胭脂鱼胰蛋白酶原前体的cDNA克隆、序列分析及饲料对胰蛋白酶活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰蛋白酶(EC3.4.21.4)属于丝氨酸家族,是鱼类消化道内的一种主要的碱性蛋白质水解酶,其前体形式为胰蛋白酶原前体,在脊椎动物中,由胰脏的腺泡细胞粗面内质网(RER)上的核糖体产生,然后运输到高尔基体,再进入胰腺运输管,最后释放到肠腔,在那里被肠黏膜细胞分泌的肠激酶活化成有活性的胰蛋白酶,从而行使其消化功能。影响胰蛋白酶活性的因素很多,如消化道内的不同部位、温度、pH、饲料组成、食性等,这些因素对胰蛋白酶的分泌分别起着正负调节的作用,而且即使是同一因素,由于其数量或者程度不同对胰蛋白酶活性所产生的影响也不同。
     胭脂鱼(Myxocyprinus asiaticus),主要分布于长江中上游的干支流水域中,是我国名贵淡水野生鱼类,由于其不但肉味鲜美、营养丰富,而且幼鱼具有比较高的观赏价值,所以具有巨大的养殖前景。胰蛋白酶是一种十分重要的蛋白质消化酶类,但目前还没有研究从分子水平具体阐明胰蛋白酶对胭脂鱼消化的作用机制,研究胭脂鱼胰蛋白酶原前体基因可以填补这一研究的欠缺,为进一步探讨胰蛋白酶在胭脂鱼消化上发挥的作用建立一定的分子生物学基础。同时由于很多因素都会对胰蛋白酶的活性产生影响,在不同程度上调控胰蛋白酶的活性,所以本文研究不同蛋白含量饲料对胰蛋白酶活性产生的影响,以期为胭脂鱼等名优鱼类养殖过程中的生物饲料技术提供理论或现实基础,同时该研究对于阐明脊椎动物胰蛋白酶原前体基因的分子进化也有一定的学术意义。
     本研究运用RACE技术克隆了胭脂鱼胰蛋白酶原前体基因,并对其核苷酸序列及推导的氨基酸序列以及预测的蛋白质高级结构进行了分析。同时,本研究还设计了不同蛋白含量的饲料,饲喂胭脂鱼30d,每5d取样一次检测了在此过程中胰蛋白酶活性的变化过程。主要研究结果如下:
     1.胭脂鱼胰蛋白酶原前体基因全长cDNA序列
     在对多种鲤科鱼类的胰蛋白酶原前体基因进行了多重比对后设计了4条特异性中间片段引物,以来自胭脂鱼肝胰脏组织的mRNA为模板扩增得到了胭脂鱼胰蛋白酶原前体中间片段的序列。根据得到的中间片段的序列设计了2条特异性3’RACE引物、1条反转录引物和3条5’RACE特异性引物,从而得到了胭脂鱼胰蛋白酶原前体的3’端序列和5’端序列。分别从得到的3’端序列和5’端序列设计特异性引物扩增胭脂鱼胰蛋白酶原前体全长cDNA。从胭脂鱼肝胰脏总RNA中扩增得到的胰蛋白酶原前体全序列为921bp,包括5’端非编码区(untranslation region,UTR)47bp,蛋白质编码区741bp,3’端非编码区133bp。
     2.胭脂鱼胰蛋白酶原前体基因推导氨基酸序列的分析
     胭脂鱼胰蛋白酶原前体基因开放阅读框编码247个氨基酸,包括15个氨基酸的信号肽和8个氨基酸的激活肽。所得序列具有丝氨酸蛋白酶的保守序列:(1)含有保守的His(H63)、Asp(D107)和Ser(S200)活性三联体,并且在催化位点附近的Ala、Gly、Asp、Ser、Gly等也都很保守。(2)具有典型的保守的底物结合位点Asp(D194),该残基位于底物结合沟的底部,并通过电荷作用而稳定底物裂解位点的Lys或Arg残基,因而也决定着胰蛋白酶的专一性。(3)胰蛋白酶N末端的氨基酸序列为Ile-Val-Gly-Gly。(4)具有6个(30/160、48/64、132/233、139/206、171/185、196/220)二硫键。其基因基本结构和从其它脊椎动物中克隆的胰蛋白酶原前体的基因结构一致。
     3.胭脂鱼胰蛋白酶原前体基因的同源性分析
     胭脂鱼胰蛋白酶原前体的氨基酸序列与许多动物的胰蛋白酶原前体基因具有较强的相似性。尤其是底物作用位点和活性三联体是完全保守的。除此之外在底物作用位点附近的一些氨基酸残基也具有比较高的保守性,还有丝氨酸家族特有的组成3个二硫键的6个半胱氨酸残基在所有真核动物中都是保守的,脊椎动物中一般都有6个二硫键,这些位点的氨基酸残基也非常保守。用DNAstar软件的MgeAlign对几种脊椎动物胰蛋白酶进行相似性和趋异性比较发现,除了那些特殊位点之外,组成脊椎动物的胰蛋白酶原前体的氨基酸并不是特别保守,胭脂鱼的胰蛋白酶原前体的氨基酸序列与斑马鱼(zebrafish)的相似性最高为84.0%,而与其他脊椎动物比较相似性要低一些,大都在60-70%之间。如与人(Human)Ⅰ、鸡(Chicken)P1、大西洋鲑(Atlantic salmon)Ⅰ、Ⅱ、Ⅲ、挪威大鼠(Norway rat)Ⅰ、家鼠(house mouse)Ⅱ、河豚(Fugu rubripes)、非洲爪蛙(African clawed frog)、日本凤尾鱼(Japanese anchovy)Ⅰ、Ⅱ、大西洋鳕(Atlantic cod)Ⅰ、白斑角鲨(spiny dogfish)、七鳃鳗(sea lamprey)A1、B1、美洲拟鲽(winter flounder)Ⅰ、Ⅱ、猪(pig)、狗(dog)Ⅰ、牛(cattle)Ⅱ的相似性分别是67.2%、65.6%、64.5%、65.8%、77.3%、67.1%、67.1%、51.0%、67.5%、65.0%、66.4%、60.8%、64.6%、64.0%、63.9%、49.4%64.9%、75.3%、71.5%、73.5%。
     用鼠的酪氨酸酶(Tyrosinase)作为外类群,采用Clustal X的N-Jmethod对序列排序并构建系统进化树,系统进化树分析总体表现为同属内种间亲缘关系最近,同目内科间亲缘关系次之,不同目间的亲缘关系最远,聚类的先后顺序同样揭示出目科属种不同分类阶元的亲缘关系的远近。这种分析的结果与利用胰蛋白酶基因保守片段进行系统进化分析所得的结果是一致的。在胰蛋白酶上体现的进化趋势符合现有的理论,即:首先是依次分化出了软骨鱼,硬骨鱼,两栖类和鸟类,最终分化出了哺乳动物。
     4.胭脂鱼胰蛋白酶原前体基因推导蛋白的分析及其结构预测
     对预测得到的胰蛋白酶原前体基因氨基酸序列进行分析,得到蛋白的基本参数,其原子组成为C_(1158)H_(1800)N_(324)O_(357)S_(17)。分子量Mw=26518Da,等电点pI=7.95。在氨基酸组成上,丝氨酸(Ser)是含量最高的氨基酸(11.0%):其次是天冬酰氨(Asn)和亮氨酸(Leu)都占8.9%;再次是丙氨酸(Ala)占7.3%;含量最低的氨基酸是组氨酸(His)仅为1.6%。从整体上来看,碱性氨基酸(组氨酸His、赖氨酸Lys、精氨酸Arg)和酸性氨基酸(天冬氨酸Asp、谷氨酸Glu)分别占8.68%和6.1%,这与胰蛋白酶呈碱性相吻合。
     对胰蛋白酶原前体蛋白的二级结构预测(SOPMA)表明,该蛋白质的二级结构主要由四种形式组成,即α-螺旋(Alpha helix),占17.07%;随机卷曲(random coil),占45.93%;β-转角(Beta turn),占9.35%;延伸链(extended strand),占27.64%。在胰蛋白酶原前体的二级结构中延伸链和随机卷曲所占比例相当高,延伸链主要位于α-螺旋和随机卷曲之间。N-末端以α-螺旋的形式存在。
     对胭脂鱼胰蛋白酶原前体基因的三级结构进行同源建模预测,得到其同源三维模型。
     5.不同蛋白含量的饲料对胭脂鱼胰蛋白酶活性的影响
