋向以及我们对底物特征结构的分析和推测,在本论文研究中,我们尝试在母体化合物齐多夫定的非羟基位引入二肽修饰,同时舍弃氨基末端,设计一个具有新型结构特征的小型化合物库,并通过PEPT1亲和性筛选研究和体内外转运和吸收研究,来证实PEPT1对该结构特征的化合物的识别和转运。
     本论文结合点击化学(Click Chemistry)与固相合成技术,建立简便、高效的合成方法,完成了包含61个化合物库的合成,并对全库化合物进行了收率、HPLC、MS以及1H NMR的表征、30%化合物的高分辨质谱表征,以及15%化合物的全谱表征,建立了一个具有新型结构的二肽修饰化合物库。并且,通过寡肽转运蛋白PEPT1已知底物头孢氨苄的竞争性抑制实验,完成了化合物库的PEPT1亲和性研究,部分二肽修饰化合物对头孢氨苄的细胞摄取的抑制率达到80以上;进一步地,通过代表性化合物在PEPT1高表达的Hela细胞模型上的体外细胞摄取实验,以及在体大鼠肠灌流实验研究,证实PEPT1参与并介导了该类化合物的细胞摄取和小肠转运过程。
     本论文研究的主要结果:发现了多个对PEPT1具有很高亲和性的二肽序列,并未见文献报道;首次证实具有该新型结构的化合物能够被PEPT1识别和转运;通过本论文筛选获得的高亲和性二肽序列修饰,能够显著提高其母体化合物的小肠吸收。因此,本论文的研究结果对扩大靶向PEPT1载体前药的母体化合物的选择范围、二肽修饰的位点和键合方式具有重要意义,从而进一步拓展PEPT1在靶向载体前药策略中的应用。
Oral administration is best accepted for its safty, convenience andless cost as well. But poorly oral bioavaibility is a critical obstacle in oralstrategies. Great efforts were involved in improving oral bioavaibility,among which, target carrier prodrug, especially targeting to PEPT1, was ahotspot in recent years.
     As a membrane protein, PEPT1is very hard to be purified,crystallized and homology modeling also. Since that, investigation onsubstrates structure based on in vitro or in vivo models was still the mostimportant part in carrier prodrug strategy targeted to PEPT1. Researchworks were mainly focusing on designing amino acid ester prodrugs ofparent compound via hydroxyl group, and dipeptide mono ester prodrugswere reported to have higher affinity for PEPT1than its amino acid monoester prodrug. But non hydroxyl group modification was hardly studied. Additionally, including peptide bond, α amino group and carboxyl groupwere considered as necessary structures for PEPT1recognition andtransport. But in the latter studies, except for α amino group, peptidebond and carboxyl group were proved to be not necessary. Therefore,substrate specificity of PEPT1is not fully understood.
     On analyzing the Peffof17cephalosporins on Caco-2monolayer, wefound that α amino group could be unnecessary for PEPT1recognitionand transport yet. According to the possible new trends in prodrug designtargeted to PEPT1and the hypothesis of α amino group to be unessential,in this study, a dipeptide modifided library was designed and synthesizedbased on click chemistry and solid phase peptide synthesis. Modificationon non hydroxyl group and non α amino group were two key structuralfeatures of the library and which was well characterized. Isolated purity,MS and~1H NMR were employed into the characterization of the wholelibrary, and30%compounds were confirmed with HR MS, additionally,15%compounds were fully characterized.
     Competitive inhibition assay was designed to evaluate the affinity toPEPT1of the library operated on transfected Hela cell model. SomeAZT-dipeptide conjugates can compete off over80%cell uptake ofcephalexin. In the further, cell uptake in vitro was conducted on Hela cellmodel and single-pass intestinal perfusion in vivo was operated on ratsrespectively.
     In this study, we found some dipeptide sequences with very highaffinity to PEPT1which were not reported before and could be used inprodrug strategy. Furthermore, results in vitro and in vivo affirmed thatPEPT1was involved in the uptake and transport of compound candidateswith two key structures, which was also not reported before. Moreover,our results also showed that the intestinal absorption of compoundcandidates with our selected dipeptide sequences was improvedsignificantly compared with parent structure.
     Findings in this study could enlarge parent drug selection andsignificantly expand the application of PEPT1in target carrier prodrugstrategy.
引文
1. Lindenberg, M.; Kopp, S.; Dressman, J. B., Classification of orally administered drugs onthe World Health Organization Model list of Essential Medicines according to thebiopharmaceutics classification system. European Journal of Pharmaceutics andBiopharmaceutics2004,58,(2),265-278.
    2. A, A., Chemical aspects of selective toxicity. Nature1958,(182),421–422.
    3. Harper, N. J., Drug latentiation. Journal of Medicinal Chemistry1958,1,(5),467-500.
    4. Li, F.; Maag, H.; Alfredson, T., Prodrugs of nucleoside analogues for improved oralabsorption and tissue targeting. Journal of Pharmaceutical Sciences2008,97,(3),1109-1134.
