高渗厚油层油藏注气开发实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国主力油田的主力油层大部分属于厚油层,主要采用注水开发。由于厚油层的储层岩性和物性上差异比较大,导致储层层内和平面的非均质性较强,在重力分异的作用下,目前的注水开发模式很容易造成水窜,底部水洗,顶部驱油效率低,层内矛盾突出,油田采收率比较低,目前的工艺还很难解决一整套大厚层水驱波及效率低的难题。
     根据国内外调研资料,美国加州Buena Vista油田、大庆油田实行水气交替注入能解决油层底部水洗,水驱效率低的问题,水气交替注入提高了水驱采收率。但是对于高渗厚油层,注气开发能否提高最终采收率还需要进行详细的研究。针对此问题,我们查阅厚油层的相关资料,制作人造岩心模拟储层,采用平面模型模拟基础井网(五点法),配制模拟油,先后进行了长岩心和平面模型水驱油、天然气驱油、水气交替驱油室内实验,以及三种驱替方式的驱油后饱和度分布实验等。对比不同驱替方式下的驱油效果,并对驱替过程中发生的现象及作用机理进行了深入剖析,最终选择最优的驱动方式和注入参数。
     通过实验结果可知,对于高渗厚油层油藏,水驱波及系数低,天然气驱采收率低,气体突破快,采用水气交替驱采收率高,水、气突破慢,含水率、生产气油比上升速度慢,而且水气交替驱时机越早,驱油效果越好。三种驱油方式对比,注水开发优于注气开发,水气交替驱采收率高于单独水驱和气驱,这主要是由于水气交替注入后,在油层中形成了油、气、水三相流动,增加了水的流动阻力,从而减少了层间(内)矛盾,改善了吸入剖面,增加了吸入厚度。同时由于注入气的重力分异作用,驱扫了顶部的剩余油。水气交替驱合理的气水比应为1:1,段塞为0.02PV。
Most of main oil layers of main oil fields in China belong to thick oil layers and mainly adopt water injection development. Since the difference between the reservoir lithology and the physical property of the thick oil layers is bigger, the heterogeneity in the reservoirs and the plane is stronger, under the effect of gravitational differentiation, an existing mode of water injection development easily generates water breakthrough, the efficiency of washing the bottom with water and displacing oil on the top is low, the contradiction in the layers is prominent, an existing technique can not solve the problem of a whole set of big and thick layer that the efficiency of flood sweep is low.
     According to domestic and overseas investigation and study materials, America California Buena Vista Oil Field and Daqing Oil Field carry out water and gas alternate injection to solve the problems of washing the bottom of the oil layer with water and low water flooding efficiency, and the water and gas alternate injection increases the water flooding recovery efficiency. However, as for the hyperosmotic thick oil layers, whether the gas injection development can increase the final recovery efficiency also needs further investigating. Aiming at the problem, we consult relevant materials of the thick oil layers, artificial core simulated reservoirs are manufactured, plane models are adopted to simulate basic well patterns (a five-point method), simulated oil is prepared, and laboratory experiments of long core and plane model water driving oil, natural gas driving oil, water-gas alternate driving oil, saturation distribution experiments after the oil is driven of three displacement modes are carried out successively.
     Oil driving effects under different displacement modes are compared, phenomena which are generated in the displacement process and mechanisms of action are deeply analyzed, and finally an optimum driving mode and injection parameters are selected. The experimental results show that as for the hyperosmotic thick oil layers, the flood sweep coefficient is low, the natural gas driving recovery efficiency is low, the gas breakthrough is rapid, the recovery efficiency of adopting water-gas alternate driving is high, water breakthrough and gas breakthrough are slow, the ascending velocity of water content and production gas oil ratio is slow, and the water-gas alternate driving time is earlier, the oil driving effect is better.
     Three oil driving modes are compared, water injection development is better than gas injection development, the recovery efficiency of water-gas alternate driving is higher than single water driving and single gas driving since after water and gas are injected alternately, three-phase flow of oil, gas and water is formed in the oil layers, the flow resistance of the water is increased, thereby, the contradiction between and in the layers is reduced, the suction profile is improved, and the suction thickness is increased. Simultaneously, residual oil on the top is driven and swept due to the effect of gravitational differentiation of injected gas. The rational gas-water ratio of water-gas alternate driving should be 1:1, and the slug injection is 0.02PV.