     试验中设置了6个试验组及1个对照组,试验组中投喂水蚯蚓及蛋白含量分别为55%、45%、35%、25%的饲料,对照组投喂蛋白含量36%的全价配合饲料,还有1个饥饿组。结果发现:投喂水蚯蚓组的胭脂鱼生长速度明显快于其他组,并且其胰蛋白酶活性明显呈现持续上升趋势;而蛋白含量在55%和25%的试验组,胰蛋白酶活性在试验期间呈现出逐渐下降的趋势;而蛋白含量为35%的试验组胰蛋白酶活性呈现出微小的下降趋势;45%的组,呈现出明显的上升趋势;饥饿组胰蛋白酶活性出现了先下降后上升的现象,但总体表现为下降趋势;并且这几个试验组,除了35%的组试验结果与对照组相比差异不显著之外,其余几组与对照组相比差异都极显著。
Pancreatic trypsin(EC3.4.21.4) is a member of the large and diverse serine peptidase. It is one of the most important alkaline proteolytic enzymes in alimentary canal of fish. Trypsinogen is it's non-activity precursor.In vertebrates, trypsinogen is synthesized on ribosomes attached to the pancreatic acinar cell's rough endoplasmic reticulum (RER), then transported to the Golgi complex, concentrated and stored within secretory granules, secreted into the pancreatic duct, and ultimately discharged into intestines, where it is activated by enteropeptidase.and play a role of digestion of food.There are mang factores affect the activity of pancreatic trysin,for example,the different part of alimentary canal,temperature,pH,the composition of feed,feeding habits and so on.Those factors have a positive or negative regulation.Even if the same factor also can bring different effects on fish because of different quantites or degrees.Chinese sucker is a rare and economical fresh water species in China, it is mainly distributed in the upper and medium reaches of Changjiang River and its branches. Chinese sucker is very delicious and nutritious, and because of it's beautiful color it also be fed as pet fish.Feeding Chinese sucker have a bright future. Pancreatic trysin is an important digestive enzyme, but the molecular mechanisms of it in controlling Chinese sucker food digestion have not been reported.
     In the research the cDNA encoding pancreatic trypsin from Chinese sucker was cloned and sequenced, at the same time, its potential amino acid sequence was deduced and the corresponding protein structure was predicted and analysed.Meanwhile it is also been studied that the relationship of dietary protein rations and activities of enzyme.The main results are as follows:
     1. Full-length cDNA sequence of pretrypsinogen of Chinese sucker
     Based on multiple alignment of a number of other fish pretrypsinogen genes, four special primers of fragment sequences were designed for amplification of the center fragmengt of pretrypsinogen genes and the sequence was acquired from the cDNA templet of the pancreas of Chinese sucker. Based on acquired sequence two special primers of 3'cDNA ends were designed for amplification of the 3'cDNA ends, a special reverse transcription primer and two pairs of special primers on 5'cDNA ends were designed, so the sequence of the 3'cDNA ends and 5'cDNA ends were acquired from the cDNA templet of the pancreas of Chinese sucker. Then two special primers were designed for amplification of the full-length cDNAs sequences according to 5' and 3'cDNA ends of Chinese sucker pretrypsinogen gene. The full-length cDNA of pretrypsinogen of Chinese sucker is 774bp with 47bp 5'untranslated region and 133bp 3'untraslated region. The cDNA includes an open reading frame of 741bp encoding the 247 amino acid residues of pretrypsinogen.