    5. Sun, Y.; Sun, J.; Shi, S.; Jing, Y.; Yin, S.; Chen, Y.; Li, G.; Xu, Y.; He, Z., Synthesis,Transport and Pharmacokinetics of5′-Amino Acid Ester Prodrugs of1-β-d-Arabinofuranosylcytosine. Molecular Pharmaceutics2008,6,(1),315-325.
    6.操锋;平其能;陈军,口服前药研究:机遇与挑战.药学学报2008,43,(004),343-349.
    7. Beaumont, K.; Webster, R.; Gardner, I.; Dack, K., Design of ester prodrugs to enhance oralabsorption of poorly permeable compounds: challenges to the discovery scientist. Current drugmetabolism2003,4,(6),461-485.
    8.李安良,生物利用度控制—药物化学原理、方法和应用.2004.
    9. Abrams, W. B.; Davies, R. O.; Gomez, H. J., Clinical pharmacology of enalapril. Journal ofhypertension. Supplement: official journal of the International Society of Hypertension1984,2,(2), S31.
    10. Davies, G. R.; Rampton, D. S., The pro-drug sulindac may reduce the risk of intestinaldamage associated with the use of conventional non-steroidal anti-inflammatory drugs.Alimentary pharmacology&therapeutics1991,5,(6),593-598.
    11. Brouwers, J.; Tack, J.; Augustijns, P., In vitro behavior of a phosphate ester prodrug ofamprenavir in human intestinal fluids and in the Caco-2system: Illustration of intraluminalsupersaturation. International journal of pharmaceutics2007,336,(2),302-309.
    12. Cho, H.; Chung, Y., Water soluble cyclosporine monomethoxy poly (ethyleneglycol)conjugates as potential prodrugs. Archives of pharmacal research2004,27,(6),662-669.
    13. Stella, V. J.; Nti-Addae, K. W., Prodrug strategies to overcome poor water solubility.Advanced Drug Delivery Reviews2007,59,(7),677-694.
    14. Tunek, A.; Svensson, L. A., Bambuterol, a carbamate ester prodrug of terbutaline, asinhibitor of cholinesterases in human blood. Drug Metabolism and Disposition1988,16,(5),759.
    15. Green, J. R. B.; Lobo, A. J.; Holdsworth, C. D.; Leicester, R. J.; Gibson, J. A.; Kerr, G. D.;Hodgson, H. J. F.; Parkins, K. J.; Taylor, M. D., Balsalazide is more effective and bettertolerated than mesalamine in the treatment of acute ulcerative colitis. Gastroenterology1998,114,(1),15-22.
    16.蔡三军;蔡国响,卡培他滨在结直肠癌中的应用.中华胃肠外科杂志2002,5,(3),295-295.
    17. Miwa, M.; Ura, M.; Nishida, M.; Sawada, N.; Ishikawa, T.; Mori, K.; Shimma, N.; Umeda,I.; Ishitsuka, H., Design of a novel oral fluoropyrimidine carbamate, capecitabine, whichgenerates5-fluorouracil selectively in tumours by enzymes concentrated in human liver andcancer tissue. European journal of cancer (Oxford, England:1990)1998,34,(8),1274.
    18. Han, H. K.; Amidon, G. L., Targeted prodrug design to optimize drug delivery. The AAPSJournal2002,2,(1),48-58.
    19. Giles, F.; Estey, E.; O'Brien, S., Gemtuzumab ozogamicin in the treatment of acute myeloidleukemia. Cancer2003,98,(10),2095-2104.
    20. Sugiura, T.; Kato, Y.; Tsuji, A., Role of SLC xenobiotic transporters and their regulatorymechanisms PDZ proteins in drug delivery and disposition. Journal of Controlled Release2006,116,(2),238-246.
    21. Nielsen, C. U.; Vabeno, J.; Andersen, R.; Brodin, B.; Steffansen, B., Recent advances intherapeutic applications of human peptide transporters. Expert Opinion on Therapeutic Patents2005,15,(2),153-166.
    22. Zhang, E. Y.; Fu, D. J.; Pak, Y. A.; Stewart, T.; Mukhopadhyay, N.; Wrighton, S. A.;Hillgren, K. M., Genetic polymorphisms in human proton-dependent dipeptide transporterPEPT1: implications for the functional role of Pro586. Journal of Pharmacology andExperimental Therapeutics2004,310,(2),437.
    23. Daniel, H., Molecular and integrative physiology of intestinal peptide transport. Annu. Rev.Physiol.2004,66,361–384.
    24. Terada, T.; Inui, K., Peptide transporters: structure, function, regulation and application fordrug delivery. Current drug metabolism2004,5,(1),85-94.
    25. Meredith*, D.; Boyd, C. A. R., Structure and function of eukaryotic peptide transporters.Cellular and Molecular Life Sciences2000,57,(5),754-778.
    26.刘志浩;刘克辛,肠道药物转运体及其研究方法.
