非牛顿流体中的气泡行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非牛顿流体中的气泡行为是诸多实际化工过程的基础。本文实验研究了非牛顿羧甲基纤维素钠(CMC)溶液中的单气泡生成、上升以及连续气泡的聚并现象,并进行了相应的理论分析。
     采用激光显影成像技术结合CCD照相方法研究了液相中单喷嘴单气泡的生成行为。与传统照相技术相比,该法能够获得清晰的二维气泡放大图像。实验结果表明,气泡生成大致可以分为两个阶段,第一阶段,主要受径向扩张控制,第二阶段,纵向拉伸运动占明显优势。此外,还研究了溶液流变性质、气室体积和喷嘴直径等因素对气泡分离体积和气速之间关系的影响。
     利用激光多普勒测速仪测定了气泡上升过程中其周围流体的流场分布。结果表明液相轴向和径向时均速度分别随着轴向和径向位置变化体现出特定的规律。统计分析得到,气泡周围液相轴向和径向产生了非均衡的湍动效应,并且气泡生成区域的液相扰动要比气泡上升区域更剧烈一些。采用傅立叶分析和小波方法等时频分析技术对液相中单点瞬时速度时间序列进行研究,功率谱图中的特征峰证明实验气速条件下的气泡上升运动存在着一定的周期性规律;功率谱低频宽峰、局部间歇测度和小波能量分布都表明液相流场中存在着特定的涡流结构。
     针对非牛顿流体中的气泡上升及连续聚并现象进行了气泡通过时间序列采样,采用时频分析技术、混沌理论及分形理论展开讨论。当聚并现象发生后,功率谱分析表明气泡由准周期运动发展为混沌运动,各小波尺度能量随着高度和气速分布也体现出特定的规律。关联维数的非整数特征和最大Lyapunov指数均大于0表明气泡上升及聚并过程是确定性的混沌运动,并且具有较高的复杂度,通过最大Lyapunov指数还可以对聚并程度做近似判断。R/S分析表明,气泡上升及聚并过程具有明显的双分形特征,受到正持久性和反持久性两种动力学因素制约。
Bubble behavior in non-Newtonian fluids is of great importance for practical production in chemical industry. In this thesis, experiments were conducted to investigate the formation and rising of a single bubble and coalescence of successive bubbles in non-Newtonian fluids of Carboxymethylcellulose sodium (CMC) polymer. Theoretical analyses were also made to reveal the characteristics of bubble movement.
     Laser image visualization technique, combined with photograph method by CCD, was employed to study single bubble formation at a submerged orifice in liquid phase. The photographs show that magnified two-dimensional bubble images can be obtained clearly. The experimental results show that bubble growing process can be divided into two stages: in the first stage, bubble growth is mainly controlled by the radial expansion, but in the second stage, axial elongation dominates the process. In addition, the effects of rheological properties of solution, reservoir volume and orifice diameter on the relation between bubble detached volume and gas flowrate were investigated experimentally.
     Laser Doppler velocimetry was used to measure the mean velocity field in liquid phase around the bubble during its rising process. It indicates that axial and radial mean velocities along the directions of axis and radius exhibite characteristic distribution trends, respectively. Anisotropic turbulence was found by statistical analysis, and fluctuations of liquid in the bubble formation area were more violent than that in the bubble rising area. Instantaneous velocity time series were analyzed by applying Fourier analysis and Wavelet method. Power spectrum reveals that the rising of bubbles behaves some certain periodic rule under the conditions of experimental gas flowrates, and the wide peaks in the low-frequency area of power spectrum, local intermittency measure and wavelet energy profile imply the existence of vortex with certain structures in liquid near bubbles.
     Time series on bubble passage for successive rising and coalescence of bubbles were collected and analyzed by making use of time-frequency analysis, chaos theory and fractal theory. As coalescence occurred, power spectrum showed that bubbles rose from approximately periodic movement to typical chaos and the variation of wavelet scale energy with heights and gas flowrates, respectively, also represented specified regularity. Non-integral correlation dimensions and positive largest Lyapunov exponents proved that the rising and coalescence of bubbles were deterministic chaos with great complexity, and coalescence extent could be estimated with largest Lyapunov exponent. Furthermore, R/S analysis manifested double fractal characteristics which meant that the rising and coalescence of bubbles were controlled by persistence and anti-persistence dynamics.