     2. Deduced amino acid sequence analysis from pretrypsinogen cDNA of Chinese sucker
     The open reading frame of Chinese sucker pretrypsinogen gene was 741bp in length, encoded 247amino acids residues ,it was composed of an signal peptide(15 amino acids residues), an activation peptide(8 amino acids residues), It contains a typical character shared by serine peptidase family : the catalytic triad His63, Asp107 and Ser200 and the obligatoryAsp194. In addition, 12 cysteine residues are found, forming six conserved cystine bridge.
     3. Homology analysis of Chinese sucker pretrypsinogen gene
     The cDNA sequence of Chinese sucker pretrypsinogen gene don't demonstrated very high similarity with other vertebrates, but in the special loci, especially in the signal region, activation region, catalytic triad region and cystine bridge are very conservation. Similarity of the amino acid sequence of Chinese sucker pretrypsinogen compared with zebrafish, HumanⅠ, ChickenPl,Atlantic salmonⅠ,Ⅱ,Ⅲ,Norway ratⅠ,house mouseⅡ,Fugu rubripes,African clawed frog,Japanese anchovyⅠ,Ⅱ,Atlantic codⅠ,spiny dogfish, sea lampreyA1.B1,winter flounderⅠ,Ⅱ, pig, dogⅠ, cattleⅡrespectively are 84.0%、67.2%、65.6%、64.5%、65.8%、77.3%、67.1%、67.1%、51.0%、67.5%、65.0%、66.4%、60.8%、64.6%、64.0%、63.9%、49.4%64.9%、75.3%、71.5%、73.5%.
     Taking mouse tyrosinase as outgroup , phylogenetic analysis of known pretrypsinogen sequences with various vertebrates revealed the relationship within a genus or species is most closely ,next is within an order.
     4.Pretrypsinogen structure prediction of Chinese sucker
     The predicted pretrypsinogen protein of Chinese sucker is 247 aa long and has a Mw of 26518Da and a pI of7.95. In composition of amino acid, proportions of serine is relatively large, accounting for 11.0%; secondly, asparagine and leucine are all 8.9%; and then, alanine is 7.3%, histidine is relatively lowest, all accounting for 1.6%. The proportion of acidic amino acid and basic amino acid is 8.63% and 6.1% respectively. Chinese sucker pretrypsinogen protein contains four main secondary structures:α-helix, random coil,β-turn and extended strand. Extended strand is the dominant secondary structure and its proportions is 27.64%.
     5. The effects of different dietary protein ratios on activities of trypsin enzyme in Chinese sucker
     The effect s of dietary protein levels (protein from 35% to 55%) on the pancreas trypsin enzyme activities in Chinese sucker were studied. Four experimental feeds with dietary protein content of 25%,35%,45%,55% were formulated to rear juvenile Chinese sucker and also have two additional groups and feed Limnodrilus hoffmeisteri and fasted respectively.The 30-day feeding experiment showed that pancreas trypsin activities in the Chinese sucker increased with the increase in dietary protein levels when dietary protein levels increased from 25% to 45% , and decreased as the dietary protein level was reach to 55%. There was a significant difference in the activities among the treatments except for the term of treated by 35% protein level. The Chinese sucker fed the Limnodrilus hoffmeisteri had the highest growth rate and activitiesi.
引文
[1]孙玉华,刘思阳,彭智等.中国胭脂鱼线粒体控制区遗传多样性分析.遗传学报.2002,29 (9):787-790.
    [2]李树深,王蕊芳,刘光佐等.中国胭脂鱼的核型研究.动物学研究.1983,4(2):182-183.
    [3]熊全沫,夏盛林.中国胭脂鱼伺工酶的研究.动物学报.1985,31(1):20-27.
    [4]Berger, A., and I. Schechter. 1970. Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 257:249-264.
    [5]Halfon, S., and C. S. Craik. Trypsin. in A. J.Barrett, N. D. Rawlings, and J. F. Woessner, eds. Handbook of proteolytic enzymes[M]. Academic Press, London. 1998. 12-21.
    [6]Northrop, J. H., and M. Kunitz. Isolation of protein crystals possessing tryptic activity. Science 1931.73:262-263.
    [7]Waish, K. A., D. L. Kauffman, K. S. V. Sampath Kumar, and H. Neurath. On the structure and function of bovine trypsinogen and trypsin.Proc. Natl. Acad. Sci. USA 1964.51:301-308
    [8]Huber, R., D. Kukla, W. Bode, P. Schwager, K. Bartels, J.Deisenhofer, and W. Steigemann. Structure of the complex formed by bovine trypsin and bovine panereatic trypsin inhibitor. Ⅱ. crystallographic refinement at 1.9 A resolution. J. Mol. Biol. 1974.89:73-101.
    [9]Stroud, R. M., L. M. Kay, and R. E. Dickerson. The structure of bovine trypsin: electron density maps of the inhibited enzyme at 5 Angstrom and at 2-7 Angstron resolution. J. Mol. Biol. 1974. 83:185-208.
    [10]Yamashina, I. The action of enterokinase on trypsinogen.Acta Chem. Seand. 1956. 10:739-743.
    [11]Davie, E., and H. Neurath. Identification of a peptide released during autocatalytic activation of trypsinogen. J. Biol.Chem. 1955.212:515-529.
    [12]Berger, A.,and I.Schechter.Mapping the active site of papain with the aid of peptide substrates and inhititors.Philos.Trans.R.Soc.Lond.B Biol.Sci. 1995,257,249-264.
    [13]Guy, O., D. C. Bartelt, J. Amic, E. Colomb, and C. Figarella. Activation peptide of human trypsinogen 2. FEBS Lett. 1976. 62:150-153.
    [14]Guy, O., D. Lombardo, D. C. BarteR, J. Amic, and C. Figarella. Two human trypsinogens: purification, molecular properties, and N-terminal sequences. Biochemistry 1978.17:1669-1675.
    [15]Bricteux-Gregoire, Schyns, and Flokin Bricteux-Gregoire, S., R. Schyns, and M. Florkin. 1972. Phylogeny of trypsinogen activation peptides. Comp. Biochem. Physiol. B 1972 42:23-39
    [16]Charles, M., M. Rovery, A, Guidoni, and P. Desnuelle. On trypsinogen and trypsin of pig. Biochim. Biophys. Acta 1963.69:115-129.
