径向偏振部分相干光束的传输
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对科技领域探索的深入,激光在信息通讯、军事武器、航天、生产生活等领域发挥着越来越多的作用。因为在不同领域需要应用激光的不同特性,各种各样的激光光束应运而生。而径向偏振光束具有特殊的性质,其在原子捕获、激光通信等领域引起人们的关注。本文以径向偏振光束的实际应用为背景,选取径向偏振部分相干光束(radially polarized partiallycoherent beams-RPPCBs)为研究对象,重点研究径向偏振激光光束在湍流大气、光学系统、置于湍流大气中的光学系统以及单轴晶体中这几个典型的系统中的传输特性,主要工作包括:
     基于相干光束在湍流大气中传输的广义惠更斯-菲涅尔公式,研究了入射到湍流大气中径向偏振部分相干光束的传输特性。研究发现在近场传输时,径向偏振部分相干光束在湍流大气中的演化特性与在自由空间(C2n=0)是相似的;大气湍流加速光束在湍流大气中传输时的发散速度;在远场处,径向偏振部分相干光束的偏振度将趋向于零,光束的束腰逐渐扩大。
     基于相干与偏振的统一理论,采用矩阵方式研究了径向偏振部分相干光束在ABCD光学系统中传输时的演化特性。研究发现随着传输距离的增加,在远场处,径向偏振部分相干光束的偏振度将趋向于零,而在自由空间中(A=1,B=z)传输的径向偏振部分相干光束的局域最小相干度为零,其原因为随着传输距离的增加,相干度从负值逐渐增大为正值,同时在远场处,光束也将变为完全相干。
     综合考虑湍流大气和ABCD光学系统,研究了径向偏振部分相干光束在大气湍流环境内的ABCD光学系统中的传输性质,并研究了湍流大气对径向偏振部分相干光束的斯托克斯参数的影响。研究发现径向偏振部分相干光束在置于湍流大气中的光学系统中传输时的演化特性与径向偏振完全相干光束(σ=xx σ=yyinf)的演化特性是类似的;研究还发现径向偏振部分相干光束经过在置于湍流大气中的ABCD光学系统中的传输后,在远场处将变为完全非相干光束
     基于相干光束在单轴晶体中沿着垂直于光轴方向传输的傍轴近似公式,分析了在单轴晶体中,径向偏振部分相干光垂直光轴方向入射时的传输特性。发现光束在x轴和y轴上具有不同的发散速度,在远场处,光束的偏振度将趋向于零。研究还发现单轴晶体的折射率比值ne no对径向偏振部分相干光束的相干度影响不明显。
With exploration of the field of science and technology, laser playing anincreasing role in the field of information and communications, militaryweapons, aerospace, production and living. Because of the different characterused in different applications of laser, various new laser beams have beenintroduced. Radially polarized beams have been used in atom attractor, lasercommunication etc.. Considering the application background of radiallypolarized partially coherent beams (RPPCBs), the transmission characteristicsof the RPPCBs in turbulent atmosphere, ABCD optical system and uniaxialcrystals are studied. The main results are:
     Based on the extended Huygens-Fresnel integral formula in turbulentatmosphere, the propagation properties of RPPCBs propagating in turbulentatmosphere are studied. It is shown that the evolution properties of RPPCBs inturbulent atmosphere are similar to that in free space (C2n=0) in the near field,the beam spreads more rapidly because of turbulent atmosphere, and the degreeof polarization will be equal to zero in the far field and the beam waist enlargegradually.
     The propagation properties of RPPCBs propagating in ABCD opticalsystem are studied by using cross-spectral density matrix. With the increase inpropagation distance, we can find that the degree of polarization for RPPCBswill be equal to zero in the far field, the local minimums are equal to zero whenthe beam propagating in free space (A=1,B=z), the reason is as the distanceincreases, the degree of coherence is gradually increasing from negative topositive, while the degree of coherence will become full in the far field.
