多铁性复合材料耦合模型及有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多铁性材料是重要的功能材料,在现代科技领域具有广泛的应用前景。本文从变形体力学的角度出发,考虑不同的连通方案下材料的磁电效应,研究结构的边界条件、各相的体积分数、界面的强弱对磁电复合材料力学性能和磁电性能的影响。
     首先,为分析多铁性复合材料中界面特性对磁电耦合的影响,引入内聚力模型(Cohesive Zone Model, CZM),建立了采用界面内聚力单元的多铁性复合材料有限元模型;基于压电和压磁材料本构关系的模拟特性,采用压电有限单元模拟各单相材料,实现了有限元软件中复合材料的力、电、磁多场耦合分析。
     其次,对磁电探测器进行力-电-磁耦合的仿真分析,获得相关的力学特性和磁电特性,与文献结果进行对比,验证了ABAQUS磁电模拟仿真的可行性和准确性。
     最后,讨论分析2-2型层状磁电复合材料和1-3型柱状磁电复合材料的耦合分析模型,给出两种连通方案下的几种边界条件,分析了这几种边界条件下磁电效应的不同,并通过调整界面内聚力模型的刚度、强度等参数,模拟了理想和非理想界面状态下磁电系数的变化。此外,对2-2型层状磁电复合材料,计算了不同磁致伸缩相体积分数对磁电系数的影响,描述了材料在弱界面条件下的破化过程;对1-3型柱状磁电复合材料,计算了不同压电相体积分数和复合材料整体厚度的变化对磁电系数的影响。
     本文方法和结果对理论和实际中界面处理、磁电耦合性能的预测、磁电多铁性复合材料的设计和应用具有一定的参考意义。
Multiferroic materials is an important functional materials, which has broad application prospects in modern science and technology. This thesis focus on magnetoelectric(ME) effect under different connectivity options, studying the effection of the boundary conditions, the volume fraction of each phase, the interface strength to the ME properties and mechanical properties
     First, In order to predict the influences of interfaces on ME coupling, a finite element model for multiferroics composites is suggested by employing cohesive zone elements for the interfaces. Piezoelectric elements are utilized for both piezoelectric and piezomagnetic phase based on the analogy between piezoelectric and piezomagnetic constitutive relations.
     Second, make a rigorous simulation analysis for the magnetic detector, and compare the results with the literature to verify the feasibility and accuracy of ABAQUS magnetoelectric simulation.
     Finally, several boundary conditions of 2-2 and 1-3 multiferroics composites are proposed, then we make an Analysis to ME effect of multiferroic composites under different boundary conditions, and make a simulation of ideal and non-ideal interface state by adjusting the parameters of CZM, In addition, for 2-2 layered magnetoelectric composites, we calculate the ME coefficient under different volume fraction of magnetostrictive phase, describe the breaking process in the weak interface; for 1-3 cylindrical magnetoelectric composites, we calculate the ME coefficient under different volume fraction of piezoelectric phase, and disscuss the influences of changing the overall thickness on the ME coefficient
     The present method and results are significance to process of interfacial bonding and prediction of ME properties.
引文
[1]Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials [J]. Nature,2006,442(7104):759-765.
    [2]Schmid H, Janner A, Grimmer H, et al. Magnetoelectric interaction phenomena in crystals [C]//Proceedings of the 2nd International Conference. [s.1.]:[s. n.], 1994:161-162.
    [3]Bichurin M. Magnetoelectric interaction phenomena in crystals [C]//Proceedings of the 3rd International Conference. [s.1.]:[s. n.],1997:204.
    [4]Bichurin M. Magnetoelectric interaction phenomena in crystals [C]//Proceedings of the 4th International Conference. [s.1.]:[s. n.],2002:279-280.
    [5]Nicola A. Hill. Why are there so few magnetic ferroelectrics[J]. Phys Chem B, 2000,104(29):6694-6709.
    [6]苗兰冬,宋功保,王美丽等.浅谈多铁性材料[J].中国陶瓷工业,2006,13(6):39-42.
    [7]Schmid H, Ascona. Magnetoelectric interaction phenomena in crystals [C]// Proceedings of the 2nd International Conference. Switzerland:[s. n.],1993: 13-18.
    [8]何泓材,林元华,南策文.多铁性磁电复合薄膜[J].科学通报,2008,53(10):1136-1148.
    [9]Suchtelen J V. Product properties:A new application of composite materials [J]. Philips Rep,1972,27(1):28-37.
    [10]Nan C W. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases [J]. Phys Rev B,1994,50(9):6082-6088.
    [11]Vandenbo J, Terrell D R, Born R A J, et al.Insitu grown eutectic magnetoelectric composite-material [J]. Mater Sci,1974,9(10):1705-1714.
    [12]Srinivasan G, Rasmussen ET, Hayes R. Magnetoelectric effects in ferrite-lead zirconate titanate layered composites:The influence of zinc substitution in ferrites[J]. Phys Rev B,2003,67(1):014418.