    [17]Schyns, Bricteux-Gregoire, and Florkin Schyns, R., S. Bricteux-Gregoire, and M. Florkin. 1969.Purification, properties and N-terminal sequence of sheep trypsinogen. Bioehim. Biophys. Acta 1969 175:97-112.
    [18]De Haen, Walsh, and Neurath 1977 de Haen, C., K. A. Walsh, and H. Neurath. Isolation and amino-terminal sequence analysis of a new pancreatic trypsinogen of the African lungfish Protopterus aethiopicus.Biochemistry 1977.16:4421-4425.
    [19]Roach et al. Roach, J. C., K. Wang, L. Gan, and L. Hood. 1997. The molecular evolution of the vertebrate trypsinogens. J. Mol. Evol. 1997, 45:640-652.
    [20]Abita, J. P., M. Delaage, and M. Lazdunski.. The mechanism of activation oftrypsinogen: the role of the four N-terminal aspartyl residues. Eur. J. Bioehem. 1969.8:314-324.
    [21]Maroux, S., J. Baratti, and P. Desnuelle. Purification and specificity of porcine enterokinase. J. Biol. Chem. 1971.246:5031-5039.
    [22]Teich, N., J. Ockenga, A. Hoffmeister, M. Manns, J. Mossner, and V. Keim. Chronic pancreatitis associated with an activation peptide mutation that facilitates trypsin activation. Gastroenterology 12000.19:461-465.
    [23]刘惠霞,董育新.苦皮藤素Ⅴ对东方粘虫中肠细胞及其消化酶活性的影响.昆虫学报.1998,41(3):258-262.
    [24]Chen, J. M., Kukor, Z., Le Maréchal, C., TOth, M., Tsakiris, L., Raguénès, O., Férec, C., and Sahin-TOth, M. Mol. Biol. Evol. 2003, 20, 1767-1777
    [25]Donald Voet, Judith Voet J.Biochemistry[M]. Wiley&Sons; 1995,2nd edtion.
    [26]David Nelsone Michael Cox.Lenhinger Principles of Biochemistry[M]. Worth Publisher. 2000,3rd edition.
    [27]Cohen, T. G. A. and Y. Pancreatic proteolytic enzymes from carp(Cyprinus carpio)-Ⅰ. Purification and physical properties of trypsin,chymotrypsin, elastase and carboxypeptidase B. Comp. Biochem. Physiol. 1981.69B:639-646.
    [28]Hjelmeland, K. J. and R. Characteristics of two trypsin type isozymes isolated from the arctic fish capelin (Mellatus villosus). Comp. Bioehem. Physiol. 1982. 71B:557-562.
    [29]Yoshinaka, R. M. S. T. Suzuki and S. Ikeda. Enzymatic characterization of anionic trypsin of catfish (Parasilurus asotus). Comp B iochem. Physiol. 1984.77B: 1-6.
    [30]Simpson, B. K. and N. F. Haard. Purification and characterization of trypsin from the Greenland cod (Gadus ogac). Can. J. Biochem. Cell. Biol. 1984.62: 894-900.
    [31]Martinez, A. O. L. J. L. and S. Purification and characterization of two trypsin-like enzymes from the digestive tract of anchovy, Engraulis encransicholus. Comp. Biochem. Physiol. 1988.91 B: 677-684.
    [32]Bjarni A. et al. Purification and characterization of trypsin from poikilotherm Gadus morhua. Biochemistry. 1989,180,85-94.
    [33]Kristjansson, M. M. Purification and characterization of trypsin from the pyloric caeca of rainbow trout (Oncorchynchus mykiss). J. Agric. Food Chem. 1991.39: 1738-1742.
    [34]Guizani, N., Rolle R. S., Marshall M. R. and C. I. Wei. Isolation, purification and characterization of a trypsin from the pyloric caeca of mullet (Mugil cephalus).Comp. Biochem. Physiol. 1991.98B: 517-521.
    [35]Outzen, H. B. G, I. S.O.N.P. and W. Temperature and ph sensitivity of trypsins from Atlantic salmon, Salmo salar, in comparison with bovine and porcine trypsin. Comp. Biochem. Phsiol. 1996. 115B: 33-45.
    [36]Sekizaki, H. I. K. M. T. E. and K. Anionic trypsin from chum salmon: activity with p-amidinophenyl ester and comparison with bovine and Streptomyces griseus trypsins. Comp. Biochem. Physiol. 2000. 127B:337-346.
    [37]Mishelle, R. and S. Purification and Characterization of Trypsin from Intestinal and Pyloric Caecal Tissues from the Silk Snapper, Lutjanus vivanus. Master of Science in Biology. 2003.81B:222-231.
    [38]凌统.中华倒刺鲃胰蛋白酶的cDNA克隆与序列分析:[硕士学位论文].中国,重庆:西南大学,2006.4-5
    [39]冯俊荣,陈营,刘红梅.牙鮃幼鱼消化能力与肠道蛋白酶活性的研究.水产科学.2006,25 (4): 163-165
    [40]Munilla-Morán, R. F. and S. Digestive enzymes in marine species. Ⅰ.Proteinase activities in gut from redfish (Sebastes mentella), seabream (Sparusaurata) and turbot (Scophthalmus maximus). Comp. Biochem. Physiol. 1996, 113B:395-402.
    [41]Cohen, T. G. A. and Y. Pancreatic proteolytic enzymes from carp(Cyprinus carpio)-Ⅰ. Purification and physical properties of trypsin,chymotrypsin, elastase and carboxypeptidase B. Comp. Biochem. Physiol. 1981.69B:639-646.
    [42]胡重江.草鱼胰蛋白酶的纯化及部分性质研究:[硕士学位论文].中国,重庆:西南农业大学,2005.31-32.
    [43]张美红.黄鳝胰蛋白酶的纯化及动力学性质的研究:[硕士学位论文].中国,重庆:西南大学,2006.24-25.
    [44]Uys, W. T. and H. Assays on the digestive enzymes of sharptooth catfish.,Clarias gariepinus (Pisces: Cladidae). Aquaculture. 1987. 63:301-313.
