HCMV主要立即早期蛋白IE_286相互作用蛋白的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究拟用Pull-Down法从12周龄人胎脑组织中“钓取”与IE_286相互作用的宿主蛋白,以探讨IE_286在HCMV致CNS畸形中的作用机制。
     方法:(1)以pBT-IE_286质粒为模板,PCR法扩增IE_286编码基因UL122,BamHI/NotI双酶切,克隆入载体pGEX-4T-1相应克隆位点,连接,转化入大肠杆菌BL21中,并经PCR、限制性酶切和测序鉴定。(2)重组质粒转化菌于30℃培养条件下经IPTG诱导表达GST-IE_286融合蛋白,融合蛋白经谷胱甘肽-Sepharose 4B柱层析提取纯化,同时对含GST基因的pGEX-4T-1空载体进行诱导表达及纯化,作为对照。(3)取12周龄胎儿脑组织,将其研磨成匀浆,用Pull-Down法筛选与GST-IE_286蛋白相互作用的蛋白。(4)获得稳定表达的蛋白条带,采用四极杆飞行时间串联质谱仪进行蛋白分析。
     结果:(1)成功构建pGEX-4T-1/IE_286诱饵质粒,测序结果与GenBank中序列比对无突变。(2)成功表达并纯化GST-IE_286蛋白及GST蛋白,GST-IE_286蛋白约为92kDa,GST蛋白为26kDa,与预期蛋白大小一致。(3)利用Pull-Down法,从胎儿脑组织中“钓取”了4个IE_286相互作用的蛋白:Ⅱ型角蛋白(K2C1)、Ⅰ型角蛋白(K1C10)、组蛋白H2B以及波形蛋白。
     结论:HCMV IE_286可与12周龄人胎脑组织细胞的Ⅱ型角蛋白(K2C1)、Ⅰ型角蛋白(K1C10)、组蛋白H2B以及波形蛋白相互作用,但其相互作用的生物学意义及其在HCMV感染致胚胎CNS畸形发育中的作用有待进一步研究。
Objective: Proteins interacting with IE_286 from the brain tissue of 12-week-old embryo were screened by Pull-Down assay, to investigate the role of IE_286 in CNS anomalies induced by HCMV congenital infection and its possible mechanisms.
     Methods: (1) UL122 CDS encoding IE_286 was amplified by PCR with pBT-IE_286 plasmid as template, and then the amplification product was digested with restriction endonucleases BamHI and NotI, and cloned into the corresponding sites on bait plasmid pGEX-4T-1. The recombinant was transformed into E. coli BL21. Followed by PCR, restriction and DNA sequence analysis. (2) GST-IE_286 fusion protein was expressed in 30℃for 3-4 hours under 1mM IPTG induction and purified by affinity column chromatography; GST protein was expressed and purified as negative control. (3) Fetal brain tissue from 12-week-old embryo was taking out and grinding into homogenate. The proteins interacting with IE_286 were screened from lysates by Pull-Down assay. (4) Cut the stably expressive protein bands and analysed the proteins with Quatropde-Time of Flight Mass spectrometer.
     Results: (1) The pGEX-4T-1/IE_286 bait plasmid was constructed successfully. The result of DNA sequence analysis was no mutation compared with the sequence in GenBank. (2) GST- IE_286 fusion protein and GST protein were expressed and purified successfully. The protein molecular weight of GST- IE_286 fusion protein was 92kDa, and GST protein was 26kDa, consistent with the expected protein molecular weight. (3) The fetal brain protein which involved with IE_286 has been found by using the method of Pull-Down assay, after mass spectrometry detection, there are four kinds of protein: Keratin, type II cytoskeletal 1, Keratin, type I cytoskeletal 10, Histone, H2B type 1-B and Vimentin.
     Conclusions: HCMV IE_286 may have interaction with four kinds of protein from 12-week-old embryo: Keratin, type II cytoskeletal 1, Keratin, type I cytoskeletal 10, Histone, H2B type 1-B and Vimentin, however, the biological significance and the role of these interaction in fetal congenital anomalies of the central nervous system (CNS) which caused by infection of HCMV need to be further studied.
