鹅肝脏差异表达基因的分离和鉴定暨茶多酚对朗德鹅肥肝抗氧化性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超饲养(Overfeeding)引起鹅肝脏代谢发生改变,使得大量脂肪沉积在肝脏中形成肥肝(fatty liver)。不同品种鹅对超饲养导致的肝脏代谢改变的敏感程度不同,所以肥肝性能差异很大。但目前鹅肥肝形成的分子机理仍然不清楚。本研究以朗德鹅和溆浦鹅为试验材料,利用mRNA差异显示技术和荧光定量PCR技术,对两个品种之间、肥肝和普通肝脏之间差异表达基因进行了分离和鉴定,并通过生物信息学方法从蛋白质和核酸两个水平上进行了结构与功能预测,取得了如下研究结果:
     实验使用了90对差异显示引物来研究两个品种鹅肥肝和普通肝脏中mRNA表达水平对超饲养的反应情况,并用荧光定量PCR进行了验证。6个基因被证实在肥肝和普通肝脏之间差异表达,其中3个基因表达水平被上调,2个基因被下调,1个基因在两个品种试验鹅中表现了相反的调控状态。
     基因8216的表达水平在肥肝中被上调了,并且朗德鹅肝脏(LL和LFL)中的表达水平高于溆浦鹅(XpL和XpFL)。这个基因的全长cDNA是1797bp,GenBank登陆号:EF488993,经过比对,这个基因的全长cDNA序列与鸡硒结合蛋白1(selenium binding protein 1,SELENBP1;XM 423397.2)基因有92%的同源性。序列分析发现,这个cDNA序列含有一个1413bp的开放读码框(ORF),编码一个471个氨基酸的蛋白质。这个蛋白质中含有一个56 kDa的硒结合蛋白(SBP56)保守结构域。聚类分析表明,该蛋白质与鸡、大鼠、人、猴、狗、牛、小鼠的SBP56蛋白分别具有95%、86%、86%、86%、86%、86%、84%的同源性。组织表达分析显示,鹅基因8216在肝脏和肾脏中表达丰富,在脾脏中中等表达,在卵巢、子宫、肌胃和腹脂中表达量较低。
     基因9105的表达水平在肥肝中被上调了。经过cDNA克隆,得到一个包含全长CDS的1248bp的cDNA片段,GenBank登陆号:EF541127。比对的结果表明,该片段与鸡的转化生长因子β-2 mRNA(transforming growth factor beta 2,TGFB2;NM_001031045.1)有94%的同源性,与其它物种的TGFB2也有很高的同源性。序列分析发现,这个cDNA序列含有一个1239bp的开放读码框架(ORF),编码一个有412个氨基酸的蛋白质。BlastP分析表明,该蛋白质序列存在着2个保守的功能域,一个是引导序列(TGFb前肽),另一个是功能结构域(TGFβ)。聚类分析表明,该蛋白质与鸡、非洲爪蛙、大鼠、人、短尾猊、牛、小鼠、猪、绵羊的TGFb2蛋白分别具有99%、96%、87%、90%、91%、89%、88%、90%、89%的同源性。组织表达分析显示,鹅基因9105在肌胃中表达很丰富,在肝脏、脾脏和卵巢中表达也较丰富,在子宫、肺和肌肉中中等表达,而在肾脏和腹脂中表达量较低。
     基因7501的表达水平在肥肝中被上调了,肥肝中(LFL和XpFL)高于普通肝脏(LL和XpL),朗德鹅(LL和LFL)高于溆浦鹅(XpL和XpFL)。经过cDNA克隆,得到一个1446bp的cDNA片段。经过比对,这个基因的部分cDNA序列与鸡的细胞质NADP(+)-依赖型苹果酸酶1mRNA(malic enzyme 1,NADP(+)-dependent,cytosolic,ME1;NM_204303.1)有93%的同源性,与其它物种的ME1也有很高的同源性。组织表达分析显示,鹅基因7501在肝脏中表达很丰富,在脾脏、卵巢、子宫、肺、肾脏、肌胃和肌肉中中等表达,而在腹脂中表达量最低。
     基因8407的表达水平在肥肝中被下调了。经过cDNA克隆,得到一个包含全长CDS的1269bp的cDNA片段,GenBank登陆号:EF541128。比对的结果表明,该片段与鸡的细胞质异柠檬酸脱氢酶mRNA(cytosolic NADP-dependent isocitrate dehydrogenase,IDH1;XM_421965)有95%的同源性,与其它物种的IDH1也有很高的同源性。序列分析发现,这个cDNA序列含有一个1248bp的开放读码框架(ORF),编码一个有415个氨基酸的蛋白质。BlastP分析表明,该蛋白质序列存在着一个保守的结构域,这个结构域与已知的真核蛋白Icd具有较高的同源性。聚类分析表明,该蛋白质与鸡、大鼠、人、猿、牛、小鼠的Icd蛋白分别具有99%、89%、90%、90%、88%、88%的同源性。组织表达分析显示,鹅基因8407在肝脏中表达丰富,在脾脏、肾脏和肌胃中中等表达,在卵巢、子宫、肺、肌肉和腹脂中表达量较低。
     基因9302的表达水平在肥肝中被下调了。经过cDNA克隆,得到一个943bp的cDNA片段。经过比对,这个基因的部分cDNA序列与鸡的胆固醇-7α羟化酶基因(Cytochrome P450,family 7,subfamily A,polypeptide 1,CYP7A1;XM_419217)有93%的同源性。组织表达分析显示,鹅基因9302在肝脏中表达很丰富,在其它组织中不表达。
     基因7102的表达水平在两种鹅中表现了相反的调控状态,朗德鹅肥肝中基因7102的表达水平被上调了,而在溆浦鹅肥肝中被下调了。经过cDNA克隆,得到一个923bp的cDNA片段。经过比对,这个基因的部分cDNA序列与鸡的NAD依赖型苹果酸脱氢酶基因(malate dehydrogenase 1,NAD(soluble),mRNA,MDH1;NM_001006395.1)有95%的同源性,与其它物种的MDH1基因也有很高的同源性。组织表达分析显示,鹅基因7102在肝脏中表达很丰富,在其它组织中表达量较低。
     鹅通过短期内超饲养(Overfeeding)大量高能饲料可以形成肥肝。在肥肝发生过程中,肝脏的氧化应激增强,造成自由基在肝脏中大量产生,对肝细胞和肥肝品质产生了影响。本试验研究采用单因子梯度设计,研究日粮中添加不同水平的茶多酚对超饲养朗德鹅脂肪代谢和肝脏抗氧化性能的影响。试验鹅被分为5组,以第1组为对照组,其余4组为试验组,每组饲喂含不同水平茶多酚的日粮,4个试验组超饲养日粮中茶多酚的浓度分别为:40、80、160、320mg/Kg。通过对屠宰性能、血清生化指标和肝脏抗氧化指标的分析,取得了如下的研究结果:
     经过21天的超饲养,每只鹅的平均超饲养量大致相同(13.54-0.23Kg)。屠宰后对各项屠宰指标的分析结果表明,各组之间屠宰率、半净膛率、全净膛率、胸肌重和腿肌重等没有显著性差异(p>0.05),体重和体增重呈现了显著的下降趋势(p<0.01):腹脂重与超饲养后体重的比值和肥肝重都表现了先上升然后下降的趋势,但总体来说变化不显著。这些结果说明,茶多酚对肝脏中脂肪的合成与沉积,以及合成后脂类在机体中的分布都没有显著的影响。血清中生化指标的分析结果表明,甘油三酯(TG)水平的变化与肥肝重的变化基本上是一致的,总胆固醇(TC)水平总体来说是下降的,但试验组之间没有差异(p>0.05),而与对照组有极显著的差异(p<0.01),高密度脂蛋白胆固醇(HDL-C)水平相对平稳,总体上各组之间差异不显著(p>0.05),低密度脂蛋白胆固醇(LDL-C)水平有显著的下降(p<0.01),球蛋白与清蛋白的比例、谷丙转氨酶(ALT)和谷草转氨酶(AST)都没有显著性的变化(p>0.05)。这些结果说明,茶多酚可能影响了肝脏与外周组织之间脂类转运的状态,但对机体的免疫系统功能没有产生影响。肝脏中抗氧化指标的分析结果表明,日粮中不同茶多酚水平对肝脏总超氧化物歧化酶(T-SOD)和谷胱甘肽过氧化物酶(GSH-Px)活性的影响表现出了相同的趋势,但总体来说,在本试验条件下,肝脏中总超氧化物歧化酶(T-SOD)和谷胱甘肽过氧化物酶(GSH-Px)的活性在各组之间基本稳定,但肝脏中丙二醛水平随着日粮中茶多酚添加水平的上升显著下降的趋势(pThe liver metabolize of goose was dramatically changed induced by overfeeding,and causing large fats deposited in liver. The sensibility of liver is different among goosebreeds in responses to overfeeding, which resulting in differential fatty liver performance.Up till now, the molecular mechanism of fatty liver forming is still remaining un-clear. Inthis study, mRNA differential display and real-time quantitative PCR were applied toisolate and identify the differentially expressed gene between fatty liver and normal liverof Landes and Xupu goose. The bio-informatics technique was also used in predicting thearchitecture and functions on protein and nucleic acid levels, and the main results asfollows:
     Ninety primer pairs were used in this study to obtain an understanding of the mRNAlevels in response to overfeeding in the two breeds. The identified genes were confirmedby using real-time quantitative PCR technique. Six genes were confirmed as up regulated,two were confirmed as down regulated, and one gene was confirmed as up regulated inLandes, but down regulated in Xupu goose.
     The expression level of gene 8216 was confirmed as up regulated in both fatty livers,and its expression level is higher in Landes than in Xupu goose. The complete cDNAsequence of this gene was 1797 bp, and the GenBank accession number was EF488993.By blast in NCBI server, this sequence shows 92%identity with chicken seleniumbinding protein 1 (SELENBP1) mRNA (XM-423397.2). The sequence analysis revealedthat its open reading frame (ORF) of 1413 bp encodes a protein of 471 amino acids,which contains a putative conserved domain of 56 kDa selenium binding protein (SBP56)and has high homology with its homologues-chicken 95%, rat 86%, mouse 84%, human86%, monkey 86%, dog 86%, and cattle 86%. The tissue expression analysis indicatedthat goose SELENBP1 mRNA is higher expressed in liver and kidney, but moderate inspleen, and lowest in ovary, uterus, muscular stomach, and abdominal fat.
     The expression level of gene 9105 was confirmed as up regulated in both fatty livers.A 1248 bp cDNA fragments which contains the complete CDS was obtained thoughcDNA cloning. The accession number of GenBank is EF541127. By blast in NCBI server,this sequence shows 94%identity with chicken transforming growth factor beta 2(TGFB2) mRNA (NM-001031045.1), and also has high identities with TGFB2 of otherspecies. The sequence analysis revealed that its open reading frame (ORF) of 1239 bpencodes a protein of 412 amino acids, which contains two putative conserved domains ofTGFb-propeptide and TGFβ, and has high homology with its homologues-chicken 99%, Xenopus laevis 96%, rat 87%, human 90%, Monodelphis domestica 91%, cattle 89%,mouse 88%, pig 90%, Ovis aries 89%. The tissue expression analysis indicated that goosegene 9105 is higher expressed in muscular stomach, but moderate in liver, spleen, andovary, and lowest in uterus, abdominal fat, and kidney.
     The expression level of gene 7501 was confirmed as up regulated in both fatty livers,and its expression level is higher in Landes than in Xupu goose. A cDNA fragment of1446 bp was obtained by cDNA cloning. By blast in NCBI server, this sequence shows93%identity with chicken cytosolic NADP (+)-dependent malic enzyme (ME1) mRNA(NM-204303.1), and also has high identities with ME1 of other species. The tissueexpression analysis indicated that goose gene 7501 is higher expressed in liver, butmoderate in muscular stomach, spleen, ovary, uterus, and kidney, and lowest in abdominalfat.