引文
[1] Bird R B, Armstrong R C, Hassager O, Dynamics of Polymeric Liquids, 2nd ed. Vol. 1. New York: Wiley, 1977.89~128
    [2]江体乾,化工流变学,上海:华东理工大学出版社,2004.116~124
    [3] Waele A de, Viscometry and Plastometry, Journal of the Oil and Colour Chemists’Association, 1923, 6(38): 33~88
    [4] Ostwald W, Ueber die Geschwindigkeitsfunktion der Viskosit?t disperser Systeme. I, Kolloid Z, 1925, 36(2): 99~117
    [5] Bird R B, Carreau P J, A nonlinear viscoelastic model for polymer solutions and melts—I, Chemical Engineering Science, 1968, 23(5): 427~434
    [6] Astarita G, Apuzzo G, Motion of Gas Bubbles in Non-Newtonian Liquids, AIChE Journal, 1965, 11(5): 815~820
    [7] Acharya A, Mashelkar R A, Ulbrecht J J, Bubble Formation in Non-Newtonian Liquids, Industrial & Engineering Chemistry Fundamentals, 1978, 17(3): 230~232
    [8] Costes J, Alran C, Models for the Formation of Gas Bubble at a Single Submerged Orifice in a Non-Newtonian Fluid, International Journal of Multiphase Flow, 1978, 4(5-6): 535~551
    [9] Costes J, Alran C, The Formation of Bubbles in a Non-Newtonian Liquid, The Chemical Engineer, 1978, 330(1): 191~193, 197
    [10] R?biger N, Vogelpohl A, Encyclopedia of Fluid Mechanics Vol 3, Houston, TX: Gulf Pub Co, 1986.59~88
    [11] Shirotsuka T, Kawase Y, Bubble Formation in Viscoelastic Liquids, Journal of Chemical Engineering of Japan, 1976, 9(3): 234~236
    [12] Miyahara t, Wang W H, Takahashi T, Bubble Formation at a Submerged Orifice in Non-Newtonian and Highly Viscous Newtonian Liquid, Journal of Chemical Engineering of Japan, 1988, 21(6): 620~626
    [13] Ghosh A K, Ulbrecht J J, Bubble Formation from a Sparger in Polymer Solutions, Chemical Engineering Science, 1989, 44(4): 957~968
    [14] Terasaka k, Tsuge H, Bubble Formation at a Single Orifice in Non-Newtonian Liquids, Chemical Engineering Science, 1991, 46(1): 85~93
    [15] Terasaka k, Tsuge H, Bubble Formation at Orifice in Viscoelastic Liquid, AIChE Journal, 1997, 43(11): 2903~2910
    [16] Terasaka k, Tsuge H, Bubble Formation at a Nozzle Submerged in Viscous Liquids Having Yield Stress, Chemical Engineering Science, 2001, 56(10): 3237~3245
    [17] Li H Z, Bubbles in Non-Newtonian Fluids: Formation, Interactions and Coalescence, Chemical Engineering Science, 1999, 54(13-14): 2247~2254
    [18] Li H Z, Mouline Y, Midoux N, Modelling the Bubble Formation Dynamics in Non-Newtonian Fluids, Chemical Engineering Science, 2002, 57(3): 339~346
    [19] Burman J E, Jameson G J, Growth of Spherical Gas Bubbles by Solute Diflusion in Non-Newtonian (Power Law) Liquids, International Journal of Heat and Mass Transfer, 1978, 21(2): 127~136
    [20] Jiang S K, Fan W Y, Zhu C Y, et al., Bubble Formation in Non-Newtonian Fluids Using Laser Image Measurment System, Chinese Journal of Chemical Engineering, 2007, 15(4): 611~615
    [21] Calderbank P H, Johnson D S L, Loudon J, Mechanics and Mass Transfer of Single Bubbles in Free Rise Through Some Newtonian and Non-Newtonian Liquids, Chemical Engineering Science, 1970, 25(2): 235~256
    [22] Hassager O, Negative Wake Behind Bubbles in Non-Newtonian Liquids, Nature, 1979, 279(5712): 402~403
