雏鸵鸟免疫器官的形态学特点及鸡源NDV对雏鸵鸟致病机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸵鸟原产于非洲沙漠地带,人类集约化养殖鸵鸟的历史较其它动物如鸡、牛、猪及马属动物等短的多,并且由于鸵鸟形体高大,活动范围广,给疾病研究工作的开展带来诸多不便,因此,人们对鸵鸟许多疾病的研究目前还不完善,远不如对其它动物的疫病防治进行的深入和全面。新城疫是国内外鸵鸟养殖业最主要的传染病之一,雏鸟的发病率高达50%,成鸟发病率为3%~6%,鸵鸟因为经常进行户外活动,不可避免的要与其他野鸟或家禽接触,这可能会导致NDV在鸵鸟和其它动物之间相互传染。鉴于此,本研究以雏鸵鸟为试验动物,分为攻毒组(皮下注射鸡新城疫标准毒株F_(48)E_9)和对照组,利用透射电镜技术、放射免疫测定、组织化学法、免疫组化定位表达及原位缺口末端标记等多种方法,从亚细胞、组织细胞及细胞因子等方面系统研究雏鸵鸟免疫器官的结构特点及免疫细胞、神经免疫调控和细胞凋亡在鸡源NDV人工感染雏鸵鸟引起的机体免疫反应中的作用。主要研究工作和结果包括以下几个方面:
     1雏鸵鸟免疫器官的形态学特点
     本试验以对照组8W健康非洲雏鸵鸟为试验动物,通过光镜和电镜样本制作,采用HE、Feulgen-Methylene blue及改良Weigert法染色,研究雏鸵鸟免疫器官结构特点。结果显示:雏鸵鸟胸腺数量少,仅分布在颈后部两侧,聚集成团,髓质内有较典型的Hassall氏小体。腔上囊在泄殖腔的上方形成顶壁和侧壁,包着整个泄殖腔,不形成真正独立的囊腔,囊腔皱襞表面有密集分布的乳头状突起,每个乳头固有层内有单个腔上囊小结分布。脾脏实质内有大量类似椭球的结构,与周围淋巴组织之间形成均质淡染的嗜酸性物质。经特殊染色显示及电镜观察发现该嗜酸性物质含有胶原纤维的成分,此结构在关于其他动物脾脏的文献中未见报道。表明,鸵鸟免疫器官的外形及结构特点与其他动物之间存在较明显的差异。
     2免疫细胞在雏鸵鸟抵抗鸡源NDV防御反应中的免疫调节作用
     将试验动物随机分为攻毒组和对照组。利用组织化学Feulgen-Methylene blue和改良Toluidine blue法分别对试验雏鸵鸟免疫器官内浆细胞(Plasma cell,PC)和肥大细胞(Mast cell,MC)进行特殊染色。结果显示如下:
     (1)脾脏内PC主要位于红髓。胸腺皮质部及皮质与髓质交界处PC数量较多,密集分布。腔上囊内PC散在分布于整个腔上囊小结。雏鸵鸟接种鸡源NDV1~7d,脾脏内PC数量明显低于对照组(P<0.01)。胸腺髓质部PC数目从病毒接种第3d开始急剧下降,第5d降至最低(P<0.01),之后,PC开始增多。腔上囊小结内PC数量先降低后增加,至第9d恢复与对照组相当。上述结果表明,免疫器官内PC数量多,分布广;机体感染NDV,各免疫器官内PC数量减少,导致抗体生成和分泌降低,抑制体液免疫应答。
     (2)胸腺皮-髓交界处和髓质部MC数量较多,密集分布。腔上囊内MC主要分布在黏膜上皮,而脾脏内MC主要位于浅层实质,聚集分布。胸腺和腔上囊MC胞质内多含紫红色颗粒,脾脏内MC呈蓝紫色,而同一器官不同部位MC的形态、大小也不同。雏鸵鸟人工感染鸡源NDV,脾脏内MC数量总体呈下降趋势,胸腺和腔上囊内MC均在病毒接种后3d明显减少,并分别于第3d和第5d降至最低,与对照组之间差异极显著(P<0.01)。以上结果表明,雏鸵鸟免疫器官内MC存在异质性;在病毒感染不同阶段,MC数量的动态变化提示MC在雏鸵鸟抗鸡源NDV的防御反应及机体的免疫调节过程中发挥重要作用。
     3鸡源NDV人工感染雏鸵鸟对神经免疫调节的影响
     采用免疫组织化学SABC法及放射免疫技术,对5-HT在鸵鸟免疫器官内的定位分布及病毒接种期间攻毒组和对照组鸵鸟免疫器官内5-HT表达和血清中IL-2水平的动态变化进行研究。发现,脾脏红髓内5-HT免疫反应阳性细胞(5-HTir)数量最多,阳性产物表达最强。胸腺内5-HTir主要分布于皮质和髓质交界处的血管周围及胸腺小叶间结缔组织。腔上囊小结内5-HTir数量极少,散在分布于髓质。人工感染鸡源NDV,脾脏内5-HTir数目急剧下降,与对照组差异极显著(P<0.01),且阳性产物表达减弱。胸腺内5-HTir数量在病毒接种期间整体呈上升趋势,阳性表达产物较对照组加强(P<0.05)。腔上囊内5-HTir在病毒接种初期减少,随后开始增加。血清中IL-2水平在病毒接种后第1d即开始下降,之后有所回升,但与对照组仍差异极显著(P<0.01)。结果表明,脾脏是免疫器官合成外周5-HT的重要场所,5-HT数量的动态变化提示5-HT参与了ND的发病过程,其数量及表达强弱与机体的病变进程有关;IL-2在鸡源NDV感染雏鸵鸟引起的免疫应答反应中发挥重要作用,攻毒组鸵鸟血清中IL-2水平也与机体组织的损伤及疾病的病变程度密切相关。
     4鸡源NDV人工感染雏鸵鸟对细胞凋亡的影响
     利用TUNEL法检测攻毒组和对照组鸵鸟免疫器官及中枢神经系统内的细胞凋亡。数据统计分析显示,攻毒组鸵鸟免疫器官内凋亡细胞在病毒感染早期数量增加,随后数量减少。脾脏内淋巴细胞在NDV接种后5~7d凋亡细胞数量增加最明显(P<0.01)。胸腺内淋巴细胞在病毒接种期间凋亡细胞数量均高于对照组,并且在病毒接种后1d即可检测到大量凋亡的淋巴细胞(P<0.01)。腔上囊内凋亡细胞在病毒接种后1~7d均与对照组差异极显著(P<0.01),除淋巴细胞凋亡外,还可检测到大量凋亡的黏膜上皮细胞。小脑内神经细胞凋亡主要发生在颗粒层颗粒细胞,感染鸡源NDV的雏鸵鸟小脑颗粒细胞凋亡数目大量增加(P<0.01),浦肯野细胞也出现凋亡。大脑皮质部和脊髓白质内凋亡神经细胞数量均较对照组显著增加(P<0.01)。上述研究结果表明,鸡源NDV能诱导雏鸵鸟免疫器官内淋巴细胞和中枢神经系统内神经的凋亡;感染鸵鸟腔上囊小结内黏膜上皮细胞的大量凋亡,提示可能参与了雏鸵鸟黏膜免疫屏障功能障碍的病理过程;脑内神经细胞凋亡存在区域选择性。
Ostrich originated from African desert. A short intensive cultural history comparedwith fowl, cattle, pig and equus animals, big body configuration and extensive territory,all these factors cause ostrich disease research work developed inconveniently. Theostrich disease studies are still imperfect, not as profound as other animals in diseaseprevention and control. New castle disease (ND) is one of the most serious infectiondiseases that damage ostrich cultivation. The highest disease incidence of ostrich chicks is50%, the grown-up ostrich is 3%~6%. Often activating outdoors, ostrich inevitablycontacts with other wild birds or fowls, and cross infection of NDV between ostrich andother animals may be happened. In this research, ostrich chicks were divided intochallenge and control groups at random. Using the methods of transmission electronmicroscopy, radioactive immunoassay, histochemical method, immunohistochemistry andterminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), thestructural characteristics of ostrich chicks' immune organs and the role of immunologiccell, neuroimmunomodulation and apoptosis in the immune reaction after artificiallychallenged with chicken NDV were illustrated. The main research results are as follows:
     1. Morphological characteristics of ostrich chicks' immune organs