    [13]Kadam SL, Patankar KK, Mathe VL, et al. Electrical properties and magnetoelectric effect in Ni0.75Co0.25Fe2O4+Ba0.8Pb0.2TiO3 composites[J]. Mater. Chem Phys,2003,78(3):684-690.
    [14]Mazumder S, Bhattacharyya GS. Synthesis and characterization of in situ grown magnetoelectric composites in the BaO-TiO-FeO-CoO system[J].Ceram Int,2004,30(3):389-392.
    [15]Devan RS, Deshpande SB, Chougule BK. Ferroelectric and ferromagnetic properties of (x)BaTiO3+(1-x)Ni0.94Co0.01Cu0.05Fe2O4 composite [J]. J Phys D,2007,40(7):1864-1868.
    [16]Ryu J, Carazo A V, Uchino K, et al. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites[J].Appl Phys,2001,40(8):4948-4951.
    [17]Dong SX, Li JF, Viehland D. Circumferentially magnetized and circumferentially polarized magnetostrictive/piezoelectric laminated rings[J].J Appl Phys,2004.96(6):3382-3387.
    [18]Dong SX, Li JF, Viehland D. Vortex magnetic field sensor based on ring-type magnetoelectric laminate[J].Appl Phys Lett,2004,85(12):2307-2309.
    [19]Dong SX, Li JF, Viehland D. Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse-transverse modes[J].J Appl Phys,2004.95(5):2625-2630.
    [20]Dong SX, Li JF, Viehland D. Voltage gain effect in a ring-type magnetoelectric laminate[J]. Appl Phys Lett,2004,84(21):4188-4190.
    [21]Lin Y H, Cai N, Zhai J Y, et al. Giant magnetoelectric effect in multiferroic laminated composites[J]. Phys Rev,2005,72(1):012405.
    [22]Wan JG, Liu JM, Chand HLW, et al. Giant magnetoelectric effect of a hybrid of magnetostrictive and piezoelectric composites [J]. J Appl Phys,2003,93(12): 9916-9919.
    [23]Nan CW, Cai N, Liu L, et al. Coupled magnetic-electric properties and critical behavior in multiferroic particulate composites [J]. J Appl Phys.2003.94(9): 5930-5936.
    [24]Cai N, Zhai J, Nan CW, et al. Dielectric, ferroelectric, magnetic, and magnetoelectric properties of multiferroic laminated composites[J]. Rhys RevB, 2003,68(22):224103.
    [25]Lin YH, Cai N, Zhai JY, et al. Giant magnetoelectric effect in multiferroic laminated composites[J].Phys Rev B,2005,72(1):012405.
    [26]He H C, Zhou J P, Wang J, et al. Multiferroic Pb(Zr0.52Ti0.48)O3-Co0.9Zn0.1Fe2O4 bilayer thin films via a solution processing [J]. Appl Phys Lett,2006,89(5): 052904.
    [27]Zhou J P, He H C, Shi Z, et al. Magnetoelectric CoFe2O4/Pb(Zr0.52Ti0.48)O3 double-layer thin film prepared by pulsed-laser deposition[J]. Appl Phys Lett, 2006,88(1):013111.
    [28]Nan C W, Bichurin M I, Dong S X, et al. Multiferroic magnetoelectric composites:historical perspective, status, and future directions[J]. J Appl Phys, 2008,103(3):031101.
    [29]Curie P. Sur la Sym e trie dans les Ph e nom e nes Physiques [J]. J. Phys.,1894. 3:393.
    [30]Rado G T, Folen V J. Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains [J].Phys Rev B,1961,7(8): 310-311.
    [31]Folen V J, Rado G T, Stalder E W. Anisotropy of the magnetoelectric effect in Cr2O3[Jl. Phys Rev Lett,1961,6(11):607-609.
    [32]Hur N, Park S, Sharma P A, et al. Colossal magnetodielectric effects in DyMn2O5 [J]. Phys Rev Lett,2004,93(10):107207.
    [32]Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures [J]. Science,2003,299(5613):1719-1722.
    [34]Wang Y, Jiang Q H, He H C, et al. Multiferroic BiFeO3 thin films prepared via a simple sol-gel method[J]. Appl Phys Lett,2006,88(14):142503.
    [35]Jiang Q H, Nan C W, Shen Z J. Synthesis and properties of multiferroic La-modified BiFeO3 ceramics [J]. J Am Ceram Soc.2006.89(7):2123-2127.
    [36]Van Suchtelen J, Philips Res Rep,1972,27,28.
    [37]Breval E, Mulvihill M L, Dougherty J P, et al. Polyimide-silica microcomposite films[J]. J Mater Sci,1992,27(12):3297-3300.
    [38]Lupeiko T G, Lisnevskaya I V, Chkheidze M D, et al.Laminated magnetoelectric composites based on nickel ferrite and PZT materials[J]. Inorg Mater,1995, 31(9):1139-1142.