    [23] Dewsbury K, Karamanev D, Margaritis A, Hydrodynamic Characteristics of Free Rise of Light Solid Particles and Gas Bubbles in Non-Newtonian Liquids, Chemical Engineering Science, 1999, 54(21): 4825~4830
    [24] Rodrigue D, Kee D De, Chan Man Fong C F, The Slow Motion of a Single Gas Bubble in a Non-Newtonian Fluid Containing Surfactants, Journal of Non-Newtonian Fluid Mechanics, 1999, 86(1-2): 221~227
    [25] Rodrigue D, Kee D De, Chan Man Fong C F, An Experimental Study of the Effect of Surfactants on the Free Rise Velocity of Gas Bubbles, Journal of Non-Newtonian Fluid Mechanics, 1996, 66(2-3): 213~232
    [26] Margaritis A, te Bokkel D W, Karamanev D G, Bubble Rise Velocities and Drag Coefficients in Non-Newtonian Polysaccharide Solutions, Biotechnology and Bioengineering, 1999, 64(3): 257~266
    [27] Dziubiński M, Orczykowska M, Budzyński P, Comments on Bubble Rising Velocity in Non-Newtonian Liquids, Chemical Engineering Science, 2003, 58(11): 2441~2443
    [28] Karamanev D, Dewsbury K, Margaritis A, Comments on the Free Rise of Gas Bubbles in Non-Newtonian Liquids, Chemical Engineering Science, 2005, 60(16): 4655~4657
    [29] Carreau P J, Devic M, Kapellas M, Dynamique des bulles en milieu viscoélastique, Rheologica Acta, 1974, 13(3): 477~489
    [30] Acharya A, Mashelkar R A, Ulbrecht J, Mechanics of Bubble Motion and Deformation in Non-Newtonian Media, Chemical Engineering Science, 1977, 32(8): 863~872
    [31] Rodrigue D, Kee D De, Bubble Velocity Jump Discontinuity in Polyacrylamide Solutions: a Photographic Study, Rheologica Acta, 1999, 38(2): 177~182
    [32] Rodrigue D, Blanchet J F, Surface Remobilization of Gas Bubbles in Polymer Solutions Containing Surfactants, Journal of Colloid and Interface Science, 2002, 256(2): 249~255
    [33] Soto E, Goujon C, Zenit R, et al., A Study of Velocity Discontinuity for Single Air Bubbles Rising in an Associative Polymer, Physics of Fluids, 2006, 18(12): 121510
    [34] Herrera-Velarde J R, Zenit R, Chehata D, et al., The Flow of Non-Newtonian Fluids around Bubbles and its Connection to the Jump Discontinuity, Journal of Non-Newtonian Fluid Mechanics, 2003, 111(2-3): 199~209
    [35] Li H Z, Mouline Y, Choplin L, et al., Chaotic Bubble Coalescence in Non-Newtonian Fluids, International Journal of Multiphase Flow, 1997, 23(4): 713~723
    [36] Li H Z, Chaotic Behavior of Bubble Coalescence in Non-Newtonian Fluids, Chemical Engineering & Technology, 1998,21(12): 983~985
    [37] Li H Z, Mouline Y, Funfschilling D, Evidence for In-line Bubble Interactions in Non-Newtonian Fluids, Chemical Engineering Science, 1998, 53(12): 2219~2230
    [38] Li H Z, Mouline Y, Choplin L, et al., Rheological Simulation of In-line Bubble Interactions, AIChE Journal, 1997, 43(1): 265~267
    [39] Funfschilling D, Li H Z, Flow of Non-Newtonian Fluids around Bubbles: PIV Measurements and Birefringence Visualisation, Chemical Engineering Science, 2001,56(3): 1137~1141
    [40] Frank X, Li H Z, Funfschilling D, An Analytical Approach to the Rise Velocity of Periodic Bubble Trains in Non-Newtonian Fluids, The European Physical Journal E, 2005, 16(1): 29~35
    [41] Funfschilling D, Li H Z, Effects of the Injection Period on the Rise Velocity and Shape of a Bubble in a Non-Newtonian Fluid, Chemical Engineering Research & Design, 2006, 84(10): 875~883