     The expression level of gene 8407 was confirmed as down regulated in both fattylivers. A 1269 bp cDNA fragments which contains the complete CDS was obtainedthough cDNA cloning. The accession number of GenBank is EF541128. By blast in NCBIserver, this sequence shows 95%identity with chicken cytosolic NADP-dependentisoeitrate dehydrogenase (IDH1) mRNA (NM-421965), and also has high identities withIDH1 of other species. The sequence analysis revealed that its open reading frame (ORF)of 1248 bp encodes a protein of 415 amino acids, which contains a putative domains ofIcd, which conserved among species, and has high homology with itshomologues-chicken 99%, rat 89%, human 90%, monkey 90%, cattle 88%, mouse 88%.The tissue expression analysis indicated that goose gene 8407 is higher expressed in liver,but moderate in muscular stomach, liver, and spleen, and lowest in ovary, uterus,abdominal fat, lung, and muscle.
     The expression level of gene 9302 was confirmed as down regulated in both fattylivers. A cDNA fragment of 943 bp was obtained by cDNA cloning. By blast in NCBIserver, this sequence shows 93%identity with chicken cytochrome P450, family 7,subfamily A, polypeptide 1 (CYP7A1) mRNA (XM-419217). The tissue expressionanalysis indicated that goose gene 9302 is highly expressed in liver, but non-expressed inother tested tissues.
     The expression level of gene 7102 was contrary between these two breeds. It was upregulated in Landes, but down regulated in Xupu goose. A cDNA fragment of 923 bp wasobtained by cDNA cloning. By blast in NCBI server, this sequence shows 95%identitywith chicken malate dehydrogenase 1, NAD (soluble) mRNA (MDH1)(NM-001006395.1), and also has high identities with MDH1 of other species. The tissue expression analysis indicated that goose gene 9302 is highly expressed in liver, but lowerexpressed in other tested tissues.
     Goose can develops fatty liver though overfeeding with feed which contains high energy concentrations in short-term. In the process of fatty liver developments, the oxidative stress of liver increased correspondingly and the free radical accumulated in liver followed by liver cell damaged and the quality of fatty liver decline. A single factor trial based on the Tea Polyphenols (TP) concentration was designed to study the effects of TP in diets on fat metabolism and the capability of antioxidation in overfeeding goose in this study. Geese were assigned to five groups and treated with feeds which contained different levels of TP using the first group as control. The levels of TP in the rest feed were: 40, 80, 160, and 320 mg/Kg. the performance of slaughter, bio-indexes of serum, and the capability of liver antioxdation were analyzed, and the main results are as follows:
     After 21d of overfeeding, the average intake was approximately same (13.5±0.23Kg). The analysis results revealed that the dressing percentage, semi-eviscerated carcass percentage, eviscerated carcass percentage, breast muscle weight and leg muscle weight had no significant differences among groups (p>0.05), the weight after overfeeding and weight gain presented a significant down trend (p<0.01); The ratio of abdominal weight to the weight after overfeeding showed an up and then down trend, but the changes did not significant. These results indicated that TP had no effects on hepatic lipogenesis and fat depositing, and also had no effects on the assignments of fat in body. The analysis results about serum bio-index among groups revealed that the alteration of triglyceride (TG) level coincided with fatty liver weight, and the total cholesterol (TC) level in serum showed down in total, but had no significant difference among trial groups (p>0.05) and had significant difference compared with control (p<0.01). The High density lipoprotein cholesterol (HDL-C) level were relatively steady, and had no significant difference among groups (p>0.05). The Low density lipoprotein cholesterol (LDL-C) level in serum was significant down (p<0.01). Others had no significant differences ((p>0.05). These results revealed that the migration of fat between liver and other tissues might affected by TP which were absorbed from diets, but the TP involved in diets had no effects on immune system. The analysis results about antioxidation index of liver among groups revealed that TP which from diets had no effects on the activity of Total superoxide dismutase (T-SOD) and Glutathione peroxidase (GSH-Px) in liver, but the Malonaldehyde (MDA) level were significantly decreased according to the TP level in diets (p<0.01). These results indicated that TP could be absorbed into tissues from diets and finally into cell. The intracellular TP and it metabolites suppressed the oxides reaction of fat, but it protecting function was exerted through some signaling pathway by itself and its metabolites, other than via interacted with some antioxidant system.
引文
1.曹兵海,张秀萍,呙于明.半纯合日粮添加茶多酚和果寡糖对母肉鸡生产性能、盲肠菌丛数量及其代谢产物的影响.中国农业大学学报,2003,8(2):85-90
    2.何冰,陈小夏,李娟好,伍爱蝉.茶多酚对老化相关酶GSH-Px.SOD及代谢产物过氧化脂质的影响.广东药学院学报,1996,12(2):74-77
    3.胡忠泽,金光明,刘海,朱辉.茶多酚对肉鸡脂肪代谢的影响及作用机制.南京农业大学学报,2006,29(2):85-88
    4.柯永胜,曾蘅,徐晓华,芮世宝,杨洁,纪勤炯,赵振动.茶多酚对原发性高血压患者氧自由基和血液流变学的影响.中国中西医结合杂志,1997,17(4):221-223
    5.李丽萍,柯永胜.茶多酚体内外抗血小板聚集作用的初步观察.皖南医学院学报,1997,16(2):141-142
    6.李翔.糙米型饲粮对鹅鸭肥肝性能影响及朗德鹅肥肝脂肪沉积规律的研究.博士学位论文,中国武汉,华中农业大学,2004
    7.李玉京,李自银,李振声.真核生物mRNA差显技术(Differential Display)的研究进展.生物技术通报,1998,5:23-30
    8.林亲录,施兆鹏,刘湘新,许建平,孙志良,谭超.儿茶素和表儿茶素对动物血脂的影响.中国食品学报,2002,2(3):16-20
    9.刘静波.茶多酚对动物血清血脂和载脂蛋白水平的影响和抗氧化作用.茶叶科学,2000,20(1):67-70
    10.刘祥友.鹅肥肝预饲饲料粗纤维水平和朗德鹅及溆浦鹅肥肝脂肪沉积规律的研究.博士学位论文,中国武汉,华中农业大学,2005
    11.刘晓华,郜卫华,陈喜斌,马涛,王定发,夏瑜,王春芳.茶多酚对肉仔鸡(公鸡)脂类代谢和免疫机能的影响.粮食与饲料工业,2003,11:31-33
    12.彭章平,程普新,葛瑶,白箐.茶多酚对血液有形成分影响的临床研究.中国疗养医学.2001,10(5):43-44
    13.齐广海,郑君杰,尹靖东,武书庚,刁其玉,张萍.类黄酮物质对蛋鸡抗氧化和脂质代谢的影响.营养学报,2002,24(2):153-157
    14.阮绍玲,雷丹青.茶多酚制剂对病人红细胞SOD和LPO水平的影响.广西医科大学学报,1994,11(1):81-82
    15.沈新南,陆瑞芳,唐金发,陈瑞锋.茶多酚降血脂抗血栓作用的实验研究.营养学报,1993,15(2):147-151
    16.汪水平,王文娟.新型饲料添加剂茶多酚的研究进展.饲料工业,2003,24(5): 20-22
    17.王东晓,周玫,陈暖.茶多酚、桑青素对LDL氧化修饰的抑制作用.天津医药.1995,23(6):354-355
    18.邢桂春,张成岗,魏汉东等.采用RACE技术获得全长人新基因MAGE-D1.中国生物化学与分子生物学报(Chinese Journal of Biochemistry and Molecular Biology),2001,17(2):203-208
    19.徐红,钱宝庆,钱慧玲,李玲英,任自力.茶多酚调脂及对血液流变学影响的临床观察.浙江中医杂志,1998(7):329-330
    20.曾凡同等,养鹅全书,四川:四川科技出版社,1997.1
    21.张慧英,冯耀华,董文忠,赵九恩,翼箐荃,李宝红,张国英,张跃先.贲门癌患者血液凝固性变化以及茶多酚对其作用.中国病理生理杂志,1998,14(2):183-186
    22.张开泰,李刚,葛世丽.生物素标记文库筛选与cDNA快速终末端扩增技术克隆HRNT-1新基因.癌症,2000,19(9):939-942
    23.张文海,赵湘,董学锋,戚世伟,袁国荣,樊敏.心脑健胶囊治疗高脂血症的临床研究.浙江中西医结合杂志,1998,6(4):200-201
    24.张子仪主编.中国饲料学.北京:农业出版社,2000:262-265
    25.郑青山,桂常青,架家杰,曾照宏,柯永胜.茶多酚治疗鹤鹑高血脂模型的实验研究.现代应用药学,1994,11(6):8-10
    26.郑荣梁.自由基生命科学研究进展.VOL8.原子能出版社,2000,11:56-59
    27.中国家禽品种志编写组中国家禽品种志上海:上海科技出版社,1986
    28. Agellon L B, Cheema S K. The 3'-untranslated region of the mouse cholesterol 7alpha-hydroxylase mRNA contains elements responsive to post-transcriptional regulation by bile acids. Biochem J, 1997, 328(Pt2): 393-399
    29. Agellon L B, Drover V A, Cheema S K, Gbaguidi G F, Walsh A. Dietary cholesterol fails to stimulate the human cholesterol 7ahydroxylase gene (CYP7A1) in transgenic mice. J Biol Chem, 2002, 277: 20131-20134
    30. Agullo G, Gamet-Payrastre L, Manenti S, Viala C, Remesy C, Chap H, Payrastre B. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol, 1997, 53: 1649-1657
    31. Ahmad N, Mukhtar H. Green tea polyphenols and cancer: biologic mechanisms and practical implications. Nutr Rev, 1999, 57: 78-83
    32. Alissana Ester Iakmiu Camargo, Danielle Alessandra Erdei Daguer, Decio Sabbatini Barbosa. Green tea exerts antioxidant action in vitro and its consumption increases total serum antioxidant potential in normal and dyslipidemic subjects. Nutrition Research, 2006,26: 626-631
    