    [45]MacDonald, R. J., S. J. Stary, and G. H. Swift. Two similar but nonallelic rat pancreatic trypsinogens: nucleotide sequences of the cloned cDNAs. J. Biol. Chem. 1982.257:9724-9732.
    [46]Honey N K,Sakaguchi A Y;Quinto C;Assignment of the human genes for elastase to chromosome 12,and for trypsin and carboxypeptidase A to chromosome 7.Cytogenet.Cell Genet. 1984.37:492 only
    [47]Emi, M.:Nakamura, Y.;Ogawa, M:Cloning, characterization and nucleotide sequences of two cDNAs encoding human pancreatic trypsinogens. Gene 1986.41:305-310.
    [48]Rowen,L, Koop,B.F.;Hood,L;The complete 685-kilobase DNA sequence of the human beta T cell receptor locus. Science 1996. 272:1755-1762.
    [49]高露娇,陈立侨,宋兵.饥饿和补偿生长对史氏鳃幼鱼摄食、生长和体成分的影响.水产学报,2004(a)28(3):279-284.
    [50]Yamaoka K, Masuda K, Ogawa H, et al. Cloning and characterization of the cDNA for human air way trypsin-like protease.J Biol Chem, 1998,2 73 (19): 11895-11901.
    [51]Hansen IA, Fassnacht M, Hahner S, et al. The Adrenal Secretory Serine Protease AsP is a Short Secretory Isoform of the Transmembrane Airway Trypsin-Like Protease.Endocrinology, 2004, 145(4):1898-1905.
    [52]Pinsky SD, Laorge KS, Scheele G. Differential regulation of trypsinogen mRNA translation: full-length mRNA sequences enoding two oppositely charged trypsinogen isoenzymes in the dog pancreas. Mol. Cell. Biol., 1985, 5(10 ): 2669-2676
    [53]Le Huerou I, Wicker C, Guilloteau P, et ai. Isoiation and nueleotide sequence of cDN A done for bovine pancreatic anionic trypsinogen.Structural identity with in the trypsin family. E urJ Biochem, 1990, 193(3):767-773.
    [54]Wang K, Gan L, Lee l, et al. Isolation and characterization of the chicken Trypsinogen gene family.B ioehemJ,1995,307(2):471-479.
    [55]Bodley MD, Naude RJ, Oelofsen W, Patthy A. Ostrich trypsinogen: purification, kinetic properties and characterization of the pancreatic enzyme. Int J Biochem Cell Biol. 1995 Jul;27(7):719-28
    [56]Szenthe B, Frost C, Szilagyi L, Patthy A, Naude R, Graf L. Cloning and expression of ostrich trypsinogen: an avian trypsin with a highly sensitive autolysis site: Biochim Biophys Acta. 2005 Apr 15;1748(1):35-42.
    [57]Shi YB, Brown DD. Developmental and thyroid hormone-dependent regulation of pancreatic genesin X enopus laevis. Genes Dev, 1990,Jul; 4(7): 1107-1113
    [58]Whitcomb DC, Lowe ME. Human pancreatic digestive enzymes.D ig Dis Sci. 2007 Jan;52(1):1-17.
    [59]Susan E. Douglas and Jeffrey W. Gallant Isolation of cDNAs for trypsinogen from the winter flounder, Pleuronectes americanus.J Mar Biotechnol (1998) 6:214-219.
    [60]Male R, Lorens JB, Smalas AO, Torrissen KR Molecular cloning and characterization of anionic and cationic variants of trypsin from Atlantic salmon. Eur J Biochem 1995.232:677-685
    [61]Gudmundsdottir A, Gudmundsdottir E, Oskarsson S, Bjarnason JB, Eakin AK, Craik CS (1993) Isolation and characterization of cDNAs from Atlantic cod encoding two different forms of trypsinogen. Eur J Biochem 217:1091-1097
    [62]Genicot S, Rentier-Delrue F, Edwards D, Van Beeumen J, Gerday C(1996) Trypsin and trypsinogen from an Antarctic fish: Molecular basis of cold adaptation. Biochim Biophys Acta 1298:45-57.
    [63]Tohru Suzuki, Anand S, Sdvastavab, Tadahide Kurokawa. cDNA cloning and phylogenetic analysis of pancreatic serine proteases from Japanese flounder, Paralichthys olivaceus Comparative Biochemistry and Physiology Part B 131,2002.63-70
    [64]Davis, C.A. et al. A gene family in Drosophila melanogaster coding for trypsin-like enzymes. Nucleic Acids Research, 1985, 13(18) 6605-6619.
    [65]Barillas-Mury C, et al.cDNA and deduced amino acid sequence of a blood meal-induced trypsin from the mosquito Aedes aegypti. Insect Biochem. 1991, 21, 825-831
    [66]Wang S, Magouias C, Hickey DA. Isolation and characterization of a full-length try ps in-encoding cDNA clone from the Lepidopteran insect, Choristoneura fumiferana.Gene. 1993 Dec 2 2;136(1-2):375-376.
    [67]Peterson, A.M. et al. Sequence of three cDNAs encoding an alkaline midgut trypsin from Manduca sexta.. Insect Biochem Mol Biol. 1994,24(5):463-471.
    [68]Kotani, E., T. Niwa et al.Cloning and sequence of a cDNA for a highly basic protease from the digestive juice of the silkworm, Bombyx mori.. Insect Mol. Biol. 1999 8 (2): 299-304
    [69]Yu Cheng Zhu et al. Molecular cloning of trypsin-like cDNAs and comparison of proteinase activities in the salivary glands and gut of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridac).Insect Biochemistry and Molecular Biology2003,33: 889-899.
    [70]Sellos D, Van Wormhoudt A. Molecular cloning of a cDNA that encodes a serine protease with chymotryptie and collagenolytic activities in the hepatopancreas of the shrimp Penaeus vanameii (Crustacea, Decapoda).. FEBS Lett. 1992,309(3): 219-224.