    [42] Li H Z, Frank X, Funfschilling D, et al., Towards the Understanding of Bubble Interactions and Coalescence in Non-Newtonian Fluids: a Cognitive Approach, Chemical Engineering Science, 2001, 56(21-22): 6419~6425
    [43] Li H Z, Frank X, Funfschilling D, et al., Bubbles' Rising Dynamics in Polymeric Solutions, Physics Letters A, 2004, 325(1): 43~50
    [44] Frank X, Li H Z, Complex Flow around a Bubble Rising in a Non-Newtonian Fluid, Physical Review E, 2005, 71(3): 036309
    [45] Li H Z, Frank X, Fei W Y, Bubbles in Non-Newtonian Fluids, Trends in Chemical Engineering, 2005, 9(1): 73~81
    [46] Kemiha M, Frank X, Poncin S, et al., Origin of the Negative Wake behind a Bubble Rising in Non-Newtonian Fluids, Chemical Engineering Science, 2006, 61(12): 4041~4047
    [47] Sousa R G, Riethmuller M L, Pinto A M F R, et al., Flow around Individual Taylor Bubbles Rising in Stagnant CMC Solutions: PIV Measurements, Chemical Engineering Science, 2005, 60(7): 1859~1873
    [48] Sousa R G, Riethmuller M L, Pinto A M F R, et al., Flow around Individual Taylor Bubbles Rising in Stagnant Polyacrylamide (PAA) Solutions, Journal of Non-Newtonian Fluid Mechanics, 2006, 135(1): 16~31
    [49] Sousa R G, Pinto A M F R, Campos J B L M, Effect of Gas Expansion on the Velocity of a Taylor Bubble: PIV Measurements, International Journal of Multiphase Flow, 2006, 32(10-11): 1182~1190
    [50] Sousa R G, Pinto A M F R, Campos J B L M, Interaction Between Taylor Bubbles Rising in Stagnant Non-Newtonian Fluids, International Journal of Multiphase Flow, 2007,33(9): 970~986
    [51] Dekee D, Carreau P J, Mordarski J, Bubble Velocity and Coalescence in Viscoelastic Liquids, Chemical Engineering Science, 1986, 41(9): 2273~2283
    [52] Dekee D, Chhabra R P, Dajan A, Motion and Coalescence of Gas Bubbles in Non-Newtonian Polymer Solutions, Journal of Non-Newtonian Fluid Mechanics, 1990, 37(1): 1~18
    [53] Zahradník J, FialováM, Linek V, The Effect of Surface-active Additives on Bubble Coalescence in Aqueous Media, Chemical Engineering Science, 1999, 54(21): 4757~4766
    [54] Tanasawa I, Yang W J, Dynamic Behavior of a Gas Bubble in Viscoelastic Liquids, Journal of Applied Physics, 1970, 41(11): 4526~4531
    [55] Fogler H S, Goddard J D, Collapse of Spherical Cavities in Viscoelastic Fluids, Physics of Fluids, 1970, 13(5): 1135~1141
    [56] Yoo H J, Han C D, Oscillatory Behavior of a Gas Bubble Growing (or Collapsing) in Viscoelastic Liquids, AIChE Journal, 1982, 28(6): 1002~1009
    [57] Pearson G, Middleman S, Elongational Flow Behavior of Viscoelastic Liquids, AIChE Journal, 1977, 23(5): 714~722
    [58] Ting R Y, Viscoelastic Effect of Polymers on Single Bubble Dynamics, AIChE Journal, 1975, 21(4): 810~813
    [59] Papanastasiou A C, Scriven L E, Macosko C W, Bubble Growth and Collapse in Viscoelastic Liquids Analyzed, Journal of Non-Newtonian Fluid Mechanics, 1984, 16(1-2): 53~75
    [60] Kim C, Collapse of Spherical Bubbles in Maxwell Liquids, Journal of Non-Newtonian Fluid Mechanics, 1994, 55(1): 37~58