    33. Baker D M, Wang S L, Bell D J, Drevon C A, Davis R A. One or more labile proteins regulate the stability of chimeric mRNAs containing the 3'-untranslated region of cholesterol-7alpha -hydroxylase mRNA. J Biol Chem, 2000,275(26): 19985-19991
    
    34. Bansal M P, Mukhopadhyay T, Scott J, Cook R G, Mukhopadhyay R, Medina D. DNA sequencing of a mouse liver protein that binds selenium: implications for selenium's mechanism of action in cancer prevention. Carcinogenesis, 1990, 11: 2071-2073
    
    35. Bansal M P, Obom C J, Danielson K G, Medina D. Evidence for two selenium-binding proteins distinct from glutathione peroxidase in mouse liver. Carcinogenesis, 1989, 10: 541-546
    
    36. Barton M C. Influences along the path to maturity: regulation of cellular levels of RNA. Biochim Biophys Acta, 2006, 1759(8-9): 385-387
    
    37. Belfiore F, Iannello S. Fatty acid synthesis from glutamate in the adipose tissue of normal subjects and obese patients: an enzyme study. Biochem Mol Med, 1995, 54: 19-25
    
    38. Bevan M, Bancroft L, Bent E, Love K, Goodman H, Dean C, Berqkamp R, Dirkse W, et al. Analysis of 1.9Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 1998, 391(6666): 485-488
    
    39. Biardi L, Krisans S K. Compartmentalization of cholesterol biosynthesis: Conversion of mevalonate to farnesyl diphosphate occurs in the peroxisomes. J Biol Chem, 1996, 271: 1784-1788
    
    40. Birt D F, Lawson T A, Julius A D, Runice C E, Salmasi S. Inhibition by dietary selenium of colon cancer induced in the rat by bis(2-oxopropyl)nitrosamine. Cancer Res, 1982,42:4455-4459
    
    41. Bode A M, Dong Z. Signal transduction pathways: targets for chemoprevention of skin cancer. Lancet Oncol, 2000, 1:181-188
    
    42. Bogin E, Avidar J, Merom M, Israeli B, Malkinson M, Soback S, Kudler Y. Biochemical changes associated with fatty liver in geese. Avian Pathol, 1984, 13: 683-701
    
    43. Bogin E, Avidar J, Rivetz B, Israeli B. Fatty liver in fattened geese. Enzyme profile of liver and serum. Zbl Vet Med, 1978, 25: 727-733
    
    44. Bogin E. Biochemical changes associated with fatty liver in geese. Avian-Pathology, 1984, 13(4): 683-701
    45. Borek C, Ong A, Maso H, Donahue L, Biaglow J E. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms. Proc Nail Acad Sci, USA, 1986, 83: 1490-149
    
    46. Bors W, Michel C, Stettmaier K. Structure-activity relationships governing antioxidant capacities of plant polyphenols. Methods Enzymol, 2001, 335: 166-180
    
    47. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998;56:317- 33
    
    48. Brown M S, Goldstein J L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA, 1999, 96: 11041-11048
    
    49. Burk R F, Gregory P E. Some characteristics of ~(75)Se-P, a selenoprotein found in rat liver and plasma, and comparison of it with selcnoglutathione peroxidase. Arch Biochem Biophys, 1982, 213 (1): 73-80
    
    50. Burt D W, Law A S. Evolution of the transforming growth factor-beta superfamily. Prog Growth Factor Res, 1994,5: 99-118
    