引文
[1] Gandhi MK, Khanna R. Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments [J]. Lancet Infect Dis, 2004 Dec, 4(12): 725-38.
    [2] Weller TH. The cytomegaloviruses: ubiquitous agents with protean clinical manifestations [J]. N Engl J Med, 1971, 285(4): 203-214.
    [3] Becroft DM. Prenatal cytomegalovirus infection: epidemiology, pathology and pathogenesis [J]. Perspect Pediatr Pathol, 1981, 6: 203-241.
    [4] Frenkel LD, Keys MP, Hefferen SJ, et al. Unusual eye abnormalities associated with congenital cytomegalovirus infection [J]. Pediatrics, 1980, 66(5): 763-766.
    [5] Conboy TJ, Pass RF, Stagno S, et al. Intellectual development in school-aged children with asymptomatic congenital cytomegalovirus infection [J]. Pediatrics, 1986, 77(6): 801-806.
    [6] Fowler KB, Stagno S, Pass RF, et al. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status [J]. N Engl J Med, 1992, 326(10): 702-703.
    [7] Rosenberg HS, Bernster J. New York, Masson. Becroft DM0: prenatal cytomegalovirus infection: epidemiology, pathology, pathogenesis. Perspective in Pediatric Pathology, 1981, 203-241.
    [8] Pass RF, Fowler KB, Boppana SB, et al. Congenital cytomegalovirus infection following first trimester maternal infection: symptoms at birth and outcome [J]. Clin Virol, 2006, 35(2): 216-220.
    [9] Ahlfors K, Ivarsson S A, Harris S. Report on a long-term study of maternal and congenital cytomegalovirus infection in Sweden. Review of prospective studies available in the literature [J]. Scand J Infect Dis, 1999, 31 (5): 443-457.
    [10] Boppana S B, Rivera L B, Fowler K B, et al. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity [J]. N Engl J Med, 2001,344(18): 1366-1371.
    
    [11] Shinmura Y, Kosugi I, Kaneta M, et al. Migration of virus-infected neuronal cells in cerebral slice cultures of developing mouse brains after in vitro infection with murine cytomegalovirus [J]. Acta Neuropathol, 1999, 98: 590-596.
    [12]Kawasaki H,Kosugi I,Arai Y,et al.The amount of immature glial cells in organotypic brain slices determines the susceptibility to murine cytomegalovirus infection[J].Lab Invest,2002,82:1347-1358.
    [13]Kosugi I,Shinmura Y,Kawasaki H,et al.Cytomegalovirus infection of the central nervous system stem cells from mouse embryo:a model for developmental brain disorders induced by cytomegalovirus[J].Lab Invest,2000,80:1373-1383.
    [14]Kosugi I,Kawasaki H,Tshuchida T,et al.Cytomegalovirus infection inhibits the expression of N-methyl-D-aspartate receptors in the developing mouse hippocampus and primary neuronal cultures[J].Acta Neuropathol,2005,109:475-482.
    [15]Fortunato E A,Spector D H.Viral induction of site-specific chromosome damage[J].Rev Med Virol,2003,13(1):21-37
    [16]Fortunato E A,Dell'Aquila M L,Spector D H.Specific chromosome 1 breaks induced by human cytomegalovirus[J].Proc Natl Acad Sci USA,2000,97(2):853-858.
    [17]戴橄,陈利玉,李太存,等.HCMV感染对人神经胶质瘤细胞HOXB1-4及HOXB9基因表达影响的研究[J].中国人兽共患病杂志,2004,20(7):613-616.
    [18]陈利玉,邬国军,王莉莉,等.人类巨细胞病毒感染人胚肺细胞对HOXB 基因表达影响的研究[J].中国人兽共患病杂志,2003,19(3):48-51.
    [19]戴橄,陈利玉,李太存,等.人类巨细胞病毒感染对U251细胞HOXB1基因表达的影响[J].中国现代医学杂志,2003,13(15):7-9.