     8-weeks-old healthy ostrich chicks were selected from control group. The structuralcharacteristics of ostrich chicks' immune organs was detail observed using transmissionelectron microscopy, histochemical methods (Feulgen-Methylene blue staining andreforming Weigert staining) and HE staining. The results indicated the number of thymusis little, distributed the back of neck along two sides and clustered together. There weretypical Hassall corpuscles in the medulla of thymus. The cloacal bursa structured thehanging and lateral walls of cloaca, enveloped the cloaca and did not form the trulyindependent bursa. There densely distributed convex papilates on the surface of foldsinside bursa, with one bursa nodule in lamina propria of each convex papilate. There weremany round or ellipse structures, similar to ellipsoid, in the parenchyma of spleen. Thehomogeneous texture between ellipsoid analog and circum-lymph tissue was acidophiliamaterial, which were collagen fibers by specific staining and transmission electron microscopy. And it was not found in other animals. These results demonstrate there areobvious differences in the immune organs between ostrich chicks and other poultries.
     2. The immunological regulation function of immunologic cell in the defencereaction to counteract chicken NDV
     The experimental animals were divided into challenge and control groups at random.The histochemical methods, Feulgen-Methylene blue staining and reforming Weigertstaining were used to study the plasma cell (PC) and mast cell (MC) in immune organs ofostrich chicks. The results are as follows:
     (1) In spleen the PCs were mainly in the medulla. The PCs in thymus distributedintensively and the number of it was most in cortex and the boundary of cortex andmedulla. The PCs in cloacal bursa were scattered in the whole bursa nodules. Afterartificially infected with chicken NDV within 1~7days, the number of PCs in spleen ofchallenge group reduced significantly compared with control group. The PCs in thethymic medulla decreased sharply at 3 days after challenged, reached minimum at 5 days(P<0.01), then increased again. The amount of PCs in cloacal bursa reduced first, thencame back, and was equivalent to that of PCs in control group at 9 days. Those indicatePCs in immune organs are multitude and distribute widely. The number of PCs inimmune organs after artificially infected with chicken NDV is obviously less than that ofPCs in control group, as induces the loss of antibody formation and secretion, and inhibitsthe humoral immunoresponse.
     (2) The MCs in thymus distributed intensively and the number of it was most inmedulla and the boundary of cortex and medulla. In cloacal bursa the MCs were mainlyin the mucosa epithelium. The MCs in spleen were mainly intensively distributed in thesuperficial lamella of parenchyma. The kytoplasm of MC in thymus and cloacal bursacontained prunosus granula, while MC in spleen was stained amethyst. The shape、sizeand gray varies of MC were different in different location of the same organ. Afterartificially infected with chicken NDV, there was a decreasing trend of the number ofMCs in spleen. The MCs in thymus of challenge group, as well as in cloacal bursa, weresignificantly fewer than that of control group at 3 days. The results show the MC inimmune organs of ostrich chicks has heterogeneity. The dynamic changes of MC indicate that MC plays a marked role in the defence reaction and immunomodulation during theartificial infection with chicken NDV.
     3. Effect on neuroimmunomodulation after artificially infected with chicken NDV
     The study was on the distribution of 5-HT immunoreactivity (5-HTir) positive cellsin immune organs of ostrich chicks, the dynamic changes on the expression of 5-HT andthe level of IL-2 in serum after artificially infected with chicken NDV, usingimmunohistochemistry, SABC, and radioactive immunoassay. The results showed the5-HTir positive cells in spleen intensively located in red pulp, and the expression ofpositive products was stronger. In thymus the 5-HTir positive cells mainly distributed theperiphery of blood vessel and the connective tissue in lobule of thymus. The 5-HTirpositive cells in cloacal bursa were scattered in the medulla of bursa