    27. Majumdar, S.; Duvvuri, S.; Mitra, A. K., Membrane transporter/receptor-targeted prodrugdesign: strategies for human and veterinary drug development. Advanced Drug Delivery Reviews2004,56,(10),1437-1452.
    28. Fei, Y. J.; Kanai, Y.; Nussberger, S.; Ganapathy, V.; Leibach, F. H.; Romero, M. F.; Singh,S. K.; Boron, W. F.; Hediger, M. A., Expression cloning of a mammalian proton-coupledoligopeptide transporter.1994.
    29. Agar, W. T.; Hird, F. J. R.; Sidhu, G. S., The active absorption of amino-acids by theintestine. The Journal of Physiology1953,121,(2),255.
    30. Hara, H.; Funabiki, R.; Iwata, M.; Yamazaki, K. I., Portal absorption of small peptides inrats under unrestrained conditions. Journal of Nutrition1984,114,(6),1122.
    31. Winckler, C.; Daniel, H.; Breves, G., In vitro investigations on dipeptide transport in pigjejunum. Digestive Physiology in Pigs1997,(88),255-259672.
    32. Barfuss, D. W.; Ganapathy, V.; Leibach, F. H., Evidence for active dipeptide transport inisolated proximal straight tubules. American Journal of Physiology-Renal Physiology1988,255,(1), F177.
    33. Addison, J. M.; Burston, D.; Matthews, D. M., Evidence for active transport of thedipeptide glycylsarcosine by hamster jejunum in vitro. Clinical science1972,43,(6),907.
    34. Adibi, S. A.; Morse, E. L., Intestinal transport of dipeptides in man: relative importance ofhydrolysis and intact absorption. Journal of Clinical Investigation1971,50,(11),2266.
    35. Bamba, T.; Kuse, K.; Obata, H.; Sasaki, M.; Hosoda, S., Effects of small peptides asintraluminal substrates on transport carriers for amino acids and peptides. Journal of clinicalbiochemistry and nutrition1993,15,(1),33-42.
    36.孙勇兵;孙进;何仲贵,小肠寡肽转运蛋白及其在提高药物口服吸收中的应用.中国新药与临床杂志2006,25,(010),776-782.
    37. Chen, H.; Pan, Y. X.; Wong, E. A.; Bloomquist, J. R.; Webb Jr, K. E., Molecular cloningand functional expression of a chicken intestinal peptide transporter (cPepT1) in Xenopusoocytes and Chinese hamster ovary cells. Journal of Nutrition2002,132,(3),387.
    38. Meredith, D.; Boyd, C. A. R., Oligopeptide transport by epithelial cells. Journal ofMembrane Biology1995,145,(1),1-12.
    39. Fei, Y. J.; Liu, W.; Prasad, P. D.; Kekuda, R.; Oblak, T. G.; Ganapathy, V.; Leibach, F. H.,Identification of the Histidyl Residue Obligatory for the Catalytic Activity of the HumanH+/Peptide Cotransporters PEPT1and PEPT2. Biochemistry1997,36,(2),452-460.
    40. Fei, Y. J.; Sugawara, M.; Liu, J. C.; Li, H. W.; Ganapathy, V.; Ganapathy, M. E.; Leibach,F. H., cDNA structure, genomic organization, and promoter analysis of the mouse intestinalpeptide transporter PEPT1. Biochimica et Biophysica Acta (BBA)-Gene Structure andExpression2000,1492,(1),145-154.
    41. Liang, R.; Fei, Y. J.; Prasad, P. D.; Ramamoorthy, S.; Han, H.; Yang-Feng, T. L.; Hediger,M. A.; Ganapathy, V.; Leibach, F. H., Human intestinal H/peptide cotransporter. Journal ofBiological Chemistry1995,270,(12),6456.
    42. Saito, H.; Okuda, M.; Terada, T.; Sasaki, S.; Inui, K., Cloning and characterization of a ratH+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine andkidney. Journal of Pharmacology and Experimental Therapeutics1995,275,(3),1631.
    43. Yeung, A. K.; Basu, S. K.; Wu, S. K.; Chu, C.; Okamoto, C. T.; Hamm-Alvarez, S. F.;Grafenstein, H.; Shen, W. C.; Kim, K. J.; Bolger, M. B., Molecular Identification of a Role forTyrosine167in the Function of the Human Intestinal Proton-Coupled Dipeptide Transporter(hPepT1)*1. Biochemical and Biophysical Research Communications1998,250,(1),103-107.
    44. Miyamoto, K.; Shiraga, T.; Morita, K.; Yamamoto, H.; Haga, H.; Taketani, Y.; Tamai, I.;Sai, Y.; Tsuji, A.; Takeda, E., Sequence, tissue distribution and developmental changes in ratintestinal oligopeptide transporter*1. Biochimica et Biophysica Acta (BBA)-Gene Structure andExpression1996,1305,(1-2),34-38.