    [20]陈利玉,戴橄,邬国军,等.HCMV感染对HEL细胞HOXB2,HOXB3,HOXB4及HOX8基因表达的影响[J].中国现代医学杂志,2002,12(23):1-3.
    [21]陈利玉,戴橄,邬国军,等.人类巨细胞病毒感染对人胚肺细胞HOXB1,HOXB5,HOXB6及HOXB9基因表达的影响[J].湖南医科大学学报,2001,26(3):189-191.
    [22]邬国军,陈利玉,戴橄,等.人类巨细胞病毒对神经胶质瘤细胞HOXB5、HOXB6、HOXB7及HOXB8基因表达的影响[J].湖南医科大学学报,2001,26(5):409-411
    [23]Britt WJ,Boppana S.Human Cytomegalovirus Virion Proteins[J].Hum Immunol,2004,65(5):395-402.
    [24]李建华,陈利玉.人巨细胞病毒主要立即早期蛋白功能研究进展[J].实用 预防医学,2006,13(4):1083-1086.
    [25]Basker J F,Smith P P,Ciment G S,et al.Developmental analysis of the cytomegalovirus enhancer in transgenic animals[J].Virol,1996,70(6):3215-3226.
    [26]Li RY,Baba S,Kosugi I,et al.Activation of murine cytomegalovirus immediate-early promoter in cerebral ventricular zone and glial progenitor cells in transgenic mice[J].Glia,2001,35:41-52.
    [27]Benard V,Bokoch GM.Assay of Cdc42,Rac,and Rho GTPase activation by affinity methods[J].Methods Enzymol,2002,345:349-359.
    [28]Chai J,Du C,Wu JW,et al.Structural and biochemical basis of apoptotic activation by Smac/DIABLO[J].Nature,2000,406(6 789),855-862.
    [29]Huang L J,Constantinescu SN,Lodish HF.The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor[J].Mol Cell,2001,8(6):1327-1338.
    [30]Gruber TM,Markov D,Sharp MM,et al.Binding of the initiation factor sigma(70) to core RNA polymerase is a multi-step process[J].Mol Cell,2001,8(1):21-31.
    [31]Bottero V,Rossi F,Samson M,et al.Ikappa b-alpha,the NF-kappa B inhibitory subunit,interacts with ANT,the mitochondrial ATP/ADP translocator[J].J Biol Chem,2001,276(24):21317-21324.
    [32]Ren L,Chang E,Makky K,et al.Glutathione S-transferase pull-down assays using dehydrated immobilized glutathione resin[J].Anal Biochem,2003,15,322(2):164-169.
    [33]李生茂,梁华平,徐祥,等.GST Pull-Down实验鉴定NF-κB相互作用多肽[J].免疫学杂志,2006,22(1):94-97.
    [34]徐智策,茅彩萍,倪鑫,等.胎儿发育生理学.北京:高等教育出版社,2008.
    [35]张建湘,文建国,王铁霞,等.医学胚胎学.北京:科学出版社,2006.
    [36]马向阳,于涯涛,钟世镇,等.巨噬细胞条件培养基促进许旺细胞分泌神经生长因子的实验研究[J].中华显微外科杂志,1999,2(2):120-1.
    [37]胡庆柳,朴英杰,邹飞,等.人发角蛋白导管修复周围神经缺损的实验研究[J].第一军医大学学报,2002;22(9):784-787.
    [38]杨国嵘,黄高异,白海,等.人巨细胞病毒对腮腺导管上皮细胞表型的影响及其机制[J].中华实验和临床病毒学杂志,2005;19(2):132-134.
    [39]刘春艳,孙海晶,陆军,等.组蛋白乙酰化与癌症[J].生物化学与生物物理 进展,2003,30(1):19-23.
    [40]Bryant LA,Mixon P,Davidson M,et al.The Human Cytomegalovirus 86-Kilodalton Major Immediate-Early Protein Interacts Physically and Functionally with Histone Acetyltransferase P/CAF[J].Virol,2000;74(16):7230-7234
    [41]Jung-Jin Park,Young-Eui Kim,Hong Thanh Pham,et al.Functional interaction of the human cytomegalovirus IE2 protein with histone deacetylase 2 in infected human fibroblasts[J].Journal of General Virology,2007,88,3214-3223.