    51. Camacho M, Rodriguez-Arhedo A, Ronete M J. NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Halolferax volcanii: cloning, sequence, determination and overexpression in Escherichia coli. FEMS Microbiol Lett, 2002, 209:155
    
    52. Caniggia I, Taylor C V, Ritchie J W, Lye S J, Letarte M. Endoglin regulates trophoblast dierentiation along the invasive pathway in human villous explants Placenta. J Immunol, 1997, 138: 4977-4988
    
    53. Carginale V, Maria G, Capasso C, Ionata E, Lacara F, Pastore M, Bertaccini A. Identification of genes expressed in response to phytoplasma infection in leaves of Prunus armeniaca by messenger RNA differential display. Gene, 2004, 332: 29-34
    
    54. Chang G G, Tong L. Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry, 2003, 42 (44): 12721-12733
    
    55. Chang P W, Tsui S K , Liew C, Lee C C, Waye M M, Fung K P. Isolation, Characterization, and Chromosomal Mapping of a Novel cDNA Clone Encoding Human Selenium Binding Protein. Journal of Cellular Biochemistry, 1997, 64: 217-224
    
    56. Cheifetz S, Bassols A, Stanley K, Ohta M, Greenberger J, Massague J. Heterodimeric transforming growth factor beta. Biological properties and interaction with three types of cell surface receptors. J Biol Chem, 1988, 263 (22): 10783-10789
    
    57. Cheifetz S, Hernandez H, Laiho M, Dijke P T, Iwata K K, Massague J. Distinct transforming growth factor-β (TGF-β) receptor subsets as determinants of cellular responsiveness to three TGF-β isoforms. The journal of biological chemistry, 1990, 265 (33): 20533-20538
    
    58. Cheifetz S, Weetherbee J A, Tsang M L S, Anderson J K, Mole J E, Lucas R, Massague J. The transforming growth factor-beta system, a complex pattern of cross-reactive ligands and receptors. Cell, 1987,48 (3): 409-415
    
    59. Chen R D, Gddal P. Structure, functions and regulation of NAD and NADP dependent isocitrate dehydrogenases in higher plants and in other organisms. Plant Physiol Biochem, 1990,28: 411
    
    60. Chiang J Y L, Kimmel R, Weinberger C, Stroup D. FXR responds to bile acids and represses cholesterol 7a-hydroxylase gene (CYP7A1) transcription. J Biol Chem, 2000,275: 10918-10924
    
    61. Chiang J Y L, Stroup D. Identification and characterization of a putative bile acid responsive element in cholesterol 7a-hydroxylase gene promoter. J Biol Chem, 1994, 269:17502-17507
    
    62. Chiang J Y, Kimmel R, Stroup D. Regulation of cholesterol 7ahydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRa). Gene, 2001, 262: 257-265
    
    63. Chiang J Y. Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocr Rev, 2002, 23(4): 443-463
    
    64. Chiang J Y. Bile acid regulation of hepatic physiology: III. Bile acids and nuclear receptors. Am J Physiol Gastrointest Liver Physiol. 2003, 284(3): 349-356
    
    65. Chiang J Y. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol, 2004,40(3): 539-551
    
    66. Clark D A, Flanders K C, Hirte H, Dasch J R, McAnulty R, McAnulty R J, Laurent G J. Characterization of murine pregnancy decidua trans-forming growth factor bI. Transforming growth factor b2-like molecules of unusual molecular size released in bioactive form. Biol Reprod, 1995, 521: 380-1388
    
    67. Collins F, Galas D. A new five-year plan for the U.S Human Genome Project. Science, 1993,262:43-46
    
    68. Conseil G, Baubichon-Cortay H, Dayan G, Jault J M, Barron D, Di Pietro A. Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc Natl Acad Sci, USA, 1998, 95: 9831-9836
    
    69. Crestani M, Sadeghpour A, Stroup D, Gali G, Chiang J Y L. Transcriptional activation of the cholesterol 7a-hydroxylase gene (CYP7A) by nuclear hormone receptors. J Lipid Res, 1998, 39: 2192-2200
    
    70. Crestani M, Stroup D, Chiang J Y. Hormonal regulation of the cholesterol 7 alpha-hydroxylase gene (CYP7). J Lipid Res, 1995, 36 (11): 2419-2432
    
    71. Croes K, Casteels M, De Hoffmann E, Mannaerts G P, Van Veldhoven P P. Alpha-oxidation of 3-methyl-substituted fatty acids in rat liver. Production of formic acid instead of CO2, cofactor requirements, subcellular localization and formation of a 2-hydroxy-3-methylacyl-CoA intermediate. Eur J Biochem, 1996,240: 674-683
    
    72. Danielson K G, Medina D. Distribution of sctenoproteins in mouse mammary epithelial cells in vitro and in vivo. Cancer Res, 1986,46: 4582 -458
    
    73. Davail S, Guy G, Andre J M. Metabolism in two breeds of geese with moderate or large overfeeding induced liver steatosis. Comp Bioche Physiology, 2000, 135: 663-675
    
    74. DavaiLS, Guy G, Andre J M. Metabolism in two breeds of geese with moderate or large overfeeding induced liversteatosis. Comp Biochem Biophys, Part B, 2000, 135: 663-675
    
    75. De Fabiani E, Mitro N, Anzulovich A C, Pinelli A, Galli G, Crestani M. The negative effects of bile acids and tumor necrosis factora on the transcription of cholesterol 7a-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4. A novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors. J Biol Chem, 2001,276: 30708-30716
    
    76. Derynck R, Zhang Y. Intracellular signaling: The Mad way to do it. Current Biol, 1996, 63:1226-1229
    
    77. Desvergne B, Jpenberg A I, Devchand P R, Wahli W. The peroxisome proliferator-activated receptors at the cross-road of diet and hormonal signalling. J Steroid Biochem Mol Biol, 1998, 65: 65-74
    
    78. Diatchenko L, Lau Y F C, Campbell A P, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E D, Siebert P D. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996, 93: 6025-6030
    
    79. Ding Z H, Chen Y, Zhou M, Fang Y Z. Inhibitory effect of green tea polyphenols and morin on the oxidative modification of low density lipoprotein. Chinese Jounal of Pharmacology and Toxicology, 1992, 16(4): 263-267
    
    80. Dueland S, Trawick J D, Nenseter M S, Macphee A A, Davis R A. Expression of 7 alpha-hydroxylase in non-hepatic cells results in liver phenotypic resistance of the low density lipoprotein receptor to cholesterol repression. J Biol Chem, 1992, 267(32): 22695-22698
    
    81. Edwards P A, Tabor D, Kast H R, Venkateswaran A. Regulation of gene expression by SREBP and SCAP. Biochim Biophys Acta, 2000,1529: 103-113
    
    82. Ellinghaus P, Wolfrum C, Assmann G, Spener F, Seedorf U. Phytanic acid activates the peroxisome proliferator-activated receptor alpha (PPARalpha) in sterol carrier protein 2-/sterol carrier protein x-deficient mice. J Biol Chem, 1999,274: 2766-2772
    
    83. Ericsson J, Jackson S M, Edwards P A. Synergistic binding of sterol regulatory element-binding protein and NF-Y to the farnesyl diphosphate synthase promoter is critical for sterolregulated expression of the gene. J Biol Chem, 1996, 271: 24359-24364
    
    84. Espenshade P J, Li W P, Yabe D. Sterols block binding of COPII proteins to SCAP, thereby controlling SCAP sorting in ER. Proc Natl Acad Sci, USA, 2002, 99: 11694-11699
    
    85. Fico M E, Poirier K A, Watrach A M, Watrach M A, Milner J A. Differential effects of selenium on normal and neoplastic canine mammary cells. Cancer Res, 1986, 46: 3384-3388
    
    86. Flemetakis E, Agalou A, Kavroulakis N, Dimou M, Martsikovskaya A,Slater A, Spaink H P, Roussis A, Katinakis P. Lotus japonicus gene Ljsbp is highly conserved among plants and animals and encodes a homologue to the mammalian selenium-binding proteins. Mol Plant Microbe Interact, 2002, 15 (4): 313-22
    
    87. Fournier E, Peresson R, Guy G, Hermier D. Relationships between storage and secretion of hepatic lipids in two breeds of geese with different susceptibility to liver steatosis. Poult Sci, 1997, 76 (4): 599-607
    
    88. Fransen M, Van Veldhoven P P, Subramani S. Identification of peroxisomal proteins by using M13 phage protein VI phage display: molecular evidence that mammalian peroxisomes contain a 2,4-dienoyl-CoA reductase. Biochem J, 1999, 340: 561-568
    
