含水稠油管道输送压降计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油-水两相流动广泛存在于石油工业中,特别是在油田开发的中后期,随着生产液中含水量的上升,从地层中的岩石空隙到油井及地面上出油管道均会遇到油-水两相流动。通常,油田集输管网的投资约占地面工程总投资的1/3,集输能耗占生产总能耗的40%。因此研究油-水混合液的流变行为及其在集输管路中的经济设计有着重要意义。
     由于油和水两种液体互不相溶,其混合物在一定的条件下会呈现乳化状或悬浮状,流变性发生明显的变化。油-水混合物的流动,由于流变行为复杂和不同流态压力梯度的较大差异,使其在管输中成为独特而复杂的问题。因此,在参考了一些文献的基础上,以辽河油田含水超稠油为研究对象,对油-水混输管路的流动规律进行了研究,并且,用数值计算的方法,对油-水两相的管路流动进行模拟,得出了一系列的结论。
     粘度是油-水混合物流变性的重要参数,以往计算油-水混合物粘度的公式都没有把剪切速率考虑进去,本文在借助了excel、origin以及Jandel SigmaPlot等软件后,提出了把剪切速率考虑在内的计算油-水混合物粘度的方法和公式。
     本文模拟的是垂直圆管中油-水两相流。先采用体积平均法推导出层流油-水两相流体积平均方程(也适用于湍流两相流瞬时状态的流动方程),在此基础上对其进行湍流时平均化。这样就得到双流体模型意义下的湍流两相流时均方程组。给出了用于封闭油相剪切湍流的k ?ε模型,同时将控制方程组表示为柱坐标系下的具体形式。
     考虑到问题的具体性质将计算定位于稳态、充分发展的垂直圆管流动,所以可将管内流动视为抛物型流动。在对通用的垂直圆管中油-水两相流体力学模型方程进行离散后,对相间作用力项进行模化。相间作用力项的模化是在系统绝热、无内热源、忽略表面张力、截面等压的假设前提下给出,分别对相间拽力、虚质量力、升力进行具体化。由于是抛物型流动,所以无须考虑出口处边界条件,采用“壁面函数法”处理固体边壁上的边界条件。
     最后,用大型通用软件Phoenics3.4对油-水两相流动进行了模拟。
Two-phase flow of mixture of oil and water exists in petroleum industry widely,especially when the oilfield enters its production tail. With the increase of water content ratio in producing liquid,two-phase flow of mixture of oil and water will be found either in interspaces of rocks underground or in pipelines on ground. Usually invest in construction of gathering and transporting pipelines is 30% the total invest of ground project,and energy consumption of gathering and transporting is 40% of the total energy consumption of produce. Therefore it is important to research on rheological property of mixture of oil and water and economical design of its gathering and transporting pipeline.
     Because of the infusibility of oil and water,its mixture will present suspended state or emulsified state and its rheological property varies obviously. It is a particular and complicated task to research on the flow of mixture of oil and water because of its complicated rheological property and its large difference of pressure drop under different float state. To fulfill this task in this paper,hydrous super heavy crude of Liaohe oilfield is selected as the object. And also numerical simulation of two-phase flow of oil and water is based on the flow of this hydrous super heavy crude.
     For the reason of non-Newton properties formula used for hydrodynamic calculation are not suit for the mixture of oil and water. So in this paper some methods and formula fit for calculation are supplied after many experiments. And also with the help of software of excel,origin and Jandel SigmaPlot some formula for calculation of viscosity are offered to instead the old ones in which do not include shearing speed.
     In this paper,oil-water two-phase flow in a vertical pipe is simulated in numerical method. Firstly,the laminar oil-water volume averaged equations(also fit for transient turbulent flow)were achieved by using volume average method. Then time-averaged turbulent two phase flow control equations were presented,and use k ?εmodel to close the oil phase shearing turbulent flow. Finally the practical cylindrical coordinating control equations are given.
     On thought of material properties of the two-phase flow itself confirm it as steady and fully developed vertical flow. So view it as parabolic flow. After the dispersion of general gas-liquid two-phase flow dynamics equations,interfacial momentum transfer is modeled precondition that the system is adiabatic,non-inner source,equal pressure at any cross-section and uniformed scale. Drag force,virtue mass force and shift force are presented in this part crystallized. Because of parabolic flow,the outlet boundary condition isn’t necessary.“Wall function”method was used to handle with wall boundary condition.
     At last Phoenics3.4 is use to calculate this two-phase flow.