nodules. Duringinfection, the amount of 5-HTir positive cells in spleen decreased sharply and wassignificantly lower than that of control group. And the expression of positive productsweakened. While there was an increasing trend of the number of 5-HTir positive cells inthymus, the expression of positive products strengthened. The 5-HTir positive cells incloacal bursa reduced at the early stage of the artificial infection, and began increasingagain. The level of IL-2 in serum slightly decreased at 1 day after challenged then cameback, but it was still significantly different compared with control group. All the datasuggest that the spleen is the important location where the peripheral 5-HT produced inimmune organs. The dynamic changes of 5-HTir positive cells indicate that 5-HTparticipate the nosogenesis of ND. The quantity and expression of 5-HTir is relevant topathological changes. IL-2 plays the important role in the immune response to counteractchicken NDV. The level of IL-2 in serum of challenge group correlates closely with thedamage of organism and the development of disease.
     4. The effect of chicken NDV on apoptosis in immune organs and central nervoussystem of ostrich chicks
     The TUNEL was used to detect the apoptosis of nervous cells in central nervoussystem and lymph cells in immune organs of challenge and control group. The data bystatistical analysis showed the apoptosis in immune organs of challenge group obviouslyincreased during the first stage, then delined. In spleen the apoptosis increased significantly within 5~7 days after infection compared with control group. In thymus thenumber of apoptosis increased significantly at 1 day after challenged, and was alwayshigher than that of control group. The apoptosis of lymph cell in cloacal bursa increasedsignificantly within 1~7 days, besides, a great quantity of apoptosis of mucosaendothelial cells. In cerebellum the apoptosis of nerve cell mainly occurred in thegranular cells of granular layer. The number of the apoptosis in cerebellum of ostrichchicks, as well as that of the cerebral cortex and white matter of spinal cord, increasedsignificantly after artificially infected with chicken NDV. And the positive products ofTUNEL also took place in Purkinje cells of challenge group. The results elucidate thatchicken NDV can induce the apoptosis of nervous cells in central nervous system andlymph cells in immune organs of ostrich chicks. A large number of apoptosis of mucosaendothelial cells after challenged indicates it maybe participate the pathological changesof mucosa immunologic barrier. The apoptosis of nerve cell in brain has regioselectivity.
引文
1.Dellmann H D,Brown E M,秦鹏春,聂其灼.兽医组织学.北京:农业出版社,1989:165
    2.曹殿军,刘培欣,闫丽辉,孙建宏.鸡新城疫病毒强弱毒RT-PCR鉴别诊断方法.中国预防兽医学报,2000,22(3):415-417
    3.曹伟胜,罗开健,张桂红,任涛,辛朝安,廖明.H5亚型AIV诱导组织细胞凋亡的TUNEL检测.中国兽医杂志,2006,42(8):17-19
    4.查红波,蒋金书,蒋进.巨型艾美耳球虫感染鸡空肠粘膜肥大细胞数量和组织胺含量的变化.畜牧兽医学报,1997,28(2):185-194
    5.陈龙,庞训胜,毛鑫智,高勤学,殷定忠.雏鸡在感染IBDV后血浆cAMP、cGMP和IL-2水平变化.畜牧兽医学报,1999,30(2):157-163
    6.陈明勇,高齐瑜,杨汉春,乔健.传染性发氏囊病毒变异E株感染鸡细胞凋亡的研究,畜牧兽医学报,2002,33(2):180-184
    7.陈小芳,王翠霞.丙型肝炎感染者IL-2、IL-6、IL-18血清水平的研究.广东医学院学报,2006,24(6):579-580
    8.陈耀星,滑静,杨佐君,邓泽沛,王子旭.北京鸭下丘脑与摄食行为的关系Ⅱ.5-羟色胺样神经元在下丘脑的分布PAP法研究.中国兽医学报,1998,18(2):172-175
    9.陈志胜,王丙云,潘忠雄,蔡巧奕,顾万军.鸭肝炎病毒诱导雏鸭细胞凋亡的研究.中国兽医学报,2003,23(2):136-137
    10.成令忠,钟翠平,蔡文琴.现代组织学.上海:上海科学技术文献出版社,2003:612-628,655-658
    11.程相朝,宋文成,薄清如,邱震东。人工感染MDV雏鸡免疫器官中PMG~+PC动态观察.中国畜禽传染病,1994,5:17-19
    12.崔保维主编,鸵鸟养殖技术.北京:中国农业出版社,1999,120-168
    13.崔玉东,冉旭华,宋佰芬,朴范泽.新城疫病毒E系毒株通过Caspase途径诱导鸡胚成纤维细胞凋亡,中国兽医学报,2006,26(3):245-247
    14.刁有祥,王春璈,王本平,王增修,范承祥.鸵鸟新城疫的诊断与防制.中国兽医科技,1997,27(8):34
    15.古德全,粟永萍,阎国和.显示浆细胞的组织化学方法.诊断病理学杂志,1995,2(3):175
    16.郭琼林.中华鳖胸腺显微和亚显微结构及其在进化上的意义.动物学报,1999,45(2):207-213
    17.韩济生.神经科学原理(上册).第二版.北京:北京医科大学出版社,1999:513
    18.胡薛英.新型鸭肝炎病毒致病特性及感染鸭肝胰细胞凋亡的研究.[博士论文].中国农业大学,2005
    19.胡艳欣,余锐萍,张洪玉,郭延军,肖冲,刘风华.热应激后猪血清中IL-2、IFN-γ及TNF-a水平的动态变化.畜牧兽医学报,2006,37(5):496-499
    20.黄国伟,孙晓光,吴元芳,张雨龙,陈可靖,周瑞菊,庄道玲.白细胞介素2的方射免疫分析研究.标记免疫分析与临床,1996,3(2):69-72
    21.黄丽波,刘云,邹水.奶山羊淋巴器官肥大细胞的分布.黑龙江八一农垦大学学报,2001,13(4):63-65