    [61] King L V, On the Convection from Small Cylinders in A Stream of Fluid: Determination of the Convection Constants of Small Platinum Wires with Application to Hot-Wire Anemometry, Philosophical Transactions of the Royal Society of London. Series A, 1914, 214: 373~432
    [62]盛森芝,沈熊,舒玮,流速测量技术,北京:北京大学出版社,1987.45~140
    [63] Yeh Y, Cummins H Z, Localized Flow Measurements with a He-Ne Laser Spectrometer, Applied Physics Letters, 1964, 4(10): 176~178
    [64]瓦切西威克兹B M,鲁德M J著,徐枋同等译,激光多普勒测量,北京:水利出版社,1980.1~12
    [65]特瑞恩L E著,王仕康等译,激光多普勒技术,北京:清华大学出版社,1985.2~7
    [66]杜斯特F,梅林A,怀特洛J H著,沈熊,许宏庆等译,激光多普勒测速技术的原理和实践,北京:科学出版社,1992.97~134
    [67]沈熊,蓬勃发展的激光测速技术,实验力学,1987,2(2): 123~126
    [68]杨荔,陆建生,超声波多普勒流量计,水利水文自动化,1990,(1): 63~64
    [69]曹王剑,裴亚光,多普勒超声波流量计应用浅析,自动化与仪表,1997,12(6): 54~55, 57
    [70] Adrian R J, Review of Particle Image Velocimetry Research Presented at the Symposium on Optical Methods in Flow and Particle Diagnostics, 6th International Congress on Applications of Lasers and Electro-optics, 8-12 November 1987, San Diego, California, USA, Optics and Lasers in Engineering, 1988, 9(3-4): 317~319
    [71] Grant I, Smith G H, Modern Developments in Particle Image Velocimetry, Optics and Lasers in Engineering, 1988, 9(3-4): 245~264
    [72] Buchhave P, Particle Image Velocimetry—Status and Trends, Experimental Thermal and Fluid Science, 1992, 5(5): 586~604
    [73] Adrian R J, Particle-imaging Techniques for Experimental Fluid Mechanics, Annual Review of Fluid Mechanics, 1991, 23: 261~304
    [74] Kasagi N, Nishino K, Probing Turbulence with Three-dimensional Particle-tracking Velocimetry, Experimental Thermal and Fluid Science, 1991, 4(5): 601~612
    [75] Maas H G, Gruen A, Papantoniou D, Particle Tracking Velocimetry in Three-dimensional Flows, Experiments in Fluids, 1993, 15(2): 133~146
    [76] Gendrich C P, Koochesfahani M M, Nocera D G, Molecular Tagging Velocimetry and Other Novel Applications of a New Phosphorescent Supramolecule, Experiments in Fluids, 1997, 23(5): 361~372
    [77] Stier B, Koochesfahani M M, Molecular Tagging Velocimetry (MTV) Measurements in Gas Phase Flows, Experiments in Fluids, 1999, 26(4): 297~304
    [78] Bohl D G, Koochesfahani M M, Olson B J, Development of Stereoscopic Molecular Tagging Velocimetry, Experiments in Fluids, 2001, 30(3): 302~308
    [79] Gendrich C P, Koochesfahani M M, A Spatial Correlation Technique for Estimating Velocity Fields Using Molecular Tagging Velocimetry (MTV), Experiments in Fluids, 1996, 22(1): 67~77
    [80] Hu L, Koochesfahani M M, Lum C, Molecular tagging thermometry with adjustable temperature sensitivity, Experiments in Fluids, 2006, 40(5): 753~763
    [81] Packard N H, Crutchfield J P, Farmer J D, et al., Geometry from a Time Series, Physical Review Letters, 1980, 45(9): 712~716
    [82] Wolf A, Swift J B, Swinney H L, et al., Determining Lyapunov Exponents from a Time Series, Physica D: Nonlinear Phenomena, 1985, 16(3): 285~317
    [83] Sano M, Sawada Y, Measurement of the Lyapunov Spectrum from a Chaotic Time Series, Physical Review Letters, 1985, 55(10): 1082~1085
    [84] Eckmann J P, Ruelle D, Ergodic Theory of Chaos and Strange Attractors, Reviews of Modern Physics, 1985, 57(3): 617~656
    [85] Barna G, Tsuda I, A New Method for Computing Lyapunov Exponents, Physics Letters A, 1993, 175(6): 421~427