    [71]Klein B et al. Molecular cloning and sequencing of trypsin cDNAs from Penaeus vannamei (Crustacea, Decapoda): use in assessing gene expression during the moult cycle.. Biochem Cell Biol. 1996,25(5):551-563.
    [72]Klein B., D. Sellos, A. Van Wormhoudt. Genomic organization and pulymorphism of a crustacean trypsin multigene family,., Gene, 1998,216, 123-129
    [73]Klein B et al. Molecular cloning and sequencing of trypsin cDNAs from Penaeus vannamei (Crustacea, Decapoda): use in assessing gene expression during the moult cycle.. Biochem Cell Biol. 1996,28(5):551-563.
    [74]Kim JC, Cha SH, Jeong ST, et al. Molecular cloning and nucleotide sequence of Streptomyces gdseus trypsin gene. Biochem Biophys ResC ommun, 1991,181(2):707-713
    [75]Nagamine-Natsuka Y, Nofioka S, Sakiyama F. Molecular cloning, nueleotidese qu en ce, and expression of theg ene encoding a trypsin-like protease from Str ep to mycese rythraeus.J Biochem (Tokyo), 1995, 118(2):338-346.
    [76]Kim JC, Cha SH, Jeong ST, et al. Molecular cloning and nucleotide sequence of Streptomyces griseus trypsin gene. Biochem Biophys ResC ommun, 1991,181 (2):707-713.
    [77]Smithson SL, Paterson IC, Bailey AM,.et al. Cloning and characterisation of a gene encoding a cuticle-degrading protease from the insect pathogenic fungus Metarhizium anisoplise.Gene, 1995, 166(1):161-165.
    [78]Nagamine-Natsuka Y, Norioka S, Sakiyama F. Molecular cloning, nucleotide se quence, and expression of the gene encoding a trypsin-like protease from Streptomyces erythraeus.J Biochem (Tokyo), 1995, 118(2):338-346.
    [79]Vonk H. Das Pepsin verschiedener vertebraren. I. Die Ph-Optima and pH des Mageninhaltes. Zeit.Vergl. Phyiol. 1927:658-702
    [80]Kuz-mina V V, Gelman A G. Membrane-linked digestion in fish. Rev. Fish. Sci, 1997,5( 2):99-29.
    [81]王义强,黄世蕉,赵维信.鱼类生理学[M].上海:上海科学技术出版社,1990.136-137.
    [82]吴婷婷,朱晓明.鳜鱼,青鱼,草鱼,鲤,鲫,鲢消化酶活性的研究.中国水产科学,1994,1(2):10-16
    [83]周景祥,余涛,黄权,等.鲤鱼、黄颡鱼和大眼鰤鲈消化酶活性的比较研究.吉林农业大学学报.2001,23(1):94-96,120
    [84]周兴华,向枭,叶元土.三种名优鱼类消化酶活性的比较.广东饲料.2003,12(6):19-21
    [85]胡庚东,陈家长,尤洋.澳洲鳗和日本鳗、欧洲鳗消化酶活性的比较.湛江海洋大学学报.2006,26(4):85-87
    [86]伍莉,陈鹏飞,幸坤财,等.黄鳝肠道和肝胰脏主要消化酶活力的研究.湖北农学院学报.2002,22(1):36-39
    [87]李广丽,王义强.草鱼、鲤鱼肠道、肝胰脏消化酶活性的初步研究.湛江水产学院学报,1994,14(1):34-40
    [88]倪寿文,桂远明.草鱼,鲤,鲢,鳙和尼罗罗非鱼肝胰脏和肠道蛋白酶活性的初步探讨.动物学报.1993,39(2):160-168.
    [89]高春生,肖传斌,王艳玲,等.淇河鲫鱼与普通鲫鱼消化酶活性研究.广东农业科学.2006(4):72-74
    [90]高春生,齐子鑫,范光丽,等.淇河鲫鱼消化酶活性研究.水利渔业.2006,26(1):7-8.
    [91]Hofer.R.,Protein digestion and proteotytic activity in the digestive track of an omnivorous cyprinid,comp.Bloehem.physiol. 1982,72a:55-63.
    [92]Uys,W.and T.Hecht,Assays on the digestive enzymes of sharptooth catfish;Clarias garietinus( Clarias gariepinus ).Aquachlture, 1987,63:301-313
    [93]黄小燕,吴天星,李军,等.鮸鱼消化酶活性的研究.水利渔业.2006,(26):86-87
    [94]沈文英,祝尧荣,钱科亮.温度和pH对澳洲宝石鱼消化酶活性的影响.大连水产学报.2006,21(2):189-192.
    [95]Infante J L l, Cahu C L. Sea bass(Dicentrarchus labrax)larvae fed different Artemia rations; growth, pancreas enzymatic response and devel. pment. f digestive functiOEJ]. Aquacuhu 1996, 139(1/2): 129-138.
    [96]KOhla U. Saint—Paul U, Friebe j. Growth, digestive enzyme activities and hepatic glycogen levels in juvenile Colosoma macropomum Cuvier from South America during feeding, starvation and refeeding.. Nutr Abst Rev(series B), 1993, 63(6): 3-130.
    [97]郭善军,陈章宝.团头鲂、淡水白鲳、黄颡鱼的淀粉和蛋白酶活性研究..重庆工学院学 报.2004,18(5):34-37.
    [98]黎胜军,李建林,吴婷婷.饲料成分与环境温度对奥尼罗非鱼消化酶活性的影响.中国水产科学.2004,11(6):585-588.