    22.黄丽波,袁学军,乔惠理,刘济伍.鸡红核和蓝斑核的细胞构筑及其5-HT神经元的分布研究.动物医学进展,2003,24(2):72-73
    23.贾雪梅,贾友苏,齐威琴,王惠珠.小鼠下颌下腺中肥大细胞异质性研究.解剖学杂志,1996,4:344-346
    24.焦旭文,何仲义,牛建国,李军平.大鼠胸腺中的5.羟色胺分布研究.宁夏医学院学报,2001,23(3):164-165
    25.金华,徐彦波,甘永华.鸡贫血病毒感染鸡细胞凋亡研究.中国兽医学报,1991,19(6):542-544
    26.李成仁,蔡文琴,邓晓林.P物质对大鼠脾细胞免疫功能的影响.第三军医大学学报,1999,21(12):896-898
    27.李建生,任小巧,刘轲,刘正国,赵跃武,孔令飞.老龄大鼠脑缺血再灌注神经细胞凋亡、Bd-2、Bax表达与caspase-3活性变化.中国病理生理杂志,2005,21(10):2009-2013
    28.李霞.北方黄胡蜂和德国黄胡蜂工蜂脑中5-HT能神经元系统免疫细胞化学定位研究.[硕士论文].东北师范大学,2005
    29.李翔,房慧伶,兰宗宝,曾芸.新城疫F48E8病毒体内诱导鸡法氏囊淋巴细胞凋亡实验.中国兽医杂志,2007,43(2):13-15
    30.李玉谷,黄行许,李楚宣,陈元音.鸭淋巴器官中肥大细胞异质性的研究.华南农业大学学报,1997,18(3):110-115
    31.李玉谷,曾文宗.鸡淋巴器官中肥大细胞异质性的研究.广西农业大学学报,1997,16(1):25-30
    32.林国健.鸵鸟新城疫的诊治报告.福建畜牧兽医,2006,28(4):29
    33.林祥梅,赵增连,陈万芳.鸭源流感病毒人工感染鸡后诱导的细胞凋亡.北京农学院学报,2000,(15)2:28-33
    34.凌启波,武忠弼,董郡.实用病理特殊染色和组织化学.广州:广东高等教育出版社,1989:20-22
    35.刘华珍,彭克美,陈文钦.非洲鸵鸟延髓网状结构细胞构筑研究.畜牧兽医学报,2005,36(8):851-854
    36.刘华珍.5-羟色胺对鸭摄食调节作用机理的形态学研究.[博士论文].华中农业大学,2005
    37.刘胜旺,陈洪岩,孔宪刚,刘永刚,卢景良.新城疫F48E9病毒体外诱导的鸡T淋巴细胞程序性死亡.中国农业科学,2000,33(1):82-86
    38.刘胜旺,李一经,曹殿军,卢景良.新城疫油苗免疫鸡血清IgG抗体含量及T细胞亚类的观察.中国免疫学杂志,1998,14(1):65-67
    39.刘伍梅,汪铭书,程安春,刘芳,李雪梅,张平英,陈孝跃.DNA Ladder和ELISA联合检测PRRSV诱导Marc145细胞凋亡动态变化规律的研究[J].四川农业大学学报,2005,23(1):95-98
    40.刘玉锋,余锐萍,李慧姣,靳红,梁明珍,刘玉如,寸钢彪.IBDV超强毒株感染SPF鸡后法氏囊淋巴细胞凋亡及Bax和Bcl-2蛋白动态表达的研究.中国农业科学,2005,38(2):405-409
    41.卢玉葵,朱燕秋,马春全,陈志胜,梁丽容,吴悦霞.番鸭感染呼肠弧病毒后免发器官组织浆细胞数量的变化,2005,10:47-49
    42.罗克.家禽解剖学与组织学.福建:福建科技出版社,1983,175
    43.罗振国,韩庆国,张小云.大鼠脑中缝核的免疫细胞化学特性研究.深圳大学学报,2000,17(1):60-65
    44.孟云霄,纪祥瑞,李玉军,谢琰臣,魏志敏,髓爱华.人淋巴组织中5-HT_(1A)受体的表达.临床与实验病理学杂志,2004,20(3):285-288
    45.牛华.白斑迷蝴蝶Mimathyma schrenckii前脑和中脑中GABA、5-HT免疫阳性神经元分布的研究.[硕士论文].东北师范大学,2005
    46.欧德渊,高登慧,王开功,许乐仁.实验性蛔虫感染鸡空肠粘膜和胸腺髓质肥大细胞的数量变化.中国兽医学报.2003,23(1):43-46
    47.潘玲,吴信法.病原微生物感染与细胞凋亡.中国兽医学报,1998,18(5):518-520
    48.彭广能,刘长松,周东,王德明,周治金.鸵鸟新城疫的诊断及防制.中国兽医杂志,2003,39(12):15-16
    49.彭克美,冯悦平,何文波,唐文花.禽类中脑柬的细胞构筑—HRP和SABC法研究.中国兽医学报,2003,23(5):474-477
    50.彭克美,刘华珍,冯悦平,何文波,唐文花.非洲鸵鸟.野生动物,2004,(5):5
    51.彭聿平,邱一华,张清泉,王键鹤,李炳源,李新玲.免疫应答过程中淋巴器官内单胺类递质的变化.南通医学院学报,1995,15(2):167-170
    52.彭聿平,王健鹤.5-羟色胺对大鼠体液免疫应答的影响.免疫学杂志,1990,6(2):103-106
    53.祁保民,姚金水,陈文列,卢惠明.马立克氏病病毒人工感染鸡细胞凋亡病变及凋亡机制研究.畜牧兽医学报,2004,35(1),97-101
    54.冉旭华,崔玉东,朴范泽.病毒感染与细胞凋亡.动物医学进展,2003,24(4):22-25
    55.余锐萍,刘金华,王彩虹,何诚,董世山,管山红.鸵鸟新城疫并发大肠杆菌病的病理学观察动物医学进展.1999,20(3):171-172
    56.宋长绪,刘福安.用PCR检测鸡NDV的初步试验.中国兽医科技,1995,25(10):20-22
    57.宋卉,彭克美,唐文花,刘华珍,王岩,位兰,杜安娜,唐丽.鸵鸟口咽腔结构特点与功能关系.中国兽医学报,2007,27(1):77-81
    58.汪铭书,程安春,刘芳,陈孝跃,刘伍梅.仔猪人工感染猪繁殖与呼吸综合征病毒后宿主细胞凋亡动态变化规律的研究.病毒学报,2006,22(5):385-390
    59.王德海,程国富,胡薛英,谷长勤,赵雅心,周诗其.葡萄球菌性跗关节炎肉鸡血液中T细胞与IL-2的动态变化.动物医学进展,2003,24(1):105-107
    60.王凤龙.人工感染鸡包涵体肝炎病毒雏鸡胸腺细胞凋亡的检测.中国兽医科技,2003,6:42-44
    61.王佩良,韩先桂,韩先英.鸵鸟新城疫的诊治.畜牧与兽医.2002,34(8):47
    62.王雯慧,陈怀涛.双峰驼脾脏的组织形态学观察.畜牧兽医学报,2003,34(3):268-272
    63.王新亭,徐以明.人胎儿胸腺精氨酸—加压素、血管活性肠肽和5-羟色胺免疫反应细胞.解剖学杂志,2000,23(6):545-549
    64.王泽霖,张建武.用RT-PCR对新城疫病毒分离株毒力的快速鉴定.河南畜牧兽医,2001,10(22):6-7
    65.吴艳涛,倪雪霞,万洪全,刘文博,刘秀梵.我国部分地区不同动物来源新城疫病毒的分子流行病学研究.病毒学报,2002,18(3):264-269
    66.肖传斌,刘忠虎,梁宏德,党静,高春生,王平利.非洲鸵鸟食管组织学观察.河南农大学报,2005,39(1):102-105
    67.姚金水,吴宝成,陈文列,陈家祥,吴异键.禽(番鸭)呼肠孤病毒诱导脾脏单核—巨噬细胞和淋巴细胞凋亡的超微观察.福建农林大学学报(自然科学版),2004,33(4):501-504
    68.尹燕博,蔡丽娟,孙淑芳,李葳,徐瑞.鸵鸟新城疫的临床诊断病毒分离和鉴定.中国兽医杂志,1998,24(7):17-18
    69.尹燕博,龚振华,司微,蒋金书,崔尚金,高齐瑜.鸵鸟新城疫病毒分子流行病学研究.中国预防兽医学报.2006,11(6):705-711
    70.余涓,邱丽颖,周宇,陈柏龄,郑祥,陈崇宏.脑缺血再灌注损伤后神经细胞凋亡及Bcl-2、Bax蛋白表达与罗非昔布的影响.中国药理学通报,2005,21(5):572-575
    71.张华,彭贵成,翁嘉颖.大鼠海马内5—羟色胺免疫组化阳性纤维及终末的分布.重庆医科大学学报,1994,19(4):282-285
    72.张小霞,张忠信.病毒对细胞凋亡的影响及作用机理,中国病毒学,2002,17(3):289-295
    73.张育才.病毒性脑炎和细菌性脑膜炎患儿脑脊液炎症细胞反应动态变化.临床儿科杂志,2003,221(8):463
    74.赵慧英,龙敏,孙健红,李义书,刘根胜,马夜肥.雌性鸵鸟生殖器官解剖学和组织学观察.中国兽医杂志,2006,42(7):23-25
    75.赵香汝,王家鑫,崔平.肥大细胞用甲苯胺蓝染色之体会.中国组织化学与细胞化学杂志,2000,9(3):34
    76.赵燕玲,曲友直,王宗仁.芪丹通脉片对脑缺血.再灌注大鼠神经细胞凋亡及Fas-L蛋白表达的影响.中国中医急症,2006,15(9):1005-1007
    77.郑世民,刘忠贵.雏鸡感染法氏囊病毒后免疫器官中浆细胞的变化.东北农学院学报,1989,20(4):373-383
    78.朱长庚,李正莉.细胞因子与免疫-神经-内分泌调节网络.解剖学报,1996,27(4):339-344
    79.朱永红,胡大荣.肥大细胞在感染及免疫中的作用研究进展.第三军医大学西南医院全军传染病专科中心,国外医学免疫学分册,1999,22(2):96-98
    80. Abraham S N, Malaviya R. Mast cells in infection and immunity. Infect Immun, 1997, 65(9): 3501-3508
    