    [39]Bichurin MI, Kornev IA, Petrov VM, et al. Investigation of magnetoelectric interaction in composite[J]. Ferroelectrics,1997,204(1-4):289-297.
    [40]Nan C W, Clarke D R. Effective properties of ferroelectric and/or ferromagnetic composites:A unified approach and its application[J]. J Am Ceram Soc,1997, 80(6):1333-1340.
    [41]Srinivas S, Li J Y, Zhou Y C, et al. The effective magnetoelectroelastic moduli of matrix-based multiferroic composites J Appl Phys,2006,99(4):043905.
    [42]Yin X M, Zhang N, Bao J C. Single magnetic field-driven magnetoelectric effect in Tb1-xDyxFe2-y-Pb(Zr,Ti)O3 laminate composites[J]. Phys Lett A, 2007.361(4-5):434-436.
    [43]Bichurin M I, Petrov V M, Srinivasan G. Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites [J]. J Appl Phys,2002,92(12):7681-7683.
    [44]Dong S X, Zhai J Y, Li J F. et al. Magnetoelectric gyration effect in Tb1-xDyxFe2-y-Pb(Zr,Ti)O3 laminated composites at the electromechanical resonance[J]. Appl Phys Lett,2006,89(24):243512.
    [45]Pan E. Exact solution for simply supported and multilayered magneto-electro-elastic plates[J]. J Appl Mech,2001,68(4):608-618.
    [46]Pan E, Heyliger P R. Free vibrations of simply supported and multilayered magneto-electro-elastic plates[J]. J Sound Vib,2002,252(3):429-442.
    [47]Zhai J Y, Cai N, Shi Z, et al. Coupled magnetodielectric properties of laminated PbZr0.53Ti0.47O3/NiFe2O4 ceramics [J]. J Appl Phys,2004,95(10):5685-5690.
    [47]Zhai J Y, Cai N, Shi Z, et al. Magnetic-dielectric properties of NiFe2O4/PZT particulate composites [J]. J Phys D:Appl Phys,2004,37(6):823-827.
    [49]Ryu J H, Priya S, Carazo A V, et al. Effect of the magnctostrictive layer on magnetoelectric properties in lead zirconate titanate/terfenol-D laminate composites[J]. J Am Ceram Soc,2001,84(12):2905-2908.
    [50]Dong S X, Zhai J Y, Li J F, et al. Magnetoelectric effect in Terfenol-D/Pb(Zr,Ti)O3/mu-metal laminate composites[J]. Appl Phys Lett,2006,89(12):122903.
    [51]Dong S X, Chen J R, Li J F, et al. Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under resonant drive [J]. Appl Phys Lett,2003,83(23):4812-4814.
    [52]Nan CW, Liu L, Cai N, et al. A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer[J]. Appl Phys Lett, 2002,81(20):3831-3833.
    [53]Cai N, Nan CW, Zhai JY. et al. Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics,rare-earth iron alloys and polymer[J]. Appl Phys Lett,2004,84(18):3516-3518.
    [54]Lage RG, Soares CMM, Soares CAM, et al. Layerwise partial mixed finite element analysis of magneto-electro-elastic plates[J]. Comput Struct,2004, 82(17-19):1293-1301.
    [55]Ramirez F, Heyliger PR, Pan E. Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates[J]. Mech Adv Mater Struct, 2006,13(3):249-266.
    [56]Pan E, Wang R. Effects of geometric size and mechanical boundary conditions on magnetoelectric coupling in multiferroic composites[J]. J Phys D,2009, 42(24):245503.
    [57]王春雷,李吉超,赵明磊.压电铁电物理[M].北京,科学出版社,2009.
    [58]王博文,曹淑瑛,黄文美.磁致伸缩材料与器件[M].北京,冶金工业出 版社,2008.
    [59]Blackburn J F, Vopsaroiu M, Cain MG. Verified finite element simulation of multiferroic structures:Solutions for conducting and insulating systems [J]. J Appl Phys,2008,104(7):074104.
    [60]Bichurin MI, Petrov VM, Srinivasan G. Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites [J]. J Appl Phys,2002,92(12):7681-7683.
    [61]Barenblatt G I. Mathematical theory of equilibrium cracks in brittle fracture[J]. Adv Appl Mech,1962,7:55-125.
    [62]Needleman A. A continuum model for void nucleation by inclusion debonding[J]. J Appl Mech,1987,54(3):525-531.
    [63]Xu X P, Needleman A. Void nucleation by inclusion debonding in a crystal matrix[J]. Modell Simul Mater Sci Eng,1993.1(2):111-132.
    [64]Geubelle P H, Baylor J. Impact-induced delamination of laminated composites: A 2D simulation[J]. Composites Part B,1998,29(5):589-602.
    [65]周剑平,施展,刘刚等.铁电/铁磁1-3型结构复合材料磁电性能分析[J].物理学报,2006,7(55):3766-3771.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700