    45. Daniel, H.; Kottra, G., The proton oligopeptide cotransporter family SLC15in physiologyand pharmacology. Pflügers Archiv European Journal of Physiology2004,447,(5),610-618.
    46.韩飞;施用晖;乐国伟;王立宽,肽转运载体的分子特征. World2003,11,(9),1436-1442.
    47. Winckler, C.; Breves, G.; Boll, M.; Daniel, H., Characteristics of dipeptide transport in pigjejunum in vitro. Journal of Comparative Physiology B: Biochemical, Systemic, andEnvironmental Physiology1999,169,(7),495-500.
    48. Freeman, T. C.; Bentsen, B. S.; Thwaites, D. T.; Simmons, N. L., H+/di-tripeptidetransporter (PepT1) expression in the rabbit intestine. Pflügers Archiv European Journal ofPhysiology1995,430,(3),394-400.
    49. Chen, H.; Wong, E. A.; Webb Jr, K. E., Tissue distribution of a peptide transporter mRNAin sheep, dairy cows, pigs, and chickens. Journal of Animal Science1999,77,(5),1277.
    50. Temple, C. S.; Stewart, A. K.; Meredith, D.; Lister, N. A.; Morgan, K. M.; Collier, I. D.;Vaughan-Jones, R. D.; Boyd, C. A. R.; Bailey, P. D.; Bronk, J. R., Peptide mimics as substratesfor the intestinal peptide transporter. Journal of Biological Chemistry1998,273,(1),20-22.
    51. Kohda-Shimizu, R.; Li, Y. H.; Shitara, Y.; Ito, K.; Tsuda, Y.; Yamada, H.; Itoh, T., Oralabsorption of cephalosporins is quantitatively predicted from in vitro uptake into intestinal brushborder membrane vesicles. International journal of pharmaceutics2001,220,(1-2),119-128.
    52. Han, H.; De Vrueh, R. L.; Rhie, J. K.; Covitz, K. M.; Smith, P. L.; Lee, C. P.; Oh, D. M.;Sadee, W.; Amidon, G. L.,50-Amino acid esters of antiviral nucleosides, acyclovir, and AZTare absorbed by the intestinal PEPT1peptide transporter. Pharm. Res1998,15,1154-1159.
    53. Tsuda, M.; Terada, T.; Irie, M.; Katsura, T.; Niida, A.; Tomita, K.; Fujii, N.; Inui, K.,Transport characteristics of a novel peptide transporter1substrate, antihypotensive drugmidodrine, and its amino acid derivatives. Journal of Pharmacology and ExperimentalTherapeutics2006,318,(1),455.
    54. Watanabe, K.; Sawano, T.; Endo, T.; Sakata, M.; Sato, J., Studies on intestinal absorptionof sulpiride (2): transepithelial transport of sulpiride across the human intestinal cell line Caco-2.Biological&pharmaceutical bulletin2002,25,(10),1345-1350.
    55. Song, X.; Lorenzi, P. L.; Landowski, C. P.; Vig, B. S.; Hilfinger, J. M.; Amidon, G. L.,Amino acid ester prodrugs of the anticancer agent gemcitabine: synthesis, bioconversion,metabolic bioevasion, and hPEPT1-mediated transport. Mol. Pharm2005,2,(2),157-167.
    56. Wechter, W. J.; Gish, D. T.; Greig, M. E.; Gray, G. D.; Moxley, T. E.; Kuentzel, S. L.;Gray, L. G.; Gibbons, A. J.; Griffin, R. L.; Neil, G. L., Nucleic acids.16. Orally activederivatives of ara-cytidine. Journal of Medicinal Chemistry1976,19,(8),1013-1017.
    57. Bahadduri, P. M.; Ray, A.; Khandelwal, A.; Swaan, P. W., Design of high-affinity peptideconjugates with optimized fluorescence quantum yield as markers for small peptide transporterPEPT1(SLC15A1). Bioorganic&Medicinal Chemistry Letters2008,18,(8),2555-2557.
    58. Hayeshi, R.; Hilgendorf, C.; Artursson, P.; Augustijns, P.; Brodin, B.; Dehertogh, P.; Fisher,K.; Fossati, L.; Hovenkamp, E.; Korjamo, T., Comparison of drug transporter gene expressionand functionality in Caco-2cells from10different laboratories. European Journal ofPharmaceutical Sciences2008,35,(5),383-396.
    59. Ogihara, T.; Kano, T.; Wagatsuma, T.; Wada, S.; Yabuuchi, H.; Enomoto, S.; Morimoto, K.;Shirasaka, Y.; Kobayashi, S.; Tamai, I., Oseltamivir (tamiflu) is a substrate of peptidetransporter1. Drug Metabolism and Disposition2009,37,(8),1676.
    60. Cang, J.; Zhang, J.; Wang, C.; Liu, Q.; Meng, Q.; Wang, D.; Sugiyama, Y.; Tsuji, A.; Kaku,T.; Liu, K., Pharmacokinetics and mechanism of intestinal absorption of JBP485in rats. DrugMetabolism and Pharmacokinetics,(0),1009210039.