    [99]沈文英,祝尧荣,钱科亮.温度和pH对澳洲宝石鱼消化酶活性的影响.大连水产学报.2006,21(2):189-192
    [100]桂远明,吴垠,刘焕亮等.温度对草鱼、鲤、鲍、编主要消化酶活性的影响.大连水产学院学报。1993,7(4):1-8
    [101]白东清,乔秀亭,乔之怡,等.pH对丁(鱼歲)仔鱼和稚鱼肠及肝胰脏蛋白酶活性的影响.水利渔业.2006,26(1):3-4
    [102]阮国良,杨代勤,严安生.pH对月鳢胰蛋白酶活性的影响.水利渔业.2004,24(2):13-13,19
    [103]Das K M, Tripathi S D. Studies on the digestive enzymes of grass carp, Clenopharyngodon idella, Aquaculture, 1991,92:21-32
    [104]Kawai S, Ikeda S. Studies on digestive enzymes of fishes. Ⅱ.Effect of dietary change on the activities of digestive enzymes in carp intestine. Bull. Jpn. Soc. Sci. Fish, 1972 38:265-270
    [105]Nagase C. Contribution to the physiology of digestion in Tilapia mossambica Peter: Digestive enzymes and the effects of diets on their activity. Z. Vergl. Physiol, 1964,49:270-284
    [106]Mukhopadhyay.PK.Studies on intestinal protease:Isolation puritication and effect of dietary proteins an alkaline protease activity of the air-breathing fish, Clarias batrachus (Linn.). Hydrohiologia, 1978,57(1): 1 1-15
    [107]张家国,王义强.不同蛋白能量比饲料与夏花草鱼消化酶的关系.上海水产大学学报.1997,6(1):54-58.
    [108]Kaway, S.and S.Ikeda..Studies on digestive enzymes of fish, Il,Effect of diefary change on the activity ofdigestive enrymes in carp.BuII.Jap.Soc.Sci.Fish.,1972,38:365-270
    [109]Cowey C B, Cooke D J, Matty A J, Adron J W Effects of quantity and quality of dietary protein on certain enzyme activities in rainbow trout. Journal of Nutrition, 1981,111:336-345
    [110]Munilla-Moran R, Stark J R. Protein digestion in early turbot larvae, Scophthalmus maximus(L.)Aquaculture, 1989,81 (3-4):315-327.
    [111]Zambonino-Infante J L, Cahu C L. Sea bass ( Dicentrarchus labrax ) larvae fed rations: growth, pancreas enzymatic response and development of dige different artemia stive functions. Aquaculture} 1996,139(12 ): 129-138
    [112]Dabrowsski K Krumschnabel q Cyclic. Growth and activity of pancreatic enzymes in alevins of Arctic chart. J.Fish Biol, 1992., 40(4 ):511-521.
    [113]Caruso Q Genovese L. Effect of two diets on the enzymatic activity of Pagellus intensive rearing. Ostende Belgium European. Aquaculture Soc,1993.19:332
    [114]田丽霞,林鼎.草鱼摄食两种蛋白质饲料后消化酶活性变动比较.水生生物学报.1993,17(1):58-65.
    [115]Abi-Ayad A, Kestemont P Comparison of the nutritional status of goldfish (Carassius auratus )larvae fed with live, mixed or dry diet.}Iquac, 1994,128(1): 163-176
    [116]Perla S Eusebio, Relicardo M Colose. Proteolytic enzyme activity of juvenile Asian sea bass Later calcarifer(Bloch), is increased with protein intake. Aquaculture Research.2002,33:569-574
    [117]Kamarudin M S, Otoi S, Saad C R. Changes in growth, survival and digestive enzyme activities of Malaysian river catfish (Mystus nemurus) larvae fed on different diets. 6th Asian Fisheries Forum Book of Abstracts. 2001.12-120
    [118]杨代勤,严安生,陈芳,阮国良.不同饲料对黄鳝消化酶活性的影响.水产学报.2003.27(6):558-563.
    [119]赵东海.饲料对鳜鱼试验种群胃肠道消化酶活性的影响.河北渔业,2004,2:10-11.
    [120]方展强,蓝观辉.唐鱼摄食不同蛋白含量饲料的比较研究.水利渔业.2006,26(2):27-30
    [121]Yamamoto T, Akiyama T Effect of carboxymethyl cellulose, alpha-starch, and wheat gluten incorporated in diets as binders on growth, feed efficiency, and digestive enzyme activity of fingerling Japanese flounder.Sci, 1995, 61 (2):309-313.
    [122]Dabrowski K, Glogowski J. Studies on the proreplytic enzymes of invertebrates constituting fish food. Hydrobiologia, 1977a, 52:171-174.
    [123]Gangadhar B, Nandeesha M C. Effect of 19-norethisterone on growth, biochemical composition and gut digestive enzyme activity of common carp, Cypdnus carpio L. Journal of Aquaculture in the Tropics, 2000, 1:1-10.
    [124]Lemieux H, Blier P, Dutil A. Do digestive enzymes set a physiological limit upon growth rate and Conversion efficiency in Atlantic cod. Proceedings of the Contributed Papers, Aquaculture Canada-97.Waddy, S L,Frechette M eds, 1997,97(2): 54-56.
    [125]Nandeesha M C. Gangadhar B. Effect of dietary sodium chloride supplementation on growth, biochemical composition and digestive enzyme activity of young Cyprinus carpio (Linn.) and Cirrhinus mrigala (Ham.). Journal of Aquaculture in the Tropics, 2000, 2:135-144
    [126]Gireesha O. Ramesha T J. Impact of dietary Livol on the growth, biochemical composition and gut digestive enzyme activity of Carla (Catla catla) (Hamilton). Journal of Aquaculture in the Tropics,2002,30(1):35-42
    [127]伍莉,陈鹏飞、罗绍禄,等.不同添加剂对斑点叉尾鯝肠道蛋白酶、淀粉酶活力的影响.饲料研究.2002(1):4-7.
    [128]邱小琮,周洪琪,刘小刚,等.中草药添加剂对异育银鲫蛋白酶和淀粉酶活性的影响.饲料研究.2003(3):43-45.
    [129]刘小刚,周洪琪,华雪铭,等.微生态制剂对异育银鲫消化酶活性的影响]研究了微生态制剂对异育银鲫消化酶活性的影响.水产学报.2002,26(5):448-452
    [130]杜宣,周国勤,茆健强.3种微生态制剂的氨基酸组成及对鲤鱼消化酶活性的影响.云南农业大学学报.2006,21(3):351-354,359.
    [131]齐子鑫,高春生.植酸酶对黄河鲤鱼肠道消化酶活性的研究.河北渔业.2006(3):19-21.
    [132]胡先勤,熊欲含,王学东.糖萜素对鲫鱼消化酶活性的影响.中国饲料.2006(4):34-36.