    81. Aldous E W, Alexander D J. Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avain Pathlol, 2001,30(2): 117-128
    
    82. Alexander D J. OIE manual of Diagnosis Tests and Vaccines for Terrestrial Animals. Office of International Des Epizooties, Paris, 2004: 270-282
    
    83. Allsopp T E, Wyatt S, Paterson H F, Davies A M. The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell, 1993, 73(2): 295-307
    
    84. Allwright D. Viruses encountered in intensively reared ostriches in southern Africa. Proceedings of Improving our Understanding of Ratites in a Farming Environment. Oxford, UK. 1996: 27-33
    
    85. Balachandran S, Roberts P C, Kipperman T, Bhalla K N, Compans R W, Archer D R, Barber G N. Alpha/beta interferons potentiate virus-induced apoptosis through activation of the FADD/Caspase-8 death signaling pathway. J Virol, 2000,74(3): 1513-1523
    
    86. Bayley S T, Mymryk J S. Adenovirus E1A protein and transformation. Intern J Oncol, 1994, 5: 425-444
    
    87. Belkaid Y. The role of CD +4 CD +25 regulatory T cells in Leishmania infection. Expert Opin Biol Ther, 2003,3 (6): 875 - 885
    
    88. Benson E B, Strober W. Regulation of IgA secretion by T cell clones derived from the human gastrointestinal tract. J Immunol, 1988,140 (6) : 1874-1882
    
    89. Bliznakov E G Serotonin and its precursors as modulators of the immunological responsiveness in mice. J Med., 1980,11(2-3): 81-105
    
    90. Bockmann S, Seep J, Jonas L. Delay of neurophil apoptosis by the neuropeptides substance P:involvement of caspase cascade. Peptides, 2001,22(4): 211-214
    
    91. Bolte A L, Voelckel K, Kaleta E F. Vaccination of ostriches (Struthio camelus, Linnaeus, 1758) against Newcastle disease: evidence for vaccine compatibility and seroconversion after vaccinations using the hemagglutination inhibition and virus neutralization tests. Dtsch Tierarztl Wochenschr, 1999,106(2): 62-65
    
    92. Boyd J M, Malstrom S, Subramanian T, Venkatesh L K, Schaeper U, Elangovan B, D'Sa-Eipper C, Chinnadurai G. Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell, 1994,79(2): 341-351
    93. Bredesen DE. Neural apoptosis. Ann Neurol, 1995,38(6): 839-851
    
    94. Bremell T, Abdelnour A, Tarkaw ski A. Histopathological and serological progression of experimental staphylococcus aureus arthritis. Infection and Immunity, 1996, 60 (7) : 2976-2985
    
    95. Cadman H F, Kelly P J, De Angelis N D, Rohde C, Collins N, Zulu T. Comparison of ELISA and HI test for the detection of antibodies against Newcastle disease virus in ostrich (Struthio camelus). Avian Pathol, 1997, 26: 357-363
    
    96. Chen J, Graham S H, Nakayama M, Zhu R L, Jin K, Stetler R A, Simon R P. Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia. J Cereb Blood Flow Metab, 1997,17(1): 2-10
    
    97. Cheng E H, Nicholas J, Bellows D S, Hayward G S, Guo H G, Reitz M S, Hardwick JM.A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci USA, 1997, 94(2): 690-694
    
    98. Chiocca S, Baker A, Cotten M. Identification of a novel antiapoptotic protein.GAM -1, encoded by the CELO adenovirus. J Virol, 1997,71:3168-3177
    
    99. Chleq-Deschamps C M, LeBrun D P, Huie P, Besnier D P, Warnke R A, Sibley R K, Cleary M L. Topographical dissociation of BCL-2 messenger RNA and protein expression in human lymphoid tissues. Blood, 1993,81(2): 293-298
    
    100. Choi D W. Excitotoxic cell death. J Neurobiol, 1992, 23(9): 1261-1276
    
    101. Clem R J, Miller L K. Control of programmed cell death by the baculovirus genes p35 and iap. Mol Cell Biol, 1994,14(8): 5212-5122
    
    102. Colamussi M L, White M R, Crouch E, Hartshorn K L. Influenza A virus accelerates neutrophil apoptosis and markedly potentiates apoptotic effects of bacteria. Blood, 1999, 93 (7): 2395-2403
    
    103. Crook N E, Clem P J, Miller L K. An apoptosis - inhibiting baculovirus gene with a zinc finger- like motif. J Virol, 1993, 67: 2168-2174
    
    104. Cuesta M C, Quintero L, Pons H, Suarez-Roca H. Substance P and calcitonin gene-related peptide increase IL-1 beta, IL-6 and TNF alpha secretion from human peripheral blood mononuclear cells. Neurochem Int, 2002,40(4): 301-306
    105. Deckwerth TL, Johnson EM Jr. Temporal analysis of events associated with programmed cell death (apoptosi.s) of sympathetic neurons deprived of nerve growth factor. J Cell Biol, 1993, 123(5): 1207-1222
    
    106. Devergne O, Hatzivassiliou E, Izumi KM, Kaye KM, Kleijnen MF, Kieff E, Mosialos G. Association of TRAF1, TRAF2 and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol, 1996, 16(12): 7098-7108
    
    107. Dihne M, Block F. Focal ischemia induces transient expression of IL-6 in the substantia nigra-pars reticulata. Brain Res., 2001, 889:165-173
    
    108. Enarl M. Hug H, Nagata S. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature, 1995,375(6526): 78-79
    
    109. Ezoe H, Fatt RB, Mak S. Degradation of intracellular DNA in KB cells infected with cyt mutants of human adenovirus type 12. J Virol., 1981,40(1): 20-27
    
    110. Frank M G, Johnson D R, Hendricks S E, Frank J L. Monocyte 5-HT1A receptor mediate pindobind suppression of natural killer cell activity: modulation by catalase. Int J Immunopharmacol, 2001,2: 247-253
    