    61. Zhang, S.; Morris, M. E., Effects of the flavonoids biochanin A, morin, phloretin, andsilymarin on P-glycoprotein-mediated transport. Journal of Pharmacology and ExperimentalTherapeutics2003,304,(3),1258.
    62. Wang, J. J.; Liao, X. H.; Ye, M.; Chen, Y., In vitro absorption mechanism of strychnine andthe transport interaction with liquiritin in Caco-2cell monolayer model]. Yao xue xue bao=Actapharmaceutica Sinica45,(9),1160.
    63. Shimizu, R.; Sukegawa, T.; Tsuda, Y.; Itoh, T., Quantitative prediction of oral absorptionof PEPT1substrates based on in vitro uptake into Caco-2cells. International journal ofpharmaceutics2008,354,(1-2),104-110.
    64. Seithel, A.; Karlsson, J.; Hilgendorf, C.; Bj rquist, A.; Ungell, A. L., Variability in mRNAexpression of ABC-and SLC-transporters in human intestinal cells: comparison between humansegments and Caco-2cells. European Journal of Pharmaceutical Sciences2006,28,(4),291-299.
    65. Putnam, W. S.; Pan, L.; Tsutsui, K.; Takahashi, L.; Benet, L. Z., Comparison ofbidirectional cephalexin transport across MDCK and Caco-2cell monolayers: Interactions withpeptide transporters. Pharmaceutical research2002,19,(1),27-33.
    66. Nakanishi, T.; Tamai, I.; Sai, Y.; Sasaki, T.; Tsuji, A., Carrier-mediated transport ofoligopeptides in the human fibrosarcoma cell line HT1080. Cancer research1997,57,(18),4118-4122.
    67. Gonzalez, D. E.; Covitz, K. M. Y.; Sadée, W.; Mrsny, R. J., An oligopeptide transporter isexpressed at high levels in the pancreatic carcinoma cell lines AsPc-1and Capan-2. Cancerresearch1998,58,(3),519.
    68. Zhang, J.; Wang, C.; Liu, Q.; Meng, Q.; Cang, J.; Sun, H.; Gao, Y.; Kaku, T.; Liu, K.,Pharmacokinetic interaction between JBP485and cephalexin in rats. Drug Metabolism andDisposition38,(6),930.
    69. Knütter, I.; Kottra, G.; Fischer, W.; Daniel, H.; Brandsch, M., High-affinity interaction ofsartans with H+/peptide transporters. Drug Metabolism and Disposition2009,37,(1),143.
    70. Knütter, I.; Wollesky, C.; Kottra, G.; Hahn, M. G.; Fischer, W.; Zebisch, K.; Neubert, R. H.H.; Daniel, H.; Brandsch, M., Transport of angiotensin-converting enzyme inhibitors byH+/peptide transporters revisited. Journal of Pharmacology and Experimental Therapeutics2008,327,(2),432.
    71. Thamotharan, M.; Bawani, S. Z.; Zhou, X.; Adibi, S. A., Mechanism of dipeptidestimulation of its own transport in a human intestinal cell line. Proceedings of the Association ofAmerican Physicians110,(4),361.
    72. Walker, D.; Thwaites, D. T.; Simmons, N. L.; Gilbert, H. J.; Hirst, B. H., Substrateupregulation of the human small intestinal peptide transporter, hPepT1. The Journal ofPhysiology1998,507,(3),697-706.
    73. Thamotharan, M.; Bawani, S. Z.; Zhou, X.; Adibi, S. A., Functional and molecularexpression of intestinal oligopeptide transporter (Pept-1) after a brief fast. Metabolism1999,48,(6),681-684.
    74. Ogihara, H.; Suzuki, T.; Nagamachi, Y.; Inui, K.; Takata, K., Peptide transporter in the ratsmall intestine: ultrastructural localization and the effect of starvation and administration ofamino acids. The Histochemical Journal1999,31,(3),169-174.
    75. Ihara, T.; Tsujikawa, T.; Fujiyama, Y.; Bamba, T., Regulation of PepT1peptide transporterexpression in the rat small intestine under malnourished conditions. Digestion2000,61,(1),59-67.
    76. Sobhani, I.; Bado, A.; Vissuzaine, C.; Buyse, M.; Kermorgant, S.; Laigneau, J. P.; Attoub,S.; Lehy, T.; Henin, D.; Mignon, M., Leptin secretion and leptin receptor in the human stomach.Gut2000,47,(2),178.
    77. Sobhani, I.; Buyse, M.; Go ot, H.; Weber, N.; Laigneau, J. P.; Henin, D.; Souls, J. C.; Bado,A., Vagal stimulation rapidly increases leptin secretion in human stomach++. Gastroenterology2002,122,(2),259-263.