引文
[1]周总瑛,张抗.中国油田开发现状与前景分析[J].石油勘探与开发,2004,31(4):84-87.
    [2]沈平平,杨普华,袁士义,等.中国陆上已开发油田提高采收率第二次潜力评价及发展战略[M].中国石油天然气股份有限公司,2000:119-128.
    [3]李士伦,张正卿,冉新权,等.注气提高石油采收率技术[M].四川:四川科学技术出版社,2001:1-61.
    [4]Hadlow,R.E.Update of Industry Experience With CO2 Injection.[C].SPE24928,1992:4-7.
    [5]Schneider,F.N.,OwensW.W.Relative Permeability Studies of Gas-Water FlowFollowing Solvent Injection in Carbonate Rocks.[C].SPE,1976:23.
    [6]Henry,R.L.,Feather,G.L.,Smith,L.R.etc.Utilization of Composition ObservationWells in a West Texas CO2 Pilot Flood.[C].SPE9786,1981:5-8.
    [7]Mathis,R.L.,Sears,S.O.Effect of CO2 Flooding on Dolomite Rock,Denver UnitWasson(San Andres)Field.[C].SPE13132,1984:16-19.
    [8]Jackson,D.D.,Andrews,G.L.,Claridge,E.L.Optimum WAG Ratio vs.Rock Wettability in CO2 Flooding.[C].SPE14303,1985:22-25.
    [9]Huang,E.T.S.,Holm,L.W.Effect of WAG Injection and Rock Wettability on OilRecovery During Carbon Dioxide Flooding.[C].SPE15491,1986:5-8.
    [10]Blackford,T.A.Carbonated Water-flood Implementation and Its Impact on Material Performance in a Pilot Pilot Project.[C].SPE16831,1987:27-30.
    [11]王宏编译.前苏联提高采收率技术的应用情况[J].油气采收率技术,1996,3(1):77-82.
    [12]Christman,P.G.,Gorell,S.B.A Comparison of Laboratory and Field-Observed CO2Tertiary Injectivity.[C].SPE17335,1988:17-20.
    [13]康乐娟译.水气交替注入采油方法综述[J].青海石油,2003,21(4):90-93.
    [14]杨寿山编译.水气交替注入提高原油采收率矿场经验评述[J].国外油气地质信息,2002:102-108.
    [15]Surguchev,L.M.Screening of WAG Injection Strategies for Heterogenous Reservoirs.[C].SPE 25075,1992:16-18.
    [16]Surguchev,L.M.Optimum Water Alternate Gas Injection Schemes for Stratified Reservoirs.[C].SPE 24646,1992:4-7.
    [17]Shenawi,S.H.,Wu,C.H.Compositional Simulation of Carbonated Waterfloods inNaturally Fractured Reservoirs.[C].SPE 27741,1994:17-20.
    [18]Guzman,R.E.,Giordano,D.,Fayers,F.J.Three-Phase Flow in Field-ScaleSimulation of gas and WAG Injectoins.[C].SPE 28897,1994:25-27.
    [19]Van,Lingen,P.P.,Barzanji,O.H.M.WAG Injection to ReduceCapillary Entrapment in Small Scale Heterogeneities.[C].SPE 36662,1996:6-9.
    [20]Tang,G.Q.,Morrow,N.R.Effect of Temperature,Salinity and Oil Composition onWetting Behavior and Oil Recovery by Water-flooding.[C].SPE 36680,1996:22-25.
    [21]Wegener,D.C.,Harpole,K.J.Determination of Relative Permeability and TrappedGas Saturation for Predictions of WAG Performance in the South Cowden CO2 Flood.[C].SPE 35429,1996:21-24.
    [22]Christensen,J.R.,Stenby,E.H.,Skauge,A.Review of WAG Field Experience.[C].SPE 39883,1998:3-5.