    89. Frenkel R. Regulation and physiological functions of malic enzymes. Curr Top Cell Regul, 1975,9: 157-181
    
    90. Frohman M A, Dush M K, Martin G R. Rapid production of full - length cDNAs from rare transcripts : am2 plification using a single gene - specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA, 1988, 85:8998-9002
    
    91. Gabarrou J F, Salichon M R. Hybrid ducks overfed with boiled corn develop an acute hepaticsteatosis with decreased choline and polyunsaturated fatty acid level in phospholipid. Reprod Nutr Dev, 1996, 36: 473-484
    
    92. Galperin M Y. The Molecular Biology Database Collection: 2006 update. Nucleic Acids RES, 2006, 34: D305
    
    93. Geisbrecht B V, Gould S J. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J. Biol. Chem, 1999, 274(43): 30527-30533
    
    94. Geisbrecht B V, Gould S J. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J Biol Chem, 1999, 274 (43): 30527-30533
    
    95. Geisbrecht B V, Liang X, Morrell J C, Schulz H, Gould S J. The mouse gene PDCR encodes a peroxisomal delta(2), delta(4)-dienoyl-CoA reductase. J Biol Chem, 1999, 274 (36): 25814-20
    
    96. Girard J, Perdereau. Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J, 1994, 8: 36-42
    
    97. Glatt S J, Everall I P, Kremen W S, Corbeil J, Sasik R, Khanlou N, Han M, Liew C C, Tsuang M T. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA, 2005, 102(43): 15533-8
    
    98. Goldstein J L, Rawson R B, Brown M S. Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch Biochem Biophys, 2002, 397: 139-148
    
    99. Graycar J L, Miller D A, Arrick B A, Lyons R M, Moses H L, Derynck R. Human transforming growth factor-beta 3: recombinant expression, purification, and biological activities in comparison with transforming growth factors-beta 1 and -beta 2. Mol Endocrinol, 1989, 3 (12): 1977-1986
    
    100.Griffin H D, Butterwith S C. Contribution of lipoprotein lipase to differences in fatness between Broiler and layer-strain chickens. Br Poult Sci, I 987, 28: 197-206
    
    101.Gruenwedel D W, Cruickshank M K. The influence of sodium selenite on the viability and intracellular synthetic activity (DNA, RNA and protein synthesis) of the HeLa S3 cells. Toxicoi Appl Pharmacol, 1979, 50: 1-7
    
    102.Guan G, Dai P H, Shechter I. Differential transcriptional regulation of the human squalene synthase gene by sterol regulatory element-binding proteins (SREBP) la and 2 and involvement of 5'DNA sequence elements in the regulation. J Biol Chem, 1998, 273:12526-35
    
    103.Guy G, Hermier D, Meat production and force-feeding ability of different types of ducks. 1st World Waterfowl Symposium. Taichung, Taiwai: December 1-4, 1999,462-468
    104.Halliwell B, Zhao K, Whiteman M. The gastrointestinal tract: a major site of antioxidant action? Free Radic Res, 2000,33: 819-830
    105.Haselbeck R J, McAlister-Henn L. Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. J. Biol. Chem, 1993, 268(16): 12116-12122
    106.Hawkes W C, Wilhelmsen E C, Tappel A L. Abundance and tissue distribution of selenocysteine containing proteins in the rat. J Inorg Biochem, 1985, 23 (2): 77-92
     107.Hayhurst G P, Lee Y H, Lambert G, Ward J M, Gonzalez F J. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol, 2001,21: 1393-1403
    108.Hazelwood R L. Pancreatic hormones, insulin/glucagons molar ratio and somatostatin as determinants of avian carbohydrate metabolism. J Exp Zool, 1984, 232: 647-652
    109.Heid C A, Stevens J, Livak K J, Williams P M. Real time quantitative PCR. Genome Res, 1996, 6: 986-994
     110.Heim M, Johnson J, Boess F, Bendik I, Weber P, Hunziker W, Fluhmann B. Phytanic acid, a natural peroxisome proliferator-activated receptor (PPAR) agonist, regulates glucose metabolism in rat primary hepatocytes. FASEB J, 2002, 16: 718-720
    111.Heller P, Best W R, Nelson R B, Becktel J. Clinical implications of sickle-cell trait and glucose-6-phosphate dehydrogenase deficiency in hospitalized black male patients. N Engl J Med, 1979, 300: 1001-1005
    112.Henke B, Girzalsky W, Berteaux-Lecellier V, Erdmann R. IDP3 encodes a peroxisomal NADP-dependent isocitrate dehydrogenase required for the beta-oxidation of unsaturated fatty acids. J. Biol. Chem. 1998, 273(6): 3702-3711
    113.Hermier D, Rousselot-Pailley D, Peresson R, Sellier N. Influence of orotic acid and estrogen on hepatic lipid storage and secretion in the goose susceptible to liver steatosis. Biochim Biophys Acta, 1994, 1211: 97-106
    114.Hermier D, Saadoun A, Salichon M R, Sellier N, Rousselot-Paillet D, Champman M J. Plasma lipoproteins and liver lipids in two breeds of geese with different susceptibility to hepatic steatosis: changes induced by development and force-feeding. Lipids, 1991,26(5): 331-339
    115.Hermier D, Salichon M R, Guy G, Peresson P. Differential channeling of liver lipids in relation to hepatic steatosis in the geese. Poultry-science, 1999, 78(10): 1398-1406
    116.Hodnett D W, Fantozzi D A, Thurmond D C, Klautky S A, MacPhee K G, Estrem S T, Xu G, Goodridge A G. The chicken malic enzyme gene: structural organization and identification of triiodothyronine response elements in the 5'-flanking DNA. Archives Biochemistry Biophysics, 1996, 334 (2): 309-324.
    117.Holland P M, Abramson R D, Watson R, Gelfand D H. Detection of specific polymerase chain reaction product by utilizing the 5'-3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci, 1991, 88: 7276-7280
    118.Holt J A, Luo G, Billin A N, Bisi J, McNeill Y Y, Kozarsky K F, et al. Definition ofa novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev, 2003, 17: 1581-1591
    119.Hori M, Ariyoshi N, Yamada H, Oguri K. Effect of co-planar polychlorinated biphenyl on the hepatic glutathione peroxidase redox system in rats and guinea pigs. Fukuoka Acta Med, 1997, 88: 144-148
    120.Horton J D, Goldstein J L, Brown M S. SREBPs: activators of the complete programof cholesterol and fatty acid synthesis in the liver. J Clin Invest, 2002, 109: 1125-1131
    121.Horvath P M, Ip C. Synergistic effect of vitamin E and selenium in the chemoprevention of mammary carcinogenesis in rats. Cancer Res, 1983, 43: 5335-5341
    
    122.Hsu RY. Pigeon liver malic enzyme. Mol Cell Biochem, 1982, 43: 3-26
    123.Hua X, Nohturfft A, Goldstein J L, Brown M S. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell, 1996, 87: 415-426
    124.Hubank M, Schatz D G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res, 1994, 22(25): 5640-5648
    125.Ip C, Medina D. Current concepts of selenium and mammary tumorigenesis. In Medina D, Kidwell W, Heppner G H, Anderson E. Cellular and Molecular Biology of Mammary Cancer. Plenum Press, NY, 1987, pp: 479-494
    126.Ip C, White G. Mammary cancer chemoprevention by inorganic and organic selenium: single agent treatment or in combination with vitamin E and their effects on in vitro immune functions. Carcinogenesis, 1987, 8: 1763-1766
    127.Ip C. Selenium and experimental cancer. Ann din Res, 1986, 18: 22-29
    128.Ishida T, Tasaki K, Fukuda A, Ishii Y, Oguri K. Induction of a cytosolic 54kDa protein in rat liver that is highly homologous to selenium-binding protein. Environmental Toxicology and Pharmacology, 1998, 6: 249-255
    129.Ishii Y, Hatsumura M, Ishida T, Ariyoshi N, Oguri K. A coplanar PCB induces a selenium binding protein as a major cytosolic protein in rat liver. Chemosphere, 1996, 32 (3): 509-515
    
    130.Jackson S M, Ericsson J, Mantovani R, Edwards P A. Synergistic activation of transcription by nuclear factor Y and sterol regulatory element binding protein. J Lipid Res, 1998,39: 767-776
    
    131.Jackson S M, Ericsson J, Osborne T F, Edwards P A. NF-Y has a novel role in sterol-dependent transcription of two cholesterogenic genes. J Biol Chem, 1995, 270: 21445-21448
    