    [42]Johanna I,Hanna-Marl P,Jonna N,et al.Novel functions of vimentin in cell adhesion,migration and signaling[J].Experimental Cell Research,2007,10(313):2050-2062.
    [43]Nieminen M,Henttinen T,Merinen M,et al.Vimentin function in lymphocyte adhesion an d transcellular migration[J].Nat Cell Biol,2006,8:156-162
    [44]Kreis S,Schonfeld H J,Melchior C,et al.The intermediate filament protein vimentin binds specifically to a recombinant integrin alpha2/betal cytoplasmic tail complex and co-localizes with native alpha2/betal in endothelial cell focal adhesions[J].Exp Cell Res,2005,305:110-121.
    [45]Kumar N,Robidoux J,Daniel K W,et al.Requirement of vimentin filament assembly for beta 3-adrenergic receptor activation of ERK MAP kinase and lipolysis[J].Biol Chem,2007,282:9244-9250.
    [46]Pekny M,Lane B.Intermediate filaments and stress[J].Exp Cell Res,2007,10(313):2244-2254.
    [47]Bovolenta P,Liem R K H,Mason C A.Development of cerebellar astroglia:Transitions in form and cytoskeletal content[J].Developmental Boilogy,1984,1(102):248-259.
    [48]赵士福,黄其林,李黔宁,等.中间丝蛋白vimentin在非洲爪蛙嗅球发育过程中的表达及意义[J].神经解剖学杂志,2007,23(1):25-29.
    [49]魏军成,吴明富,张永涛,等.波形蛋白对前列腺癌细胞侵袭与转移的影响[J].华中科技大学学报(医学版),2008,37(4):528.
    [50]张磊,朱少华,蒋艳伟.波形蛋白与脑损伤的研究进展[J].中国法医学杂志,2008,23(5):321-323.
    [51]Pekny M,Pekna M.Astrocyte intermediate filaments in CNS pathologies and regeneration[J].Pathol,2004,204(4):428-437.
    [52]Changjong M,Meejung A,Seungjoon K,et al.Temporal patterns of the embryonic intermediate filaments nestin and vimentin expression in the cerebral cortex of adult rats after cryoinjury [J]. Brain Res, 2004, 1028:238-242.
    [53] Hay ED. An overview of epithelio-mesenchymal transformation [J]. Acta Anat (Basel), 1995, 154:8-20.
    [54] Shook D, Keller R. Mechanisms, mechanics and function of epithelial mesenchymal transitions in early development [J].Mechanisms of Development, 2003, 120:1351-1383.
    [55] Thiery JP. Epithelial mesenchymal transitions in development and pathologies [J]. Current Opinion in Cell Biology, 2003, 15:740-746.
    [56] Savagner P. Leaving the neighborhood:molecular mechanisms involved during epithelial-mesenchymal transition [J]. BioEssays, 2001, 23:912-923.
    [57] Thiery JP. epithelial-mesenchymal transition in tumor progression [J]. Nat Rev Cancer, 2002, 2:442-454
    [58] Sarnat HB. Vimentin Immunohistochemistry in Human Fetal Brain:Methods of Standard Incubation versus Thermal Intensification Achieve Different Objectives [J]. Pediatr Dev Pathol, 1998, 1:222-229.
    [59] Wernert N, Seitz G, Achtstatter T. Immunohistochemical investigation of different cytokeratins and vimentin in the prostate from the fetal period up to adulthood and in prostate carcinoma [J]. Pathol Res Pract, 1987, 182:617-626.
    [60] Putz E, Witter K, Offner S, et al. Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors; establishment of working models for human micrometastases [J]. Cancer Res, 1999, 59:241-248.
    [61] Baldick, C.J., Jr., and T. Shenk. Proteins associated with purified human cytomegalovirus particles [J]. Virol, 1996, 70: 6097-105.