     Considering the beam propagating in the turbulent atmosphere and ABCDoptical system, the properties of RPPCBs propagating through ABCD opticalsystem in turbulent atmosphere are studied. We find that the evolution propertiesof RPPCBs through an optical system in turbulent atmosphere are similar toradially polarized fully coherent beam (σ=xx σ=yy inf) in the near field; and thedegree of coherence for RPPCBs propagating through an optical system inturbulent atmosphere will become fully incoherent beam in the far field. Theinfluence of atmospheric turbulence on the Stokes parameters of RPPCBs is alsoanalyzed.
     The transmission characteristics of RPPCBs propagating in uniaxialcrystals orthogonal to the optical axis are studied. We find that the beams will spread in different speed along x-axis or y-axis, and in the far field, the degreeof polarization will be equal to zero, and the affect ofne no on the degree ofcoherent is not obvious.
引文
[1] Collins S A. Lens-System Diffraction Diffraction Integral Written inTerms of Matrix Optics[J]. J. Opt. Soc. Am.,1970,60(9):1168-1177.
    [2]林强,陆旋辉,王绍民.非轴对称光学系统的ABCD定律[J].光学学报,1988,8:658-662.
    [3] Gu Y, Gbur G. Scintillation of Pseudo-Bessel Correlated Beams inAtmospheric Turbulence[J].2010,27:2621-2629.
    [4] Toselli I, Agrawal B, Restaino S. Light Propagation through AnisotropicTurbulence[J]. J. Opt. Soc. Am.,2011,28(3):483-488.
    [5] Li J, Chen Y, Xu S, et al. Propagation Properties of Lorentz Beam inUniaxial Crystal Orthogonal to the Optical Axis[J]. Opt. Laser Tech.,2011,43(3):506-514
    [6] Cai Y, Lin Q, Light Beam with Elliptical Flat-topped Profiles[J]. J. Opt.A: Appl. Opt.2004,6:390-395
    [7] Mei Z, Zhao D. Controllable Elliptical Dark-hollow Beams[J]. J. Opt.Soc. Am. A.2006,23:919-925
    [8] Quabis S, Dorn R, Leuchs G, et al. Generation of a radially polarizeddoughnut mode of high quality[J]. Appl. Phys. B.2005,81:597-600
    [9] Diehl D W, Schoonover R W, Visser T D. The Sturcture of Focused,Radially Polarized Fields[J]. Opt. Express.2006,14:3030-3038
    [10] Deng D, Guo Q, Wu L, et al. Propagation of Radially Polarized ElegantLight Beams[J]. J. Opt. Soc. Am. B.2007,24:636-643
    [11] Deng D, Guo Q. Analytical Vectorial Structure of Radially PolariedLight Beams[J]. Opt. Lett.,2007,32:2711-2713
    [12] Martinez-Herrero R, Piquero G, Mejias P M. Beam Quality Changes ofRadially and Azimuthally Polarized Fields Propagating Through QuarticPhase Plates[J]. Opt. Commun.,2008,281:756-759
    [13] Yonezawa K., Kozawa Y., and Sato S.. Focusing of Radially andAzimuthally Polarized Beams through a Uniaxial Crystal[J]. J. Opt. Soc.Am. A.2008,25:469-472
    [14] Qiu Y, Liu J, Chen Z. Propagation Properties of Radially PolarizedPartially Coherent LG(0,1)*Beams[J]. Opt. Commun.,2009,282:69-73
    [15] Ramachandran S, Kristensen P, Yan M F. Generation and Propagation ofRadially Polarized Beams in Optical Fibers[J]. Opt. Lett.,2009,34:2525-2527
    [16] Jia X, Wang Y, Li B. Nonparaxial Analyses of Radially Polarized BeamsDiffracted at a Circular Aperture[J]. Opt. Express,2010,18:7064-7075
    [17] Fortin P, Piche M, Varin C. Direct-field Electron Acceleration withUltrafast Radially Polarized Laser Beams: Scaling Laws andOptimization[J]. J. Phys. B.2010,43:025401