    [86] Rosenstein M T, Collins J J, De Luca C J, A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets, Physica D: Nonlinear Phenomena, 1993, 65(1-2): 117~134
    [87]董连科,分形动力学,沈阳:辽宁科学技术出版社,1994.12~22
    [88] Grassberger P, Procaccia I, Measuring the Strangeness of Strange Attractors, Physica D: Nonlinear Phenomena, 1983, 9(1-2): 189~208
    [89] Mandelbrot B B, The Fractal Geometry of Nature, New York: Freeman W H, 1982.1~480
    [90] Falconer K J, The Geometry of Fractal Sets, Cambridge: Cambridge University Press, 1985.40~50
    [91]陈颙,陈凌,分形几何学,北京:地震出版社,1998.5~7
    [92]张善文,雷英杰,冯有前,MATLAB在时间序列分析中的应用,西安:西安电子科技大学出版社,2007.152~184
    [93] Percival D B, Walden A T,程正兴等译,时间序列分析的小波方法,北京:机械工业出版社,2006.1~19
    [94] Snabre P, Magnifotcham F, I. Formation and Rise of a Bubble Stream in a Viscous Liquid, The European Physical Journal B, 1998, 4(3): 369~377
    [95] Zhang L, Shoji M, Aperiodic Bubble Formation from a Submerged Orifice, Chemical Engineering Science, 2001, 56(18): 5371~5381
    [96] Hsu S H, Lee W H, Yang Y M, et al., Bubble Formation at an Orifice in Surfactant Solutions under Constant-Flow Conditions, Industrial & Engineering Chemistry Research, 2000, 39(5): 1473~1479
    [97] Vazquez A, Sanchez R M, Salinas-Rodríguez E, et al., A Look at Three Measurement Techniques for Bubble Size Determination, Experimental Thermal and Fluid Science, 2005, 30(1): 49~57
    [98] Shoji M, Nonlinear Bubbling and Micro-Convection at a Submerged Orifice, Tsinghua Science and Technology, 2002, 7(2): 97~108
    [99] Ramakrishnan S, Kumar R, Kuloor N R, Studies in Bubble Formation—I Bubble Formation under Constant Flow Conditions, Chemical Engineering Science, 1969, 24(4): 731~747
    [100] Satyanarayan A, Kumar R, Kuloor N R, Studies in Bubble Formation—II Bubble Formation under Constant Pressure Conditions, Chemical Engineering Science, 1969, 24(4): 749~761
    [101] La Nauze R D, Harris I J, On a model for the formation of gas bubbles at a single submerged orifice under constant pressure conditions, Chemical Engineering Science, 1972, 27(11): 2102~2105
    [102] Hayes B W, Harley B W, Holland C D, Formation of Gas Bubbles at Submerged Orifices, AIChE Journal, 1959, 5(3): 319~324
    [103] Terasaka K, Tsuge H, Bubble Formation at a Single Orifice in Highly Viscous Liquids, Journal of Chemical Engineering of Japan, 1990, 23(2): 160~165
    [104] Tufaile A, Sartorelli J C, Bubble and Spherical Air Shell Formation Dynamics, Physical Review E, 2002, 66(5): 056204
    [105] Loubière K, Hébrard G, Bubble Formation from a Flexible Hole Submerged in an Inviscid Liquid, Chemical Engineering Science, 2003, 58(1): 135~148
    [106] Kang Y T, Nagano T, Kashiwagi T, Mass Transfer Correlation of NH3-H2O Bubble Absorption, International Journal of Refrigeration, 2002, 25(7): 878~886
    [107] Gnyloskurenko S V, Byakova A V, Raychenko O I, et al., Influence of Wetting Conditions on Bubble Formation at Orifice in an Inviscid Liquid. Transformation of Bubble Shape and Size, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 218(1-3): 73~87
    [108] Martín M, Montes F J, Galán M A, On the Influence of the Liquid Physical Properties on Bubble Volumes and Generation Times, Chemical Engineering Science, 2006, 61(16): 5196~5203