    78. Buyse, M.; Berlioz, F.; Guilmeau, S.; Tsocas, A.; Voisin, T.; Péranzi, G.; Merlin, D.;Laburthe, M.; Lewin, M. J. M.; Rozé, C., PepT1-mediated epithelial transport of dipeptides andcephalexin is enhanced by luminal leptin in the small intestine. Journal of Clinical Investigation2001,108,(10),1483-1494.
    79. Ashida, K.; Katsura, T.; Motohashi, H.; Saito, H.; Inui, K. I., Thyroid hormone regulatesthe activity and expression of the peptide transporter PEPT1in Caco-2cells. American Journalof Physiology-Gastrointestinal and Liver Physiology2002,282,(4),617.
    80. Ashida, K.; Katsura, T.; Saito, H.; Inui, K., Decreased activity and expression of intestinaloligopeptide transporter PEPT1in rats with hyperthyroidism in vivo. Pharmaceutical research2004,21,(6),969-975.
    81. Covitz, K. M. Y.; Amidon, G. L.; Sadee, W., Human dipeptide transporter, hPEPTl, stablytransfected into Chinese hamster ovary cells. Pharmaceutical research1996,13,(11),1631-1634.
    82. Surendran, N.; Covitz, K. M. Y.; Han, H.; Sadee, W.; Oh, D. M.; Amidon, G. L.;Williamson, R. M.; Bigge, C. F.; Stewart, B. H., Evidence for Overlapping Substrate SpecificityBetween Large Neutral Amino Acid (LNAA) and Dipeptide (hPEPTl) Transporters for PD158473, an NMDA Antagonist. Pharmaceutical research1999,16,(3),391-395.
    83. Hsu, C. P.; Hilfinger, J. M.; Walter, E.; Merkle, H. P.; Roessler, B. J.; Amidon, G. L.,Overexpression of human intestinal oligopeptide transporter in mammalian cells via adenoviraltransduction. Pharmaceutical research1998,15,(9),1376-1381.
    84. Schinkel, A. H.; Smit, J. J. M.; Van Tellingen, O.; Beijnen, J. H.; Wagenaar, E.; VanDeemter, L.; Mol, C.; Van der Valk, M. A.; Robanus-Maandag, E. C.; Te Riele, H. P. J.,Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brainbarrier and to increased sensitivity to drugs. Cell1994,77,(4),491-502.
    85. Ganapathy, M. E.; Huang, W.; Wang, H.; Ganapathy, V.; Leibach, F. H., Valacyclovir: asubstrate for the intestinal and renal peptide transporters PEPT1and PEPT2. Biochemical andBiophysical Research Communications1998,246,(2),470-475.
    86. Katragadda, S.; Jain, R.; Kwatra, D.; Hariharan, S.; Mitra, A. K., Pharmacokinetics ofamino acid ester prodrugs of acyclovir after oral administration: Interaction with the transporterson Caco-2cells. International journal of pharmaceutics2008,362,(1-2),93-101.
    87. Li, F. J.; Maag, H.; Alfredson, T., Prodrugs of nucleoside analogues for improved oralabsorption and tissue targeting. Journal of Pharmaceutical Sciences2008,97,(3),1109-1134.
    88. Tamai, I.; Nakanishi, T.; Nakahara, H.; Sai, Y.; Ganapathy, V.; Leibach, F. H.; Tsuji, A.,Improvement of L‐dopa absorption by dipeptidyl derivation, utilizing peptide transporterPepT1. Journal of Pharmaceutical Sciences1998,87,(12),1542-1546.
    89. Song, X.; Vig, B. S.; Lorenzi, P. L.; Drach, J. C.; Townsend, L. B.; Amidon, G. L., Aminoacid ester prodrugs of the antiviral agent2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole as potential substrates of hPEPT1transporter. J Med Chem2005,48,(4),1274-7.
    90. Landowski, C. P.; Song, X.; Lorenzi, P. L.; Hilfinger, J. M.; Amidon, G. L., Floxuridineamino acid ester prodrugs: enhancing Caco-2permeability and resistance to glycosidic bondmetabolism. Pharmaceutical research2005,22,(9),1510-1518.
    91. Brandsch, M.; Knütter, I.; Bosse‐Doenecke, E., Pharmaceutical and pharmacologicalimportance of peptide transporters. Journal of pharmacy and pharmacology2008,60,(5),543-585.
    92. Herrera‐Ruiz, D.; Knipp, G. T., Current perspectives on established and putativemammalian oligopeptide transporters. Journal of Pharmaceutical Sciences2003,92,(4),691-714.
    93. Temple, C. S.; Stewart, A. K.; Meredith, D.; Lister, N. A.; Morgan, K. M.; Collier, I. D.;Vaughan-Jones, R. D.; Boyd, C. A. R.; Bailey, P. D.; Bronk, J. R., Peptide mimics as substratesfor the intestinal peptide transporter. Journal of Biological Chemistry1998,273,(1),20.