    132.Jacobs M M, Frost C F, Beams F A. Biochemical and clinical effects of selenium on dimethylhydrazine-induced colon cancer in rats. Cancer Res, 1981,41: 4458-4465
    
    133.Jansen G A, Mihalik S J, Watkins P A, Moser H W, Jakobs C, Denis S, Wanders R J. Phytanoyl-CoA hydroxylase is present in human liver, located in peroxisomes, and deficient in Zellweger syndrome: direct, unequivocal evidence for the new, revised pathway of phytanic acid alpha-oxidation in humans. Biochem Biophys Res Commun, 1996,229: 205-210
    
    134.Jennings G, Sechi S, Stevenson P M, Tuckey R C, Parmelee D, McAister-Henn L. Cytosolic NADP(+)-dependent isocitrate dehydrogenase. Isolation of rat cDNA and study of tissue-specific and developmental expression of mRNA. J. Biol. Chem, 1994, 269:23128-23134
    
    135. Jo S H, Son M K, Koh H J, Lee S M, Song I H, Kim Y O, Lee Y S, Jeong K S, Kim W B, Park J W, Song B J, Huh T L. Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J. Biol Chem, 2001,276(19): 16168-16176
    
    136.Kandaswami C, Middleton E Jr. Free radical scavenging and antioxidant activity of plant flavonoids. Adv Exp Med Bio, 1994, 366: 351-76
    
    137.Keller G A, M C Barton, D J Shapiro, S J Singer. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase is present in peroxisomes in normal rat liver cells. Proc Natl Acad Sci, USA, 1985, 82: 770-774
    
    138.Keller G A, Pazirandeh M, Krisans S. 3-Hydroxy-3-methylglutaryl coenzyme A reductase localization in rat liver peroxisomes and microsomes of control and cholestyramine-treated animals: quantitative biochemical and immunoelectron microscopical analyses. J Cell Biol, 1998, 6 (3): 875-886
    
    139.Kerr T A, Saeki S, Schneider M, Schaefer K, Berdy S, Redder T, et al. Loss of nuclear receptor shp impairs but does not eliminate negative feedback regulation of bile acid synthesis. Dev Cell, 2002,2: 713-720
    140.Kim S Y, Park J W. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase. Free Radic Res, 2003, 37(3): 309-316
    141.Kitareewan S, Burka L T, Tomer K B, Parker C E, Deterding L J, Stevens R D, Forman B M, Mais D E, Heyman R A, Mc-Morris T, Weinberger C. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR. Mol Biol Cell, 1996, 7: 1153-1166
    142.Kondaiah P, Sands M J, Smith J M, Fields A, Roberts A B, Sporn M B, Melton D A. Identification of a novel transforming growth factor-beta (TGF-beta 5) mRNA in Xenopus laevis. J Biol Chem, 1990, 265 (2): 1089-1093
    143.Kondo S, Isobe K, Ishiguro N, Nakashima I, Miura T. Transforming growth factor-b1 enhances the generation of allospeci cytotoxic T-lymphocytes. Immunology, 1993, 79: 459-464
    144.Kong A N, Yu R, Chen C, Mandlekar S, Primiano T. Signal transduction events elicited by natural products: role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch Pharm Res, 2000, 23: 1-16
    
    145.Krisans S K. Cell compartmentalization of cholesterol biosynthesis. Ann N Y Acad Sci, 1996, 804: 142-164
    146.Lance C, Rustin P. The central role of malate in plant metabolism. Physiol Veg, 1984, 22: 625-641
    147.Lane H W, Medina D. Mode of action of selenium inhibition of 7, 12-dimethy I benzarahracene induced mouse mammary tumorigenesis. J NatL Cancer Inst, 1985, 75: 675-679
    148.Lee S M, Koh H J, Park D C, Song B J, Huh T L, Park J W. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med, 2002, 32 (11): 1185-1196
    149.Lehmann J M, Kliewer S A, Moore L B, Smith-Oliver T A, Oliver B B, Su J-L, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem, 1997, 272: 3137-3140
    150.Levites Y, Amit T, Youdim M B, Mandel S. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem, 2002, 277 (34): 30574-30580
    151.Lewko W M, McConnell K P. Influence of selenium on the growth of N-nitrosomethylurea induced mammary tumor cells in culture. Proc Soc Exp Biol Med, 1985, 180: 33-38
    152.Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992,257(5072): 967-971
    153.Lisitsyn N, Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science, 1993,259 (5097): 946-951
    154.Liu C, Lustiq A J. Genetic analtsis of Raplp/Sir3p interactions in telomeric and HML silencing in Saccharomyces cerevisiae. Genetics, 1996, 143(1): 81-93
    155.Liu Q, Huang S S, Huang J S. Kinase activity of the type V transforming growth factor b receptor. J Biol Chem, 1994,269: 9221-9226
    156.Liu X Y. Study on crude fibre level of pre-overfeeding feedstuff in geese fatty liver and dynamics of lipid storage in fatty liver of Landes geese and Xupu geese. Ph D Dissertation, 2005, 97-101
    157.Livak K J, Flood S J, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl, 1995, 4: 357-362
    158.Lo A S, Liew C T, Ngai S M, Tsui S K, Fung K P, Lee C Y, Waye M M. Developmental regulation and cellular distribution of human cytosolic malate dehydrogenase (MDH1). J Cell Biochem, 2005,94 (4): 763-773
    159.Loewen C J R, Levine T P. Cholesterol homeostasis: not until the SCAP lady INSIGs. Curr Biol, 2002, 12:779-781
    160.Lucas C G, Ridont J H. Transmethylation and biosynthesis of the methyl group. In: Progress in chemistry of fats and other lipids. London: Pergamon Press, 1967: 102-112
    161.Lunder T L. Catechins of green tea: antioxidant activity. Fourth Chemical congress of North America, New York, Aug, 1991. American Chemical Society SymposiumSeries 507, Washington, 1992, p: 114-1120
    162.Luzzatto L, Mehta A, Vulliamy T. Glucose 6-phosphate dehydrogenase deficiency. In The Metabolic and Molecular Bases of Inherited Diseases. 8th edition. Vol. 3. C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, editors. McGraw-Hill, New York. 2001,4517-4553
    163.Mackay I M, Arden K E, Nitsche A. Real-time PCR in virology. Nucleic Acids Res,2002,30: 1292-1305
    164.Mackay T F. The genetic architecture of quantitative traits. Annu Rev Genet, 2001, 35: 303-339
    165.Magana M M, Koo S H, Towle H C, Osborne T F. Different sterol regulatory element-binding protein-1 isoforms utilize distinct co-regulatory factors to activate the promoter for fatty acid synthase. J Biol Chem, 2000, 275: 4726-4733
    
    166.Marrapodi M, Chiang J Y. Peroxisome proliferator-activated receptor alpha (PPAR alpha) and agonist inhibit cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription. J Lipid Res, 2000,41(4): 514-520
    167.Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol, 1990, 6: 597-641
    168.Massaque J. The TGF-beta family of growth and differentiation factors. Cell, 1987, 49 (4): 437-438
    169.Massimi M, Lear S R, Huling S L, Jones A L, Erickson S K. Cholesterol 7alpha-hydroxylase (CYP7A): patterns of messenger RNA expression during rat liver development. Hepatology, 1998, 28(4): 1064-1072
    170.Medina D, Lane H W, Tracey C M. Selenium and mouse mammary tumorigenesis:an investigation of possible mechanisms. Cancer Res, 1983,43: 2460-2464
    171.Medina D, Morrison D G, Oborn C J. Selenium retention and inhibition of cell growth in mouse mammary epithelial cell lines in vitro. Biol. Trace Element Res, 1985, 8: 19-35
    172.Medina D, Morrison D G. Current ideas on selenium as a chemoprevcntive agent. PathoL Immunopaihol Res, 1988, 7: 187-197
    173.Medina D, Obom C J. Selenium inhibition of DNA synthesis in mouse mammary epithelial cell line YN-4. Cancer Res, 1984,44: 4361-4365
    174.Middleton E Jr, Kandaswami C, Theoharides T C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev, 2000, 52: 673-751
    175.Mihalik S J, Rainville A M, Watkins P A. Phytanic acid alpha-oxidation in rat liver peroxisomes. Production of alphahydroxyphytanoyl-CoA and formate is enhanced by dioxygenase cofactors. Eur J Biochem, 1995, 232: 545-551
    176.Minard K I, McAlister-Henn L. Dependence of peroxisomal beta-oxidation on cytosolic sources of NADPH. J. Biol Chem, 1999, 274 (6): 3402-3406
    