    [133]黎军胜,李建林,吴婷婷.外源酶和柠檬酸酶对奥尼罗非鱼内源消化酶活性的影响.南京农业大学学报.2005(28):97-101.
    [134]王镜岩,朱圣庚,徐长法土编.生物化学(第三版)[M].北京:高等教育出版社,2002.
    [135]Cahu C. L., Zambanino lnfante J L.Early weaning of sea bass (Dicentrarchus labrax)larvae with a compound diet:Effect on digestive enzymes.Comp.Biochem. Physiol.,1994, 109:213-222
    [136]Fernandez L, Moyano F.J., Dyaz M.&Martynez T..Characterization of a-amylase activity in five species of Mediterranean sparid fishes Sparidae, Teleostei. Journal of Experimental Marine Biology and Ecology, 2001,262:1-12.
    [137]Lemieux H, Blier P, Dutil J D. Do dfigestive enzymes set a physiological limit on growth rate and food conversion efficiency in the Atlantic cod (Carlur r}iorhua). Fish Physiol Biochem,1999, 20:293—303.
    [138]Torrisen K R, Shearer K D. Protein digestion, growth and food conversion in Atlantic salmon and Arctic chary with different trypsine-like isozyme patterns. J Fish Biol, 1992, 41:409—415.
    [139]De Haen C, Neurath H, Teller DC (1975) The phylogeny of trypsin related serine proteases and their zymogens. New methods for the investigation of distant evolutionary relationships. J Mol Biol 92:225-259
    [140]Titani K, Sasagawa T, Woodbury RG, Ericsson LH, Dorsam H, Kraemea" M, Neurath H, Zwilling R (1983) Amino acid sequence of crayfish (Astacus fluviatilis) trypsin If. Biochemistry 22:1459-1465
    [141]Kim JC, Cha SH, Jeong ST, Oh SK, Byun SM (1991) Molecular cloning and nucleotide sequence of Streptomyces griseus trypsingene. Biochem Biophys Res Commun 181:707-713
    [142]Simpson GG. 1944. Tempo and Mode in Evolution. New York.Columbia Univ Press. 937.
    [143]唐先华,赖旭龙,钟扬,等.分子钟假说与化石记录.地学前缘.2002,9(2):465-474.
    [144]Zuckerandl E, Paulin$L. Evolutionary divergence and convergence in protein: Evolving Germs and Proteins[M].NeⅥYork: Aeademle Press. 1965.
    [145]Le Huerou I, Wicker C, Guilloteau P, Toullec R, Puigserver A Isolation and nucleotide sequence of cDNA clone for bovine pancreatic anionic trypsinogen.Eur J Biochem 1990, 193:767-773
    [146]Fletcher TS, Alhadeff M, Craik CS, Langman C Isolation and characterization of a cDNA encoding rat cationic trypsinogen. Biochemistry. 1987,26:3081-3086.
    [147]Jared C. Roach, Kai Wang,et.al.The Molecular Evolution of the Vertebrate Trypsinogens.Journal of Molecular Evolution(1997) 45:640-652.
    [148]Rowen L, Koop BF, Hood L (1996) The complete 685-kilobase DNA sequence of the human T-cell receptor locus.Science 272:1755-1762.
    [149]Hood L, Campbell JH, Elgin SC (1975) The organization, expression,and evolution of antibody genes and other multigene families. Annu Rev Genet 9:305-353.
    [150]Wang K, Gan L, Lee I, Hood L (1995) Isolation and characterization of the chicken trypsinogen gene family.Biochem J 307:471-479.
    [151]Muller WEG, Pancer Z, Rinkevich B (1994) Molecular cloning and localization of a novel serine protease from the colonial tunicate Botryllus schlosseri.Mol Marine Biol Biotechnol 3(2):70—77.
    [152]Cyrus Chothia, Michael Leavitt.Doug Richardson Helix to Helix Packing in Proteins. J. Mol. Biol 1981, 145,215-250.
    [153]Ohno S. Sex Chromosomes and Sex2Linked Genes[M].Springer, 1967.
    [154]Walsh KA, Wilcox PE Serine proteases. Methods Enzyme. 1970,119:31-41
    [155]Du Preeze H, Mclachlan A, Marals J. Oxygen consumption of a shallow water teleost the spotted Bunter Pomadasys commersormi (Iacepede, 1982).Comp Biochem Physiol, 1986, 84A: 61-70
    [156]Jobling M, Meloy O H, Santos J D. The compensatory growth response of the Atlantic cod: effects of nutritional history. Aquae Intern, 1994, 2:75-90
    [157]Lutcke H, Rausch U, Vasiloudes P, Scheele GA, Kern HF A fourth trypsinogen (P23) in the rat pancreas induced by CCK.Nucleic. Acids Res. 1989,17(16):27-36
    [158]Asgeirsson B, Fox JW, Bjarnason JB Purification and characterization of trypsin from the poikilotherm Gadus morhua.Eur J Biochem 1989,180:85-94
    [159]吴垠,孙建明,周遵春,等.饲料蛋白水平对中国对虾生长和消化酶活性的影响.大连水产学院学报.2003,18(4):258-262.
    [160]Ehrlich K E Blaxter J H S, Pemberton R. Morphological and histological changes during the growth and starvation of herring and plaice larvae.Marine Biology.1976, 35:105-118.
    [161]谢小军,邓利,张波.饥饿对鱼类生理生态学影响的研究进展.水生生物学报,1998 22(2):181-188.
    [162]Munilla M. Studies on digestive enzymes in fish: Characterization and practical applications. Ciheam-options Mediterraneennes. 1990, 22:113-121.
    [163]钱云霞.饥饿对养殖妒蛋白酶活力的影响.水产科学,2002,21(3):6-7.
    [164]钱国英.不同驯食方式对撅鱼胃、肠道消化酶活性的影响.浙江农业大学学报,1998,24(2):201-210.
    [165]Sergio B, Adriana P, Yoh Y Digestive enzymes activity during ontog-enetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture, 2005, 15 (7): 1-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700