    94. Meredith, D.; Boyd, C. A. R.; Bronk, J. R.; Bailey, P. D.; Morgan, K. M.; Collier, I. D.;Temple, C. S.,4-Aminomethylbenzoic acid is a non-translocated competitive inhibitor of theepithelial peptide transporter PepT1. The Journal of Physiology1998,512,(3),629.
    95. D ring, F.; Will, J.; Amasheh, S.; Clauss, W.; Ahlbrecht, H.; Daniel, H., Minimal moleculardeterminants of substrates for recognition by the intestinal peptide transporter. Journal ofBiological Chemistry1998,273,(36),23211.
    96. V ben, J.; Nielsen, C. U.; Ingebrigtsen, T.; Lejon, T.; Steffansen, B.; Luthman, K.,Dipeptidomimetic ketomethylene isosteres as pro-moieties for drug transport via the humanintestinal di-/tripeptide transporter hPEPT1: design, synthesis, stability, and biologicalinvestigations. Journal of Medicinal Chemistry2004,47,(19),4755-4765.
    97. Meredith, D.; Temple, C. S.; Guha, N.; Sword, C. J.; Boyd, C. A.; Collier, I. D.; Morgan, K.M.; Bailey, P. D., Modified amino acids and peptides as substrates for the intestinal peptidetransporter PepT1. European Journal of Biochemistry2000,267,(12),3723-3728.
    98. Raeissi, S. D.; Li, J.; Hidalgo, I. J., The Role of an α‐Amino Group on H+‐dependentTransepithelial Transport of Cephalosporins in Caco‐2Cells. Journal of pharmacy andpharmacology1999,51,(1),35-40.
    99. Bolger, M. B.; Haworth, I. S.; Yeung, A. K.; Ann, D.; von Grafenstein, H.;Hamm‐Alvarez, S.; Okamoto, C. T.; Kim, K. J.; Basu, S. K.; Wu, S., Structure, function, andmolecular modeling approaches to the study of the intestinal dipeptide transporter PepT1.Journal of Pharmaceutical Sciences1998,87,(11),1286-1291.
    100. Links, J. L. S.; Kulkarni, A. A.; Davies, D. L.; Lee, V. H. L.; Haworth, I. S., Cysteinescanning of transmembrane domain three of the human dipeptide transporter: Implications forsubstrate transport. Journal of drug targeting2007,15,(3),218-225.
    101. Kulkarni, A. A.; Haworth, I. S.; Lee, V. H. L., Transmembrane segment5of the dipeptidetransporter hPepT1forms a part of the substrate translocation pathway. Biochemical andBiophysical Research Communications2003,306,(1),177-185.
    102. Kulkarni, A. A.; Haworth, I. S.; Uchiyama, T.; Lee, V. H. L., Analysis of transmembranesegment7of the dipeptide transporter hPepT1by cysteine-scanning mutagenesis. Journal ofBiological Chemistry2003,278,(51),51833.
    103. Abramson, J.; Smirnova, I.; Kasho, V.; Verner, G.; Kaback, H. R.; Iwata, S., Structure andmechanism of the lactose permease of Escherichia coli. Science2003,301,(5633),610.
    104. Huang, Y.; Lemieux, M. J.; Song, J.; Auer, M.; Wang, D. N., Structure and mechanism ofthe glycerol-3-phosphate transporter from Escherichia coli. Science2003,301,(5633),616.
    105. Meredith, D.; Price, R. A., Molecular modeling of PepT1—towards a structure. Journal ofMembrane Biology2006,213,(2),79-88.
    106. Pedretti, A.; De Luca, L.; Marconi, C.; Negrisoli, G.; Aldini, G.; Vistoli, G., Modeling ofthe intestinal peptide transporter hPepT1and analysis of its transport capacities by docking andpharmacophore mapping. ChemMedChem2008,3,(12),1913-1921.
    107. Cidofovir peptide conjugates as prodrugs. In Google Patents:2009.
    108. Han, H.; de Vrueh, R. L. A.; Rhie, J. K.; Covitz, K. M. Y.; Smith, P. L.; Lee, C. P.; Oh, D.M.; Sadee, W.; Amidon, G. L.,5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZTare absorbed by the intestinal PEPT1peptide transporter. Pharmaceutical research1998,15,(8),1154-1159.
    109. Krehbiel, C. R.; Matthews, J. C.,3Absorption of Amino Acids and Peptides. Amino Acidsin Animal Nutrition2003,5,(2),41-70.
    110. Tsume, Y.; Vig, B. S.; Sun, J.; Landowski, C. P.; Hilfinger, J. M.; Ramachandran, C.;Amidon, G. L., Enhanced absorption and growth inhibition with amino acid monoester prodrugsof floxuridine by targeting hPEPT1transporters. Molecules2008,13,(7),1441-54.
    111. Tsume, Y.; Hilfinger, J. M.; Amidon, G. L., Enhanced cancer cell growth inhibition bydipeptide prodrugs of floxuridine: increased transporter affinity and metabolic stability. MolPharm2008,5,(5),717-27.