    177.Miyake J H, Wang S L, Davis R A. Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7a-hydroxylase. J Biol Chem, 2000, 275: 21805-21808
    178.Moel L, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brissot P, et al. Antioxidant and iron-chelating activities of the flavonoids catechin, queretin and diosmention on iron-lodaed rat hapatocyte cultures. Biochem Pharmacol, 1993,45: 13-13
    179.Morrison D G, Berdan R C, Pauly D F, Turner D S, Oborn C J, Medina D. Selenium distribution in mammary epithelial cells reveals its possible mechanism of inhibition of cell growth. Anticancer Res, 1988, 8: 51-64
    180.Morrison D G, Dishart M K, Medina D. Intracellular 58-kd selenoprotein levels correlate with inhibition of DNA synthesis in mammary epithelia cells. Carcinogenesis, 1998,9: 1801-1810
    181.Morrison D G, Dishart M K, Medina D. Serine and methionine enhancement of selenhe inhibition of DNA synthesis in a mouse mammary epithelial cell line. Carcinogenesis, 1988,9: 1811-1816
    182.Morrison D G, Pauly D F, Berdan R C, Dishart M K, Turner D S, Oborn C J, Medina J. Mitcchondrial inclusions and mitochondria! respiratory function in sdenite-treated mammary epithelial cell lines. Anticancer Res, 1988, 8: 65-72
    183.Mou L, Miiler H, Li J, Wang E, Chalifour L. Improvements to the differential display method for gene analysis. Biochem Biophys Res Commun, 1994, 199 (2): 564-569
    184.Mourot J, Guy G, Lagarrigue S, Peiniau P, Hermier D. Role of hepatic lipogenesis in the susceptibility to fatty liver in the goose (Anser anser). Comp Biochem Physiol B Biolchem Mol Biol, 2000, 126 (1): 81-87
    185.Mulder M, Lombardi P, Jansen H, Van Berkel T J, Frants R R. Low density lipoprotein receptor internalizes low density and very low density lipoproteins that are bound to heparan sulfate proteoglycans via lipoprotein lipase. J Biol Chem, 1993, 268: 9369-9375
    186.Muramatsu K, Fukuyo M, Hara Y. Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J Nutr Sci Vitainol, 1986, 32(6): 613-622
    187.Murase T, Tanaka K, lwmoto Y, Akanuma Y, Kosaka K. Recciprocal changes causedby insulin and glucagon of adipose tissue lipoprotein lipase in rats in vitro. Horm Metab Res, 1981, 13: 212-213
    188.Nekrutenko A, Hillis D M, Patton J C, Bradley R D, Baker R J. Cytosolic isocitrate dehydrogenase in humans, mice, and voles and phylogenetic analysis of the enzyme family. Mol Biol Evol, 1998, 15 (12): 1674-1684
    189.Nohturfft A, Brown M S, Goldstein J L. Topology of SREBP cleavage-activating protein, a polytopic membrane protein with a sterol-sensing domain. J Biol Chem, 1998,273: 17243-50
    190.Nohturfft A, Yabe D, Goldstein J L, Brown M S, Espenshade P J. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell, 2000, 102:315-323
    191.Norlin M, Andersson U, Bjorkhem I, Wikvall K. Oxysterol 7 alpha-hydroxylase activity by cholesterol 7 alpha-hydroxylase (CYP7A). J Biol Chem, 2000, 275 (44): 34046-34053
    192.Norlin M, Wikvall K. Enzymes in the conversion of cholesterol into bile acids. Current Molecular Medicine, 2007, 7 (2): 199-218
    193.Norlin M. Expression of key enzymes in bile acid biosynthesis during development: CYP7B1-mediated activities show tissue-specific differences. J Lipid Res, 2002, 43 (5): 721-731
    194.Ochoa S, Mehler A H, Kornberg A. Biosynthesis of dicarboxylic acids by carbon dioxide fixation, I. Isolation and properties of an enzyme from pigeon liver catalyzing the reversible oxidative decarboxylation of L-malic acid. J Biol Chem, 1948, 174: 979-1000
    195.Ochoa S, Mehler A, Kornberg A. Reversible oxidative decarboxylation of malic acid. J Biol Chem, 1947, 167: 871-872
    196.Ohta M, Greenberger J S, Anklesaria P, Bassols A, Massague J. Two forms of transforming growth factor-beta distinguished by multipotential haematopoietic progenitor cells. Nature, 1987, 329 (6139): 539-541
    197.Pandak W M, Hylemon P B, Ren S, Marques D, Gil G, Redford K, Mallonee D, Vlahcevic Z R. Regulation of oxysterol 7alpha-hydroxylase (CYP7B1) in primary cultures of rat hepatocytes. Hepatology, 2002, 35 (6): 1400-1408
    198.Patel D D, Knight B L, Soutar A K, Gibbons G F, Wade D P. The effect ofperoxisome-proliferator-activated receptor-alpha on the activity of the cholesterol 7 alpha-hydroxylase gene. Biochem J, 2000, 351(Pt3): 747-753
    199.Peet D J, Turley S D, Ma W, Janowski B A, Lobaccaro J M, Hammer R E, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRa. Cell, 1998, 93: 693-704
    200.Perchellet J P, Abney N L, Thomas R M, Guislain Y L, Perchellet E M. Effects of combined treatments with selenium, glutathione, and vitamin E on glutathione eroxidase activity, ornithine decarboxylase induction, and complete and multistage carcinogenesis in mouse skin. Cancer Res, 1987, 47: 477-485
    201.Porat A, Sagiv Y, Elazar Z. A 56-kDa selenium-binding protein participates in intra-Golgi protein transport. J Biol Chem, 2000, 275 (19): 14457-14465
    202.Powell J. Enhanced concatemer cloning a modification to the SAGE (Serial Analysis of Gene Expression) technique. Nucleic Acids Res, 1998,26 (14): 3445-3446
    203.Prior R L, Cao G. Antioxidant capacity and polyphenolic components of teas: implications for altering in vivo antioxidant status. Proc Soc Exp Biol Med, 1999,220: 255-261
    204.Rice-Evans C A, Miller N J, Paganga G. Structure-antioxidnt activity relationship of flavonoids and phenolic acids. Free radic Bio Med, 1996,20: 933-56
    205.Riddick D S, Lee C, Bhathena A, Timsit Y E, Cheng P Y, Morgan E T, Progh R A, Ripp S L, Miller K K, Jahan A, Chiang J Y. Transcriptional suppression of cytochrome P450 genes by endogenous and exogenous chemicals. Drug Metab Dispos, 2004, 32 (4): 367-375
    206.Riemersma RA, Rice-Evans CA, Tyrrell RM, Clifford MN, Lean MEJ. Tea flavonoids and cardiovascular health. Q J Med 2001 ;94: 277- 82
    207.Rosenstraus M, Chasin L A. Isolation of mammalian cell mutants deficient in glucose-6-phosphate dehydrogenase activity: linkage to hypoxanthine phosphoribosyl transferase. Proc Natl Acad Sci, USA, 1975, 72: 493-497
    208.Rushmore T H, Morton M R, Picket C B. The anti-oxidant responsive element. J Biol Chem, 1991,266:11632-11639
    209.Sakai J, Nohturfft A, Goldstein J L, Brown M S. Cleavage of sterol regulatory element-binding proteins (SREBPs) at site-1 requires interaction with SREBP cleavage activating protein. Evidence from in vivo competition studies. J Biol Chem, 1998, 273:5785-5793
    210.Sakai J, Rawson R B, Espenshade P J, Cheng D, Seegmiller A C, Goldstein J L, Brown M S. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol Cell, 1998, 2: 505-514
    211.Schena M, Shalon D, Heller R, Chai A, Brown P O, Davis R W. Parallel human genome analtsis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci USA, 1996, 93:10614-10619
    212.Schroeter H, Spencer J P, Rice-Evans C, Williams R J. Flavonoids protects neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J, 2001, 358: 547-557
    213.Seyedin S M, Segarini P R, Rosen D M, Thompson A Y, Bents H, Graycar J. Cartilage-inducing factor-B is a unique protein structurally and functionally related to transforming growth factor-beta. J Biol Chem, 1987,262: 1946-1949
    214.Shaw M, Foreman D M, Ferguson M W. Neutralization of TGF-b1 and TGF-b2 or exogenous addition of TGF-b3 to cutaneous rat wound reduces scarring. J Cell Sci, 1995, 108:985-1002
    215.Shechter I, Dai P, Huo L, Guan G. IDH1 gene transcription is sterol regulated and activated by SREBP-1a and SREBP-2 in human hepatoma HepG2 cells: evidence that IDH1 may regulate lipogenesis in hepatic cells. Journal of lipid research, 2003, 44:2169-2180
    216.Shirai M, Moon J H, Tsushida T, Terao J. Inhibitory effect of a quercetin metabolite, quercetin 3-O-beta-D-glucuronide, on lipid peroxidation in liposomal membranes. J Agric Food Chem, 2001,49: 5602-5608
    217.Sinal C J, Tohkin M, Miyata M, Ward J M, Lambert G, Gonzalez F J. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell, 2000, 102:731-744
    218.Sompaysac L, Jane S, Bum T C. Overcoming limitations of the mRNA differential display technique. Nucleic Acids Res, 1995, 23: 4738-4739
    219.Song K H, Chiang J Y. Glucagon and cAMP inhibit cholesterol 7alpha-hydroxylase (CYP7A1) gene expression in human hepatocytes: discordant regulation of bile acid synthesis and gluconeogenesis. Hepatology, 2006,43 (1): 117-125
    220.Spencer J P E, Abd El Mohsen M M, Rice-Evans C. Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity. Arch Biochem Biophys, 2003
    221.Spencer J P E, Schroeter H, Crossthwaithe A J, Kuhnle G, Williams R J, Rice-Evans C. Contrasting influences of glucuronidation and O-methylation of epicatechin on hydrogen peroxide-induced cell death in neurons and fibroblasts. Free Radic Biol Med, 2001, 31:1139-1146
    222.Spencer J P, Kuhnle G G, Williams R J, Rice-Evans C. Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. Biochem J, 2003, 372: 173-181
    