引文
[1]陈家琅,唐江宁.水平管中油-水流动现象的分析[J].国外油气储运,1991,9(4)
    [2]王树立,马贵阳.《化工流体力学》[M].中国林业出版社(北京),2000
    [3]冯叔初,郭揆常,王学敏编.《油气集输》[M].石油大学出版社(东营),1988
    [4]钱兴浩.油水乳状液的水力计算[J].油田地面工程,1987,6(4)
    [5]陈家琅.判别幂律流体流动状态的Z值[J].石油学报,1990,2
    [6]李兆敏,蔡国琰编著.非牛顿流体力学[M].石油大学出版社(东营),1998
    [7] Gerald Kidd. The basical principle of visualization technology [J].The Leading Edge, 1998.
    [8]蔡继勇.垂直上升管内油水乳状液流动特性的研究[J].化学反应工程与工艺
    [9]蔡继勇,陈听宽,汤为等.水平管内油水乳状液流动特性研究[J].工化学工程
    [10] Christopher L . Liner, On the history and culture of geophysics ,and science in general .The Leading Edge, 16,61,1997.
    [11]陈杰.水平管内油一水两相流动的流型实验研究[J].油气储运,2000,12
    [12]赵建兴.对原油乳状液粘度变化规律的认识[J].油田地面工程,1985,4
    [13] Cambois, Guilanume, AVO inversion and elastic impedance: Annual Internet .Mtg,2000.
    [14]孙锦华.常温接水原油的流变性及压降计算[J].油田地面工程,1993,1
    [15]陈杰.油-水两相流型研究[J].油气田地面工程,2000,1
    [16]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991
    [17] Wilkins R W T, George S C. Coal as a source rock for oil: a review[J].International Journal of Coal Geology ,2002,50:317-361.
    [18]徐济均.沸腾传热和气液两相流[M].北京:原子能出版社,1993
    [19] Soo.S.L.Fluid Dynamics of Multiphase Systems. Blaisdell[M].Waltham.1967
    [20] S.V.帕坦卡[美国].传热与流体流动的数值计算[M].北京:科学出版社,1984
    [21]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科技大学出版社,1992.
    [22]金忠青.N-S方程的数值解和紊流模型[M].江苏:河海大学出版社,1989
    [23]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988
    [24] Roache. P.J. Computational Fluid Dynamics[M].Hermosa Publishers.1976
    [25] Ames,W.F.Numerical Methods for Partical Differential Equations[M]. Acdamic Press. New York.1977. 145~151
    [26]刘文波.螺杆泵采油工况诊断技术研究应用[D]西南石油学院, 2004.
    [27]葛述卿.有杆抽油泵性能及泵功图计算分析[D]西安理工大学, 2004.
    [28] Middleton G V. Hampton M A. Sediment Gravity Flow: Mechanics of Flow and Deposition, in Turbidites and Deep Water Sedimentation. Anaheim: SEPM Pacific sec.Short Course Notes, 1978.
    [29]王雪梅.在结盐油井中影响抽油泵性能的因素分析及对策[D]兰州理工大学, 2005.
    [30]夏海容.注气混相及非混相驱替物质平衡方程的建立及应用[D]西南石油学院, 2003.
    [31] Lowe D R. Sediment Gravity Flows: Depositional Models with Special Reference to the Deposits of High–Density Turbidity Currents. Journal of Sedimentary Petrology,1982,52(1):279~297.
    [32]杨涛.气井井筒天然气流动规律及生产系统分析研究与应用[D]西南石油学院, 2003.
    [33]李洪玺.陆梁油田h_2~3底水油藏稳油控水技术研究[D]西南石油学院, 2004.
    [34]洪怡春.低伤害水基压裂液体系研究[D]吉林大学, 2006.
    [35] Haldorsen H H , et al. Stochastic modeling [J].JPT,1990,42,404-412.
    [36]张立东.自乳化体系驱油配方研究[D]大庆石油学院, 2007.
    [37]杨知盛.不同注采比条件下油藏压力确定方法研究[D]大庆石油学院, 2003.
    [38] Holden L, et al. Modeling of fluvial reservoirs with object models [J].Mathematical Geology,1998,30(5):473-495.
    [39]郭卫忠.胜利油田单六断块东部超稠油油藏工程研究[D]中国海洋大学, 2003.
    [40]周灿,吴承君,任双双,沈飞.稠油降粘的方法的概述[J].内蒙古石油化工, 2007,(04).
    [41]张庆茹.中国陆上稠油资源潜力及分布特征[J].中外科技情报, 2007,(01).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700