    111. Fujii S. Application of natural killer T-cells to posttransplantation immunotherapy. Int J Hematol. 2005, 81:1-5
    
    112. Fujimoto I, Takizawa T, Ohba Y, Nakanishi Y. Co-expression of Fas and Fas-ligand on the surface of influenza virus-infected cells. Cell Death Differ.,1998 ,5(5): 426-431
    
    113. Fuseler J W, Conner E M, Davis J M. Cytokine and nitric oxide production in the acute phase of bacteriol cellwall-induced arthritis. Inflammation, 1997,1:113-115
    
    114. Gagliardini V, Fernandez P A, Lee R K, Drexler H C, Rotello R J, Fishman M C, Yuan J. Prevention of vertebrate neuronal death by the crmA gene. Science, 1994, 263(5148): 826-828
    
    115. Galli SJ, Wershil BK. Two faces of the mast cell. Nature, 1996,381(6577): 21-22
    
    116. Garcia I, Martinou I, Tsujimoto Y, Martinou JC. Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene. Science, 1992,258(5080): 302-304
    
    117. Gauchat JF, Henchoz S, Mazzei G, Aubry JP, Brunner T, Blasey H, Life P, Talabot D, Flores-Romo L, Thompson J. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature, 1993, 365(6444): 340-343
    118. Gilad E, Gallili, David BEN-Nathan. Newcastle Disease Vaccines. Biotechnology Advance, 1998,16(2): 343-366
    
    119. Gothert M, Propping P, Bonisch H, Bruss M, Nothen M M. Genetic variation in human 5-HT receptors: potential pathogenetic and pharmacological role. Ann N Y Acad Sci.,1998, 861: 26-30
    
    120. Gougeon M L,Montagnier L. Apoptosis in AIDS. Science.1993,260:1269-1270
    
    121. Gray J S. The cellular response of the fowl small intestine to primary and secondary infections of the cestode Raillietina cesticillus (Molin). Parasitology, 1976,73(2): 189-204
    
    122. Hay B A, Wassaman D A, Rubin G M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell -death. Cell, 1995, 83:1253-1262
    
    123. Heidmann DEA, Metcalf MA, Kohen R, Hamblin MW. Four 5-hydroxytryptamine7(5-HT7) receptor isoforms in human and rat produced by alternative splicing-species differences due to altered intron-exon organization. J Neurochem, 1997,68:1372-1381
    
    124. Hinshaw V S, Olsen C W, Dybdahl-Sissoko N, Evans D. Apoptosis: a mechanism of cell killing by influenza A and B viruses. J Virol.,1994, 68(6): 3667-3673
    
    125. Iken K, Chheng S, Fargin A, Goulet A C, Kouassi E. Serotonin upregulates mitogen-stimulated B lymphocyte proliferation through 5-HT1A receptors. Cell Immunol.,1995,163(1): 1-9
    
    126. Irani A A, Schwartz L B. Mast cell heterogeneity. Clin Exp Allergy, 1989,19 (2): 143-155
    
    127. Ito T, Kobayashi Y, Morita T, Horimoto T, Kawaoka Y. Virulent influenza A viruses induce apoptosis in chickens. Virus Res.,2002,84(1-2): 27-35
    
    128. Jackson J C, Cross R J, Walker R F, Markesbery W R, Brooks W H, Roszman T L. Influence of serotonin on the immune response. Immunology, 1985,54(3): 505-512
    
    129. Jestin V, Cherbonnel M. Interferon-induction in mouse spleen cells by the Newcastle disease virus (NDV) HN protein. Ann Rech Vet.,1991,22(4): 365-372
    
    130. Jeurissen S H, Wagenaar F, Pol J M, Wander Eb A J, Notebom M H. Chicken anemia virus causes apoptosis of thymocytes after in vivo infection and of cell lines after in vitro infection. J Virol.,1992, 66(12): 7383-7388
    
    131. John N, Maina, Christopher. A qualitative and quantitative study of the lung of an ostrich. Struthio camelus. Nathaniel Journal of experimental biology, 2001,13: 2313-2330
    132. Jonuleit H, Schmitt E. The regulatory T cell family: distinct subsets and their interrelations. J Immunol., 2003,171 (12): 6323 -6327
    
    133. Kakiuchi T, Tamura T, Gyotoku Y, Nariuchi H. IL-2 production by B cells stimulated with a specific antigen. Cellular immunology, 1997,138(11): 207-215
    
    134. Kant A G, Koch D J, Van Roozelaar F, Balk, Ter A, Hurne. Differentiation of virulent and non-virulent strains of Newcastle disease virus within 24. hours by polymerase chain reaction. Avian Pathol., 1997,26: 837-849
    
    135. Kawamura N, Tamura H, Obana S, Wenner M, Ishikawa T, Nakata A, Yamamoto H. Differential effects of neuropeptides on cytokine production by mouse helper T cell subsets. Neuroimmunomodulation, 1998, 5(1-2): 9-15
    
    136. Khan NA, Ferriere F, Deschaux P. Serotonin-induced calcium signaling via 5-HT1A receptors in human leukemia (K562) cells. Cell Immunol, 1995,165(1): 148-152
    
    137. Khan NA, Hichami A. Inotropic 5-hydrotrptamine type 3 receptor activates the protein kinase C-dependent phospholipase D pathway in human T cells. Biochem J, 1999,344(1): 199-204
    
    138. Kim T S, Benfield D A, Rowland R R. Porcine reproductive and respiratory syndrome virus-induced cell death exhibits features consistent with a nontypical form of apoptosis. Virus Res., 2002,85(2): 133-140
    
    139. Koch G, Czifra G, Engstrom B E. Detection of Newcastle disease virus-specific antibodies in ostrich sera by three serological methods. Vet Rec., 1998,143(1): 10-12
    
    140. Kommers G D, King D J, Seal B S, Carmichael K P, Brown C C. Pathogenesis of six pigeon-origin isolates of Newcastle disease virus for domestic chickens. Vet Pathol.,2002, 39(3): 353-362
    
    141. Koyama A H, Irie H, Fukumori T, Hata S, Iida S, Akari H, Adachi A. Role of virus-induced apoptosis in a host defense mechanism against virus infection. J Med Invest. 1998, 45(1-4): 37-45
    
    142. Krajcsi P, Dimitrov T, Hermiston T W, Tollefson A E, Ranheim T S, Vande Pol S B, Stephenson A H, Wold W S. The adenovirus E3-14.7K protein and the E3-10.4K/14.5K complex of proteins, which independently inhibit tumor necrosis factor (TNF)-induced apoptosis, also independently inhibit TNF-induced release of arachidonic acid. J Virol.,1996,70(8): 4904-4913
    143. Kut J L, Young M R, Crayton J W, Wright M A, Young M E. Regulation of murine T-lymphocyte function by spleen cell-derived and exogenous serotonin. Immunopharmacol Immunotoxicol. 1992,14(4): 783-796
    
    144. Lam K M, Vasconcelos A C. Newcastle disease virus-induced apoptosis in chicken peripheral blood lymphocytes. Vet Immunol Immunopathol, 1994,44(1): 45-56
    