    [62] Mathew G. Lyman and Lynn W. Enquist. Herpesvirus Interactions with the Host Cytoskeleton [J]. Virol, Mar 2009; 83: 2058 - 2066.
    [63] Giada Frascaroli, Stefania Varani, Nina Blankenhorn, et al. Human Cytomegalovirus Paralyzes Macrophage Motility through Down-Regulation of Chemokine Receptors, Reorganization of the Cytoskeleton, and Release of Macrophage Migration Inhibitory Factor [J]. Immunol, Jan 2009; 182: 477- 488.
    [64] Smith GA, Enquist LW . Break ins and break outs:viral interactions with the cytoskeleton of mammalian cels [J].Annu Rev Cel Dev Biol, 2002. 18:135-161.
    [1] Lanni, F., A.S.Waggoner, and D.L.Taylor.Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy [J]. Cell Biol, 1985,100:1091-102.
    [2] Browne, S.S. Cooperation between microtubule-and actin-based motor proteins [J]. Annu Rev Cell Dev Biol, 1999,15:63-80.
    [3] Oriolo, A.S., F.A.Wald, V.P.Ramsauer, et al.Intermediate filaments: a role in epithelial polarity [J]. Exp Cell Res, 2007, 313:212-24.
    [4] Luby-Phelps, K. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area [J]. Int Rev Cytol, 2000, 192:189-221.
    [5] Lukacs,G.L.,P.Haggie,O.Seksek,et al. Size-dependent DNA mobility in cytoplasm and nucleus [J]. Biol Chem, 2000, 275:1652-9.
    [6] Mathew G. Lyman and Lynn W. Enquist. Herpesvirus Interactions with the Host Cytoskeleton [J]. Virol, 2009, 83: 2058 - 2066.
    [7] Martinez-Moreno,M.,I.Navarro-Lerida,F.Roncal,et al. Recognition of novel viral sequences that associate with the dynein light chain LC8 identified through a pepscan technique [J]. FEBS Lett, 2003, 544:262-7.
    [8] Cole, N.L., and C.Grose. Membrane fusion mediated by herpesvirus glycoproteins: the paradigm of varicella-zoster virus [J]. Rev Med Virol, 2003, 13:207-22.
    [9] Nakanishi, H., and Y.Takai. Roles of nectins in cell adhesion, migration and polarization [J]. Biol Chem, 2004, 385:885-92.
    [10] De Regge,N.,H.J.Nauwynck,K.Geenen,et al. Alpha-herpesvirus glycopro -tein D interaction with sensory neurons triggers formation of varicosities that serve as virus exit sites [J]. Cell Biol, 2006,174:267-75.
    
    [11] Ch'ng, T.H., and L.W.Enquist. Neuron-to-cell spread of pseudorabies virus in a compartmented neuronal culture system [J]. Virol, 2005, 79:10875-89.
    
    [12] Naranatt,P.P.,S.M.Akula,C.A.Zien,et al. Kaposi's sarcoma-associated herpesvorus induces the phosphatidylinositol 3-kinase-PKC-zeta-MEK-ERK signaling pathway in target cells early during infection: implications for infectivity [J]. Virol, 2003, 77:1524-39.
    [13] Naranatt,P.P.,H.H.Krishnan,M.S.Smith,et al. Kaposi's sarcoma-associated herpesvorus modulates microtubule dynamics via RhoA-GTP-diaphanous 2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus [J]. Virol, 2005, 79:1191-206.
    [14] Clement,C.,V.Tiwari,P.M.Scanlan,et al. A novel role for phagocytosis-like uptake in herpes simplex virus entry [J]. Cell Biol, 2006, 174:1009-21.
    [15] Hoppe, S., M.Schelhaas, V.Jaeger.et al. Early herpes simplex virus type 1 infection is dependent on regulated Racl/Cdc42 signalling in epithelial MDCKII cells [J]. Gen Virol, 2006, 87:3483-94.