    [18] Wang H, Li X. Propagation Properties of Radial Partially CoherentFlat-Topped Array Beams in a Turbulent Atmosphere[J]. Opt. Commun.,2010,283:4178-4189
    [19] Ciattoni A, Crosignani B, Porto P D. Vectorial Free-space OpticalPropagation: a Simple Approach for Generating All-order NonparaxialCorrections[J]. Opt. Commun.,2000,177:9-13
    [20] Fu X, Guo H, Hu W, et al. Spatial Nonparaxial Correction of theUltrashort Pulsed Beam Propagation in Free Space[J]. Phys. Rev. E,2002,65:056611
    [21] Fu X, Guo H, Hu W. Vector Analysis of the Propagation of UltrashortPulsed Beams in Free Space[J]. J. Opt. A: Pure Appl. Opt.,2002,4:140-144
    [22] Pyragaite V, Stabinis A. Free Space Propagation of Overlapping LightVortex Beams[J]. Opt. Commun.,2002,213:187-191
    [23] Lu D, Hu W, Yang Z, et al. Vectorial Nature of Nonparaxial UltrashortPulsed Beam Propagation in Free Space[J]. J. Opt. A: Pure Appl. Opt.,2003,5:263-267
    [24] Ganic D, Gan X, Gu M. Focusing of Doughnut Laser Beams by a HighNumerical-Aperture Objective in Free Space[J]. Opt. Express,2003,11:2747-2753
    [25] Lu D, Hu W, Zheng Y, et al. Propagation of Pulsed Beam beyond theParaxial Approximation in Free Space[J]. Opt. Commun.,2003,228:217-223
    [26] Eyyubo lu H T, Yenice Y E, Baykal Y. Higher Order Annular GaussisanLaser Beam Propagation in Free Space[J]. Opt. Engineering,2006,45:036002
    [27] Zou Q, LüB. Propagation Properties of Ultrashort Pulsed Beams withConstant Waist Width in Free Space[J]. Optics&Laser Technology,2007,39:619-625
    [28] Vaveliuk P, Zebende G F, Moret M A, et al. Propagating Free-SpaceNonparaxial Beams[J]. J. Opt. Soc. Am. A.2007,24:3297-3302
    [29] April A. Nonparaxial TM and TE Beams in Free Space[J]. Opt. Lett.,2008,33:1563-1565
    [30] Matsushima K, Shimobala T. Band-Limited Angular Spectrum Methodfor Numerical Simulation of Free-Space Propagation in Far and NearField[J]. Opt. Express,2009,17:19662-19673
    [31] Yura H. Mutual Coherence Function of a Finite Cross Section OpticalBeam Propagating in a Turbulent Medium[J]. Appl. Opt.,1972,11:1399-1406
    [32] Wang S C H, Plonus M A. Optical Beam Propagation for a PartiallyCoherent Source in the Turbulent Atmosphere[J]. J. Opt. Soc. Am.,1979,69(9):1297-1304
    [33] Jian W. Propagation of a Gaussian-Schell Beam though TurbulentMedia[J]. Journal of modern optics,1990,37:671-684
    [34] Wu J, Boardman A D. Coherence Length of a Gaussian-Schell Beam andAtmospheric Turbulence[J]. Journal of Modern Optics.1991,38:1355-1363
    [35] Sprangle P, Penano J E, Hafizi B. Propagation of Intense Short LaserPulses in the Atmosphere[J]. Phys. Rev. E,2002,66(4):046418
    [36] Shirai T, Dogariu A, Wolf E. Mode Analysis of Spreading of PartiallyCoherent Beams Propagating Through Atmospheric Turbulence[J]. J.Opt. Soc. Am. A,2003,20:1094-1102
    [37] Salem M, Shirai T, Dogariu A, et al. Long-Distance Propagation ofPartially Coherent Beams through Atmospheric Turbulence[J]. Opt.Commun.,2003,216:261-265
    [38] Shirai T, Dogariu A, Wolf E. Directionality of Gaussian Schell-modelBeams Propagating in Atmospheric Turbulence[J]. Opt. Lett.,2003,28:610-612