    145. Lapchak P A, Araujo D M, Quirion R, Beaudet A. Immunoautoradiographic localization of interleukin 2-like immunoreactivity and interleukin 2 receptors (Tac antigen-like immunoreactivity) in the rat brain. Neuroscience, 1991,44(1): 173-184
    
    146. Lazure C, Paquet L, Litthauer D, Naude RJ, Oelofsen W, Chretien M. The ostrich pituitary contains a major peptide homologous to mammalian chromogranin A(1-76), Peptides. 1990, 11(1): 79-87
    
    147. Leceta J, Garrido E, Torroba M, Zapata AG Ultrastructural changes in the thymus of the turtle Mauremys caspica in relation to the seasonal cycle. Cell Tissue Res.,1989,256(1): 213-219
    
    148. Linnik M D, Zahos P, Geschwind M D, Federoff HJ. Expression of bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. 1995, 26(9): 1670-1675
    
    149. Liu F T. Truly MAS Terful cells: mast cells command B cell IgE synthesis. J Clin Invest, 1997, 99(7): 1465-1466
    
    150. Los M, Van de Craen M, Penning LC, Schenk H, Westendorp M, Baeuerle PA, Droge W, Krammer PH, Fiers W, Schulze-Osthoff K. Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature, 1995,375(6526): 81-83
    
    151. Luber-Narod J, Rogers J. Immune system associated antigens expressed by cells of the human central nervous system. Neurosci Lett, 1988, 94(1-2): 17-22
    
    152. Lucas J J, Rodriguez C, Waxman S, Gonzalez F, Uriarte I, Andres M I S. Pharmacokinetics of marbofloxacin after intravenous and intramuscular administration to ostriches. The Veterinary Journal, 2005, 3(170): 364-368
    
    153. Madekurozwa M C, Kimaro W H. A morphological and immunohistochemical study of healthy and atretic follicles in the ovary of the sexually immature ostrich (Struthio camelus). Anat Histol Embryol, 2006, 35(4): 253-258
    154. Manji G A, Hozak R R, LaCount D J, Friesen P D. Baculovirus inhibitor of apoptosis functions at or upstream of the apoptotic suppressor P35 to prevent programmed cell death. J Virol.,1997, 71: 4509-4516
    
    155. Manvell R J, Jorgensen P H, Nielsen O L, Alexander D J. Experimental assessment of the pathogenicity of two avian influenza A H5 viruses in ostrich chicks (Struthio camelus) and chickens. Avian Pathol, 1998,27: 400-404
    
    156. Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron, 1994, 13(4): 1017-1030
    
    157. McCarthy S A, Symonds H S, Van D T. Regulation of apoptosis in transgenic mice by s imian -virus - 40 T - antigen - mediated Inactivation of p53. Proc Natl Acad Sci USA, 1994, 91: 3979-3983
    
    158. Morale M C, Gallo F, Tirolo C, Testa N, Caniglia S, Marietta N, Spina-Purrello V, Avola R, Caucci F, Tomasi P, Delitala G, Barden N, Marchetti B. Neuroendocrine-immune (NEI) circuitry from neuron-glial interactions to function: Focus on gender and HPA-HPG interactions on early programming of the NEI system. Immunol Cell Biol.,2001, 79(4): 400-417
    
    159. Morimura T, Ohashi K, Kon Y, Hattori M, Sugimoto C, Onuma M. Apoptosis and CD8-down-regulation in the thymus of chickens infected with Marek's disease virus. Arch Virol 1996,141: 2243-2249
    
    160. Morrison R S, Wenzel H J, Kinoshita Y, Robbins C A, Donehower L A, Schwartzkroin P A. Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death.J Neurosci. 1996,16(4): 1337-1345
    
    161. Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell, 1995 , 80(3): 389-99
    
    162. Nassel D R. Serotonin and serotonin-immunoreactive neurons in the nervous system of insects. Progress in Neurobiology, 1988,30:1-85
    163. Naude R J, Oelofsen W. Isolation and characterization of beta-lipotropin from the pituitary gland of the ostrich Struthio camelus. Int J Pept Protein Res.,1981,18(2): 135-137
    
    164. Nava VE, Cheng EH, Veliuona M, Zou S, Clem RJ, Mayer ML, Hardwick JM. Herpesvirus saimiri encodes a functional homolog of the human bcl-2 oncogene. J Virol. 1997, 71(5): 4118-4122
    
    165. Nichols J E, Niles JA, Roberts NJ J r. Human lymphocyte apoptosis after exposure to influenza A virus. J Virol.,2001, 75 (13): 5921-5929
    
    166. Nieto-Sampedro M, Chandy KG. Interleukin-2-like activity in injured rat brain. Neurochem Res.,1987,12(8): 723-727
    
    167. Noteborn MH. Chicken anemia virus induced apoptosis: underlying molecular mechanisms. Vet Microbiol, 2004 , 98(2): 89-94
    
    168. Okayama Y, Kawakami T. Development, migration and survival of mast cells. Immunol Res., 2006, 34(2): 97-115
    
    169. Olivier A J. Ecology and epidemiology of avian influenza in ostriches. Dev Biol (Basel), 2006, 124:51-57
    
    170. Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci.,1991,14: 453-501
    
    171. Ozegbe PC, Aire TA, Soley JT. The morphology of the efferent ducts of the testis of the ostrich. a primitive bird. Anat Embryol (Berl), 2006,211(5): 559-65
    
    172. Palmer DF, Coleman MT, Dowdle WR, Schild GC. Advanced laboratory techniques for influenza diagnosis. Immunology Series No. 6. U.S. Department of Health, Education, and Welfare, 1975:51-52
    
    173. Pawankar R, Okuda M, Yssel H, Okumura K, Ra C. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J Clin Invest, 1997,99(7): 1492-1499
    
    174. Pfitzer S, Verwoerd D J, Gerdes G H, Labuschagne A E, Erasmus A, Manvell R J, Grund C. Newcastle disease and avian influenza A virus in wild waterfowl in South Africa. Avian Dis., 2000 44(3): 655-60
    
    175. Qian BF, Zhou G Q, Hammarstrom M L, Danielsson A. Both substance P and its receptor are expressed in mouse intestinal T lymphocytes. Neuroendocrinology, 2001, 73(5): 358-368
    176. Raff MC. Social controls on cell survival and cell death. Nature, 1992,356(6368): 397-400
    
    177. Rodrl guez-Go mez F J, Rendo'n-Uncetn M C, Sarasquete C, Munoz-Cueto J A. Distribution of serotonin in the brain of the Senegalese sole, Solea senegalensis: an immunohistochemical study. Journal of Chemical Neuroanatomy, 2000,18:103-115
    