    223.Spencer J P, Schroeter H, Crossthwaithe A J, Kuhnle G, Williams R J, Rice-Evans C. Contrasting influences of glucuronidation and O-methylation of epicatechin on hydrogen peroxide-induced cell death in neurons and fibroblasts. Free Radic Biol Med, 2001, 31: 1139-1146
    224.Steckebroeck S, Watzka M, Lutjohann D, Makiola P, Nassen A, Hans W H J, Clusmann H, Reissinger A, Ludwig M, Siekmann L, Klingmuller D. Characterization of the dehydroepiandrosterone (DHEA) metabolism via oxysterol 7alpha-hydroxylase and 17-ketosteroid reductase activity in the human brain. J Neurochem, 2002, 83 (3): 713-726
    225.Stravitz R T, Rao Y P, Vlahcevic Z R, Gurley E C, Jarvis W D, Hylemon P B. Hepatocellular protein kinase C activation by bile acids: implications for regulationof cholesterol 7a-hydroxylase. Am J Physiol, 1996,34: G293-G303
    226.Stravitz R T, Vlahcevic Z R, Gurley E C, Hylemons P B. Repression of cholesterol 7a-hydroxylase transcription by bile acids is mediated through protein kinase C in primary cultures of rat hepatocytes. J Lipid Res, 1995, 36: 1359-1368
    227.Stroup D, Chiang J Y L. HNF4 and OUP-TFII interact to modulate transcription of the cholesterol 7a-hydroxylase gene (CYP7A). J Lipid Res, 2000,41:1-11
    228.Stroup D, Crestani M, Chiang J Y L. Identification of a bile acid response element in the cholesterol 7a-hydroxylase gene (CYP7A). Am J Physiol, 1997,273: G508-G517
    229.Stroup D, Ramsaran J R. Cholesterol 7alpha-hydroxylase is phosphorylated at multiple amino acids. Biochem Biophys Res Commun, 2005, 329 (3): 957-965
    230.Tijburg L, Wiseman SA, Meijer GW, Weststrate JA. Effects of green tea, black tea and dietary lipophilic antioxidants on LDL oxidizability and atherosclerosis in hypercholesterolaemic rabbits. Atherosclerosis 1997;135:37- 47
    231.Town M, Athanasiou-Metaxa M, Luzzatto L. Intragenic interspecific complementation of glucose 6-phosphate dehydrogenase in human-hamster cell hybrids. Somat Cell Mol Genet, 1990, 16: 97-108
    232.Van Roermund C W, Hettema E H, Kal A J, van den Berg M, Tabak H F, Wanders R J. Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions. EMBO J. 1998, 17 (3): 677-687
    233.Vance J E, Vance D E. the role of phosphatidylcholine biosynthesis in the secretion of lipoproteins from hepatocytes. Can J Biol, 1985,63: 870-881
    234.Velculescu V E, Zhang L, Vogelstein B, Kinzler K W. Serial analysis of gene expression. Science, 1995, 270: 484-487
    235.Verhoeven N M, Jakobs C. Human metabolism of phytanic acid and pristanic acid. Prog Lipid Res, 2001, 40: 453-466
    236.Vlahcevic Z R, Pandak M P, Stravitz R T. Regulation of bile acid biosynthesis. Gastroenterol Clin North Am, 1999, 28 (1): 1-25
    237.Wanders R J, Tager J M. Lipid metabolism in peroxisomes in relation to humandisease. Mol Aspects Med, 1998, 19: 69-154
    238.Watrach A M, Milner J A, Watrach M A, Poirier K A. Inhibition of human breast cancer cells by selenium. Cells Lett, 1984, 25: 41-47
    239.Webber M M, Perez-Ripoll E A, James G T. Inhibitory effects of selenium on the growth of DU-145 human prostate carcinoma cells in vitro. Biochem Biophys Res Comnwn, 1985, 130: 603-609
    240.Weisburger J H. Tea and health: the underlying mechanisms. Proc Soc Exp Biol Med, 1999, 220: 271-275
    241.Winkler B S, DeSantis N, Solomon F. Multiple NADPH-producing pathways control glutathione (GSH) content in retina. Exp Eye Res, 1986,43: 829-847
    242.Wittwer C T, Ririe K M, Andrew R V, David D A, Gundry R A, Balis U J. The Light Cycler: A microvolume multi-sample fluorimeter with rapid temperature control. Bio Techniques, 1997,22: 176-181
    243.Yabe D, Brown M S, Goldstein J L. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc Natl Acad Sci, USA, 2002, 99: 12753-12758
    244.Yang E S, Richter C, Chun J S, Huh T L, Kang S S, Park J W. Inactivation of NADP(+)-dependent isocitrate dehydrogenase by nitric oxide. Free Radic Biol Med, 2002, 33 (7): 927-937
    245.Yang J G, Morrison-Plummer J, Burk R F. Purification and quantitation of a rat plasma selenoprotein distinct from glutathione peroxidase using monoclonal antibodies. J Biol Chem, 1987, 262 (27): 13372-13375
    246.Yang M, Sytkowski A J. Differential expression and androgen regulation of the human selenium-binding protein gene SBP56 in prostate cancer cells. Cancer Res, 1998, 58 (14): 3150-3153
    247.Yang T, Espenshade P J, Wright M E, Yabe D, Gong Y, Aebersold R, Goldstein J L, Brown M S. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell, 2002, 110:489-500
    248.Yang Z R, Zhang H L, Hung H C, Kuo C C, Tsai L C, Yuan H S, Chou W Y, Chang G G, Tong L. Structure studies of the pigeon cytosolic NADP~+-dependent Malic Enzyme. Protein sci, 2002, 11: 332-341
    249.Yao Z M, Vance D E. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J Boil Chem, 1988, 263: 2998-3004
    250.Yokoyama C, Wang X, Briggs M R, Admon A, Wu J, Hua X, Goldstein J L, Brown M S. SREBP-1, a basic-helix-loophelix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell, 1993, 75: 187-197
    251.Yoshihara T, Hamamoto T, Munakata R, Tajiri R, Ohsumi M, Yokota S. Localization of cytosolic NADP-dependent isocitrate dehydrogenase in the peroxisomes of rat liver cells: biochemical and immunocytochemical studies. J. Histochem Cytochem, 2001,49(9): 1123-1131
    252.Zegzouti H, Marty C, Jones B, Bouquin T, Latche A, Pech J C, Bouzayen M. Improved screening of cDNAs generated by mRNA differential display enables the selection of true positives and the isolation of weakly expressed messages. Plant Mol Biol Rep, 1997, 15:236-245
    253.Zhang C K, Lang P, Dane F, Ebel R C, Singh N K, Locy R D, Dozier W A. Cold acclimation induced genes of trifoliate orange (Poncirus trifoliate). Plant Cell Rep, 2005,23 (10-11): 764-769

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700