    [109] Xiao Z Y, Tan R B H, A Model for Bubble-bubble and Bubble-wall Interaction in Bubble Formation, AIChE Journal, 2006, 52(1): 86~98
    [110] Park Y J, Tyler A L, Nevers N, The Chamber Orifice Interaction in the Formation of Bubbles, Chemical Engineering Science, 1977, 32(8): 907~916
    [111] Bisgaard C, Velocity Fields around Spheres and Bubbles Investigated by Laser-doppler Anemometry, Journal of Non-Newtonian Fluid Mechanics, 1983, 12(3): 283~302
    [112] Mudde R F, Groen J S, Van Den Akker H E A, Liquid Velocity Field in a Bubble Column: LDA Experiments, Chemical Engineering Science, 1997, 52(21-22): 4217~4224
    [113] Groen J S, Mudde R F, Van Den Akker H E A, On the Application of LDA to Bubbly Flow in the Wobbling Regime, Experiments in Fluids, 1999, 27(5): 435~449
    [114] Becker S, De Bie H, Sweeney J, Dynamic Flow Behaviour in Bubble Columns, Chemical Engineering Science, 1999, 54(21): 4929~4935
    [115] Mudde R F, Groen J S, Van Den Akker H E A, Application of LDA to Bubbly Flows, Nuclear Engineering and Design, 1998, 184(2-3): 329~338
    [116] Kulkarni A A, Joshi J B, Ravi Kumar V, et al., Identification of the Principal Time Scales in Bubble Column by Wavelet Analysis, Chemical Engineering Science, 2001, 56(20): 5739~5747
    [117] Olmos E, Gentric C, Poncin S, et al., Description of Flow Regime Transitions in Bubble Columns via Laser Doppler Anemometry Signals Processing, Chemical Engineering Science, 2003, 58(9): 1731~1742
    [118]沈熊,激光多普勒测速技术及应用,北京:清华大学出版社,2004.7~9
    [119] Iguchi M, Ueda H, Uemura T, Bubble and Liquid Flow Characteristics in a Vertical Bubbling Jet, International Journal of Multiphase Flow, 1995, 21(5): 861~873
    [120] Lance M, Bataille J, Turbulence in the Liquid Phase of a Uniform Bubbly Air-water Flow, Journal of Fluid Mechanics, 1991, 222: 95~118
    [121]乔月印,蔡克家,乔峰等,新型激光多普勒微循环分析系统的研制,南开大学学报(自然科学版),2004,37(2): 60~66
    [122] Kulkarni A A, Joshi J B, Ravi Kumar V, et al., Application of Multiresolution Analysis for Simultaneous Measurement of Gas and Liquid Velocities and Fractional Gas Hold-up in Bubble Column Using LDA, Chemical Engineering Science, 2001, 56(17): 5037~5048
    [123] Kulkarni A A, Joshi J B, Ravi Kumar V, et al., Wavelet Transform of Velocity-time Data for the Analysis of Turbulent Structures in a Bubble Column, Chemical Engineering Science, 2001, 56(18): 5305~5315
    [124] Bakshi B R, Zhong H, Jiang P, et al., Analysis of Flow in Gas-liquid Bubble Columns Using Multi-resolution Methods, Transactions of the Institution of Chemical Engineers, 1995, 73(6): 608~614
    [125]王丽雅,庄华洁,陈斌等,基于小波变换的鼓泡塔内气液两相湍流多尺度结构分析,化工学报,2006,57(4): 738~743
    [126] Wen J P, Jia X Q, Zhou H, et al., Wavelet Transform of Velocity-Time Data for the Analysis of Turbulent Structures in a Trayed Bubble Column, Chinese Journal of Chemical Engineering, 2004, 12(5): 622~627
    [127] Albano A M, Muench J, Schwartz C, et al., Singular-value Decomposition and the Grassberger-Procaccia Algorithm, Physical Review A, 1988, 38(6): 3017~3026
    [128] Fraser A M, Information and Entropy in Strange Attractors, IEEE Transactions on Information Theory, 1989, 35(2): 245~262