    178. Rudnick G. Serotonin Transporters - Structure and Function. J Membr Biol., 2007, 213 (2) : 101-110
    
    179. Ryan J J, Kashyap M, Bailey D, Kennedy S, Speiran K, Brenzovich J, Barastein B, Oskeritzian C, Gomez G. Links mast cell homeostasis:a fundamntal aspect of allergic disease. Crit Rev Immunol., 2007,27(1): 15-32
    
    180. Saayman H S, Naude R J, Oelofsen W, Isaacson L C. Mesotocin and vasotocin, two neurohypophysial hormones in the ostrich, Struthio camelus. Int J Pept Protein Res., 1986, 28(4): 398-402
    
    181. Samberg Y, Hadash D, Perelman B, Meroz M. Newcastle disease in ostrich (Struthio camelus): field case and experimental infection. Avian Pathology, 1989,18:221-226
    
    182. Schauenstein K, Globerson A, Wick G. Avain lymphokines:thymic cell growth factor in supernatants of mitogen stimulated chicken spleen cells. Dev Com Immunol.,1982,6: 533-540
    
    183. Seal B S, King D J, Bennett J D. Characterization of Newcastle disease virus isolates by reverse transcription PCR coupled to direct nucleotide sequencing and development of sequence database for pathotype prediction and molecular epidemiological analysis.J Clin Microbiol. 1995 Oct; 33(10):2624-30.
    
    184. Sentman C L, Shutter J R, Hockenbery D, Kanagawa O, Korsmeyer S J. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes.Cell. 1991,29; 67(5):879-888.
    
    185. Seshagiri S,Miller L K. Baculovirus inhibitors of apoptosis (IAPs) block activation of SF caspase I. Proc Nad Acad Sci,USA,1997,94 :13606-13611
    
    186. Sirinarumitr T, Zhang Y, Kluge JP, Halbur PG, Paul PS .A pneumo-virulent United States isolate of porcine reproductive and respiratory syndrome virus induces apoptosis in bystander cells both in vitro and in vivo. J Gen Virol. 1998,79 (12):2989-2995
    
    187. Smith EM, Cadet P, Stefano GB, Opp MR, Hughes TK Jr. IL-10 as a mediator in the HPA axis and brain.J Neuroimmunol. 1999 Dec; 100(1-2):140-148
    188. Stefulj J, Jernej B, Cicin-Sain L, Rinner I, Schauenstein K. mRNA expression of serotonin receptors in cells of the immune tissues of the rat. Brain Behav Immun 2000; 14(3): 219-224
    
    189. Steiniger B, Barth P, Herbest B, Hartnell A, Crocker P R. The species specific structure of microanatomical compartments in the human spleen: strongly sialoadhesinpositive macrophages occur in the perifollicular zone, but not in the marginal zone.Immunology, 1997, 92: 307-316
    
    190. Stornelli M R, Ricciardi M P, Giannessi E, Coli A. Links Morphological and histological study of the ostrich (Struthio Camelus L.) liver and biliary system. Ital J Anat Embryol. 2006,111(1): 1-7
    
    191. Suarez P, Diaz-Guerra M, Prieto C, Esteban M, Castro J M, Nieto A, Ortin J.Open reading frame 5 of porcine reproductive and respiratory syndrome virus as a cause of virus-induced apoptosis J Virol. 1996,70(5): 2876-2882
    
    192. Takizawa T, Matsukawa S, Higuchi Y, Nakamura S, Nakanishi Y, Fukuda R.Induction of programmed cell death (apoptosis) by influenza virus infection in tissue culture cells. J Gen Virol. 1993,74 (11): 2347-2355
    
    193. Talley A K, Dewhurst S, Perry S W, Dollard S C, Gummuluru S, Fine S M, New D, Epstein L G, Gendelman H E, Gelbard H A. Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant N-acetylcysteine and the genes bcl-2 and crmA. Mol Cell Biol. 1995,15(5): 2359-2366
    
    194. Tham K M ,Moon C D. Apotosis in cell cultures induced by infections bursal disease virus follow ing in vitro infection. A vian D isease, 1996,40 (1) : 109-113
    
    195. Thiery R, Boutin P, Arnauld C, Jestin A. Pseudorabies virus latency: a quantitative approach by polymerase chain reaction. Acta Vet Hung. 1994, 42(2-3): 277-287
    
    196. Thomas A R, Gondoza H, Hoffman L C, Oosthuizen V, Naude R J. The roles of the proteasome,and cathepsins B, L, H and D, in ostrich meat tenderization. Meat Science, 2004,67: 113-120
    
    197. Thomsou B. Viruscs and apoptosis. Iut J Exp Pathol, 2001, 2 : 65 - 76
    
    198. Tollefson A E, Ryerse J S, Scaria A, Hermiston T W, Wold W S. The E3-11.6-kDa adenovirus death protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants. Virology, 1996, 220(1): 152-162
    199. Toyoda T, Sakaguchi T, Hirota H, Gotoh B, Kuma K, Miyata V, Nagal Y. Newcastle Disease Virus Evolution. Virology,1989,169: 273-282
    
    200. Verwoerd DJ. Ostrich diseases. Rev Sci Tech, 2000,19(2): 638-661
    
    201. Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells.J Clin Invest, 2003,112(9): 1437-1443.
    
    
    202. Wasserman SI. The lung mast cell:Its physiology and potential relevance to defence of the lung.Envir Health Persp, 1980,35:153
    
    203. Williams R, Schoeman M, Van Wyk A, Roos K, Josemans EJ. Comparison of ELISA and HI for detection of antibodies against Wesselsbron disease virus. Onderstepoort J Vet Res., 1997, 64(4):245-250
    
    204. Wishart G, Bremner DH,Sturrook KR. Molecular modeling of the 5-hydroxytryptamine receptors. Receptors Channels, 1999,6(4): 317-335
    
    205. Wojcik AR, Grygon-Franckiewicz B, Wasielewski L, Zbikowska E .The case of acaridosis in African ostrich (Struthio camelus) breeding. Wiad Parazytol, 1999,45(2): 207-209
    
    206. Wolber F M, Leonard E, Michael S, Orschell-Traycoff C M, Yoder M C, Srour E F. Roles of spleen and liver in development of the murine hematopoietic system. Experimental Hematology, 2002,30:1010-1019
    
    207. Wood KA,Youle RJ. The role of free radicals and p53 in neuron apoptosis in vivo. J Neurosci, 1995,15(8): 5851-5857
    
    208. Xiang H, Hochman D W, Saya H, Fujiwara T, Schwartzkroin P A, Morrison R S. Evidence for p53-mediated modulation of neuronal viability. J Neurosci, 1996,16(21): 6753-6765
    
    209. Yamashiro D, Hammonds R G Jr,Li CH. Beta-Endorphin. Synthesis and radioreceptor-binding activity of the ostrich hormone. Int J Pept Protein Res., 1982,19(3): 251-253
    
    210. Young M R I,Mallhews J P. Serotonin regulation of T cell subpolations and macrophage accessory function. Immunology, 1995, 84(I):148-152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700