    [23]Gorell,S.B.Modeling the Effects of Trapping and Water Alternate Gas(WAG)Injectionon Tertiary Miscible Displacements.[C].SPE 17340,1998:17-20.
    [24]Kamath,J.,Nakagawa,F.M.,Boyer,R.E.,etc.Laboratory Investigation of InjectivityLosses During WAG in west Texas Dolomites.[C].SPE 39791,1998.
    [25]谢尚贤,韩培慧,钱昱.大庆油田萨南东部过渡带注CO2驱油先导性矿场试验研究[J].油气采收率技术,1997,4(3):13-19.
    [26]]冯宝峻,高畅,王晓玲.水气交替注入试验效果分析[J].大庆石油地质与开发,1995,14(3):60-62.
    [27]贾忠盛,潘严富.大庆油田烃气非混相矿场试验[J].石油勘探与开发,1997,24(1):39-41.
    [28]张思富,贾忠盛,杜兴家,等.大庆油田注天然气非混相驱矿场试验研究[J].油气采收率技术,1998,5(4):31-35.
    [29]刘滨,张俊,李艳明,等.葡北油田注气混相驱开发技术[J].新疆石油地质,2002,23(5):424-426.
    [30]张茂林,谭光天,梅海燕,等.葡北油田气水交替混相驱数值模拟研究[J].断块油气田,2003,10(1):40-43.
    [31]郭平,杜志敏,张茂林,等.葡北油田气水交替注烃混相驱开发研究[J].西南石油学院院报,2004,26(4):25-37.
    [32]张茂林,彭裕林,梅海燕,等.马36长岩心气水交替驱替试验数值模拟研究,[J].断块油气藏,2002,9(4):38-41.
    [33]杨斌,张茂林,梅海燕,等.马36油藏(氮)气水交替非混相驱数值模拟研究,[J].特种油气藏,2002,9(5):33-36.
    [34]杜建芬,刘建仪,郭平,等.马36区块氮气泡沫水交替驱室内评价研究,[J].西南石油学院院报,2004,26(3):51-53.
    [35]刘中春,高振环,夏惠芬.油藏注气开发的基本条件[J].大庆石油学院学报,1997,21(1):38-42.
    [36]王玉普.油田开发水淹层录井评价技术[M].北京:石油工业出版社,2006:19.
    [37]刘立支,冯其红,崔传智.正韵律厚油层高含水期挖潜方法研究[J].胜利油田职工 大学学报,2007,21(5):31-33.
    [38]王博,王欣,刘向斌.高含水期油层注氮气泡沫控水增油技术研究[J].大庆石油地质与开发,2006,25(2):59-60.
    [39]张继芬,赵明国,刘忠春.提高石油采收率基础[M].北京:石油工业出版社,1997:269-275.
    [40]何更生.油层物理[M].北京:石油工业出版社,1994:272-276.
    [41]赵明国.油层物理实验[M].北京:石油工业出版社,1994:95-121.
    [42]郭平,罗玉琼,何建华,等.注水开发油田进行注气开发的可行性研究[J].西南石油学院学报,2003,25(4):37-40.
    [43]陈林媛.高渗透、高含水油藏气水交替驱替机理研究[D].中国地质大学博士论文,2006:21-22.
    [44]高振环,刘中春,杜兴家.油田注气开采技术[M].北京:石油工业出版社,1994:104-109.
    [45]张燕玉,李洪君,韩冰.水驱后天然气-水交替非混相驱开发效果影响因素分析[J].石油大学学报(自然科学版),2005,29(4):60-63.
    [46]计秉玉,李莉,李群.不同类型储层驱替速度对提高原油采收率的影响[J].石油学报,2004,25(3):58-65.
    [47]JohnD.Roye,ReidB.Grig.A loterature analysis of the WAG injectivity abnormalities in the CO2 process.[C].SPE 59329,2000.
    [48]李士伦,周守信,杜建芬.国内外注气提高石油采收率技术回顾与展望[J].油气地质与采收率,2002:9(2):2-5.
    [49]刘新,钟显东,秦佳,陈弘.国内外混相气驱提高采收率技术[J].中外科技情报,2006,(20):68-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700