    [16] Dohner, K., C.H.Nagael, and B.Sodeik. Viral stop-and go along microtubules: taking a ride with dynein and kinesins [J]. Trends Microbiol, 2005, 13:320-7.
    [17] Dammermann, A., A.Desai, and K.Oegema. The minus end in sight [J]. Curr Biol, 2003, 13:R614-24.
    [18] Granzow, H., B.GKlupp, and T.C.Mettenleiter. Entry of pseudorabies virus:an immunogold-labeling study [J]. Virol, 2005, 79:3200-5.
    [19] Ogawa-Goto,K.,K.Tanaka,W.Gibson,et al. Microtubule network facilitates nuclear targeting of human cytomegalovirus capsid [J]. Virol, 2003, 77: 8541-7.
    [20] Douglas,M.W.,R.J.Diefenbach,F.L.Homa,et al. Hepes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctexl and plays a role in retrograde cellular transport [J]. Biol Chem, 2004, 279:28522-30.
    [21] Desai, P., N.A.Deluca, and S.Person. Herpes simplex virus type 1 VP26 is not essential for replication in cell culture but influences production of infection virus in the nervous system of infected mice [J]. Virology, 1998, 247:115-24.
    [22] Luxton,G.W.,S.Haverlock,K.E.Coller,et al. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins [J]. Proc Natl Acad Sci U S A, 2005, 102:5832-7.
    [23] Klopfenstein, D.R., R.D.Vale, and S.L.Rogers. Motor protein receptors: moonlighting on other jobs [J]. Cell, 2000, 103:537-40.
    [24] Benboudjema, L., M.Mulvey, Y.Gao, et al. Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides [J]. Virol, 2003, 77:9192-203.
    [25] Diefenbach, R.J., M.Miranda-Saksena, E.Diefenbach, et al. Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain [J]. Virol, 2002, 76:3282-91.
    [26] Koshizuka, T., Y.Kawaguchi, and Y.Nishiyama. Herpes simplex virus type 2 membrane protein UL56 associates with the kinesin motor protein KIF1A [J]. Gen Virol, 2005, 86:527-33.
    [27] Browne,H.,S.Bell,T.Minson,et al. An endoplasmic reticulumretained herpes simplex virus glycoprotein H is absent from secreted virions: evidence for reenvelopment during egress [J]. J Virol, 1996, 70:4311-6.
    [28] Mettenleiter, T.C. Herpesvirus assembly and egress [J]. Virol, 2002, 76:1537-47.
    [29] Caviston, J.P., and E.L.Holzbaur. Microtubule motors at the intersection of trafficking and transport [J]. Trends Cell Biol, 2006, 16:530-7.
    [30] Mettenleiter, T.C, B.GKlupp, and H.Granzow. Herpesvirus assembly: a tale of two membranes [J]. Curr Opin Microbiol, 2006, 9:423-9.
    [31] Lee, G.E., J.W.Murray, A.W.Wolkoff, et al. Reconstitution of herpes simplex virus microtubule-dependent trafficking in vitro [J]. Virol, 2006, 80:4264-75.
    [32] Harley, C.A., A.Dasgupta, and D.W.Wilson. Characterization of herpes simplex virus-containing organelles by subcellular fractionation: role for organelle acidification in assembly of infectious particles [J]. Virol, 2001, 75:1236-51.
    [33] Miranda-Saksena,M.,P.Armati,R.A.Boadle,et al. Anterograde transport of herpes simplex virus type 1 in cultured, dissociated human and rat dorsal root ganglion neurons [J]. Virol, 2000, 74:1827-39.
    [34] Penfold, M.E., P.Armati, and A.L.Cunningham. Axonal transport of herpes simplex virions to epidermal cell: evidence for a specialized mode of virus transport and assembly [J]. Proc Natl Acad Sci U S A, 1994, 91:6529-33.
    [35] Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport [J]. Science, 1998, 279:519-26.
    [36] Mohr, I. Neutralizing innate host defenses to control viral translation in HSV-1 infected cells [J]. Int Rev Immunol, 2004, 23:199-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700