    [129] Albano A M, Passamante A, Farrell M E, Using Higher-order Correlations to Define an Embedding Window, Physica D: Nonlinear Phenomena, 1991, 54(1-2): 85~97
    [130] Buzug Th, Pfister G, Optimal Delay Time and Embedding Dimension for Delay-time Coordinates by Analysis of the Global Static and Local Dynamical Behavior of Strange Attractors, Physical Review A, 1992, 45(10): 7073~7084
    [131] Buzug Th, Pfister G, Comparison of Algorithms Calculating Optimal Embedding Parameters for Delay Time Coordinates, Physica D: Nonlinear Phenomena, 1992, 58(1-4): 127~137
    [132] Rosenstein M T, Collins J J, De Luca C J, Reconstruction Expansion as a Geometry-based Framework for Choosing Proper Delay Times, Physica D: Nonlinear Phenomena, 1994, 73(1-2): 82~98
    [133] Kember G, Fowler G, A Correlation Function for Choosing Time Delays in Phase Portrait Reconstructions, Physics Letters A, 1993, 179(2): 72~80
    [134]林嘉宇,王跃科,黄芝平等,语音信号相空间重构中时间延迟的选择——复自相关法,信号处理,1999, 15(3): 220~225
    [135] Kugiumtzis D, State Space Reconstruction Parameters in the Analysis of Chaotic Time Series—the Role of the Time Window Length, Physica D: Nonlinear Phenomena, 1996, 95(1): 13~28
    [136] Kim H S, Eykholt R, Salas J D, Nonlinear Dynamics, Delay Times, and Embedding Windows, Physica D: Nonlinear Phenomena, 1999, 127(1-2): 48~60
    [137] Kennel M B, Brown R, Abarbanel H D, Determining Embedding Dimension for Phase-space Reconstruction Using a Geometrical Construction, Physical Review A, 1992, 45(6): 3403~3411
    [138] Aleksi? Z, Estimating the Embedding Dimension, Physica D: Nonlinear Phenomena, 1991, 52(2-3): 362~368
    [139] Cao L Y, Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series, Physica D: Nonlinear Phenomena, 1997, 110(1-2): 43~50
    [140] Broomhead D S, King G P, Extracting Qualitative Dynamics from Experimental Data, Physica D: Nonlinear Phenomena, 1986, 20(2-3): 217~236
    [141] Vautard R, Yiou P, Ghil M, Singular-spectrum Analysis: A Toolkit for Short, Noisy Chaotic Signals, Physica D: Nonlinear Phenomena, 1992, 58(1-4): 95~126
    [142] Mees A I, Rapp P E, Jennings L S, Singular-value Decomposition and Embedding Dimension, Physical Review A, 1987, 36(1): 340~346
    [143] Hong P, Garsten P, Finding the Embedding Dimension and Variable Dependencies in Time Series, Neural Computation, 1994, 6(3): 509~520
    [144] Grassberger P, Procaccia I, Characterization of Strange Attractors, Physical Review Letters, 1983, 50(5): 346~349
    [145] Fan L T, Neogi D, Yashima M, et al., Stochastic Analysis of a Three-phase Fluidized Bed: Fractal Approach, AIChE Journal, 1990, 36(10): 1529~1535
    [146] Franca F, Acikgoz M, Jr Lahey R T, et al., The Use of Fractal Techniques for Flow Regime Identification, International Journal of Multiphase Flow, 1991, 17(4): 545~552
    [147] Draho? J, Bradka F, Pun?ochá? M, Fractal Behaviour of Pressure Fluctuations in a Bubble Column, Chemical Engineering Science, 1992, 47(15-16): 4069~4075
    [148] Kikuchi R, Yano T, Tsutsumi A, et al., Diagnosis of Chaotic Dynamics of Bubble Motion in a Bubble Column, Chemical Engineering Science, 1997, 52(21-22): 3741~3745
    [149]吕金虎,陆君安,陈士华,混沌时间序列分析及其应用,武汉:武汉大学出版社,2001.66~71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700