    112. McKenna, C. E.; Kashemirov, B. A.; Eriksson, U.; Amidon, G. L.; Kish, P. E.; Mitchell, S.;Kim, J. S.; Hilfinger, J. M., Cidofovir peptide conjugates as prodrugs. Journal ofOrganometallic Chemistry2005,690,(10),2673-2678.
    113. Kruszewska, H.; Chmielowiec, U.; Bednarek, E.; Witowska-Jarosz, J.; Dobrowolski, J. C.;Misicka, A., Spectroscopic identification of AZT derivative obtained from biotransformation ofAZT by Stenotrophomonas maltophilia. Journal of Molecular Structure2003,651,645-650.
    114. Kolb, H. C., Application of Click chemistry to the generation of new chemical libraries fordrug discovery. Abstracts of Papers of the American Chemical Society2001,221, U174-U174.
    115. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click chemistry: Diverse chemical functionfrom a few good reactions. Angewandte Chemie-International Edition2001,40,(11),2004-+.
    116. Kolb, H. C.; Sharpless, K. B., The growing impact of click chemistry on drug discovery.Drug Discovery Today2003,8,(24),1128-1137.
    117. Whiting, M.; Muldoon, J.; Lin, Y. C.; Silverman, S. M.; Lindstrom, W.; Olson, A. J.; Kolb,H. C.; Finn, M. G.; Sharpless, K. B.; Elder, J. H., Inhibitors of HIV-1protease by using in situclick chemistry. Angewandte Chemie-International Edition2006,45,(9),1435-1438.
    118. Tornoe, C. W.; Christensen, C.; Meldal, M., Peptidotriazoles on solid phase:[1,2,3]-triazoles by regiospecific copper (I)-catalyzed1,3-dipolar cycloadditions of terminal alkynesto azides. J. Org. Chem2002,67,(9),3057-3064.
    119. Paul, A.; Bittermann, H.; Gmeiner, P., Triazolopeptides: chirospecific synthesis andcis/trans prolyl ratios of structural isomers. Tetrahedron2006,62,(38),8919-8927.
    120. Liu, Y.; Zhang, L.; Wan, J.; Li, Y.; Xu, Y.; Pan, Y., Design and synthesis of cyclo[-Arg-Gly-Asp-[Psi](triazole)-Gly-Xaa-] peptide analogues by click chemistry. Tetrahedron2008,64,(47),10728-10734.
    121. Li, S.; Sch neich, C.; Borchardt, R. T., Chemical instability of protein pharmaceuticals:Mechanisms of oxidation and strategies for stabilization. Biotechnology and bioengineering1995,48,(5),490-500.
    122. Manning, M. C.; Patel, K.; Borchardt, R. T., Stability of protein pharmaceuticals.Pharmaceutical research1989,6,(11),903-918.
    123. Weil, L., On the mechanism of the photo-oxidation of amino acids sensitized by methyleneblue. Archives of Biochemistry and Biophysics1965,110,(1),57-68.
    124. Vig, B. S.; Stouch, T. R.; Timoszyk, J. K.; Quan, Y.; Doris, A.; Smith, R. L.; Faria, T. N.,Human PEPT1pharmacophore distinguishes between dipeptide transport and binding. Journalof Medicinal Chemistry2006,49,(12),3636-3644.
    125.栾家杰;宋建国,药物转运体与药物体内过程.安徽医药2005,9,(010),721-723.
    126. Phung-Ba, V.; Warnery, A.; Scherman, D.; Wils, P., Interaction of pristinamycin IA withP-glycoprotein in human intestinal epithelial cells. European Journal of Pharmacology:Molecular Pharmacology1995,288,(2),187-192.
    127. Hunter, J.; Jepson, M. A.; Tsuruo, T.; Simmons, N. L.; Hirst, B. H., Functional expressionof P-glycoprotein in apical membranes of human intestinal Caco-2cells. Kinetics of vinblastinesecretion and interaction with modulators. Journal of Biological Chemistry1993,268,(20),14991.
    128. Dantzig, A. H.; Bergin, L., Uptake of the cephalosporin, cephalexin, by a dipeptidetransport carrier in the human intestinal cell line, Caco-2. Biochimica et Biophysica Acta(BBA)-Biomembranes1990,1027,(3),211-217.
    129. Song, N. N.; Li, Q. S.; Liu, C. X., Intestinal permeability of metformin using single-passintestinal perfusion in rats. WORLD JOURNAL OF GASTROENTEROLOGY2006,12,(25),4064.
    130. Jain, R.; Duvvuri, S.; Kansara, V.; Mandava, N. K.; Mitra, A. K., Intestinal absorption ofnovel-dipeptide prodrugs of saquinavir in rats. International journal of pharmaceutics2007,336,(2),233-240.
    131. Wang, C. L.; Fan, Y. B.; Lu, H. H.; Tsai, T. H.; Tsai, M. C.; Wang, H. P., Evidence ofd-phenylglycine as delivering tool for improving l-dopa absorption. Journal of BiomedicalScience17,(1),1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700