    [39] Eyyubo lu H T, Baykal Y. Analysis of Reciprocity of Cos-Gaussian andCosh-Gaussian Laser Beams in a Turbulent Atmosphere[J]. Opt. Express,2004,12:4659-4674
    [40] Salem M, Korotkova O, Dogariu A, et al. Polarization Changes inPartially Coherent Electromagnetic Beams Propagating ThroughTurbulent Atmosphere[J]. Waves Random Media,2004,14:513-523
    [41] Korotkova O, Salem M, Wolf E. Behavior of the Degree of Polarizationof Electromagnetic Beams Propagating through AtmosphericTurbulence[J]. Opt. Commun.,2004,233:225-230
    [42] Roychowdhury H, Ponomarenko S A, Wolf E. Change in the Polarizationof Partially Coherent Electromagnetic Beams Propagating through theTurbulent Atmosphere[J]. J. Mod. Opt.,2005,52:1611-1618
    [43] Eyyubo lu H T. Propagation of Hermite-cosh-Gaussian Laser Beams inTurbulent Atmosphere[J]. Opt. Commun,2005,245:37-47
    [44] Eyyubo lu H T, Baykal Y. Average Intensity and Spreading of Cosh-Gaussian Laser Beams in the Turbulent Atmosphere[J]. Appl. Opt.,2005,44:976-983
    [45] Eyyubo lu H T, Baykal Y. Hermite-sine-Gaussian and Hermite-sinh-Gaussian Laser Beams in Turbulent Atmosphere[J]. J. Opt. Soc. Am. A,2005,22:2709-2718
    [46] Peleg A, Moloney J V. Scintillation Index for Two Gaussian LaserBeams with Different Wavelengths in Weak Atmospheric Turbulence[J].J. Opt. Soc. Am. A,2006,23:3114-3122
    [47] Eyyubo lu H T, Baykal Y, Sermutlu E. Convergence of General Beamsinto Gaussian Intensity Profiles after Propagation in TurbulentAtmosphere[J]. Opt. Commun.,2006,265:399-405
    [48] Eyyubo lu H T, Altay S, Baykal Y. Propagation Characteristics ofHigher-order Annular Gaussian Beams in Atmospheric Turbulence[J].Opt. Commun,.2006,264:25-34
    [49] Ji X, Zhang E, Lü B. Changes in the Spectrum of Gaussian Schell-ModelBeams Propagating through Turbulent Atmosphere[J]. Opt. Commun.,2006,259:1-6
    [50] Cai Y. Propagation of Various Flat-Topped Beams in a TurbulentAtmosphere [J]. J. Opt. A: Pure Appl. Opt.,2006,8:537-545
    [51] Cai Y, He S. Propagation of Various Dark Hollow Beams in a TurbulentAtmosphere[J]. Opt. Express,2006,14:1353-1367
    [52] Cai Y, He S. Propagation of a Partially Coherent Twisted AnisotropicGaussian Schell-Model Beam in a Turbulent Atmosphere[J]. Appl. Phys.Lett.,2006,89:041117
    [53] Eyyubo lu H T, Baykal Y, Cai Y. Complex Degree of Coherence forPartially Coherent General Beams in Atmospheric Turbulence[J]. J. Opt.Soc. Am. A,2007,24:2891-2901
    [54] Eyyubo lu H T, Baykal Y, Cai Y. Degree of Polarization for PartiallyCoherent General Beams in Turbulent Atmosphere[J]. Appl. Phys. B,2007,89:91-97
    [55] Gbur G, Korotkova O. Angular Spectrum Representation for thePropagation of Arbitrary Coherent and Partially Coherent Beams throughAtmospheric Turbulence[J]. J. Opt. Soc. Am. A,2007,24:745-752
    [56] Korotkova O, Gbur G. Angular Spectrum Representation for Propagationof Random Electromagnetic Beams in a Turbulent Atmosphere[J]. J. Opt.Soc. Am. A,2007,24:2728-2739
    [57] Ji X, Zhang E, Lü B. Changes in the Spectrum and Polarization ofPolychromatic Partially Coherent Electromagnetic Beams in theTurbulent Atmosphere[J]. Opt. Commun.,2007,275:292-300
    [58] Ji X, Chen X, Chen S, et al. Influence of Atmospheric Turbulence on theSpatial Correlation Properties of Partially Coherent Flat-ToppedBeams[J]. J. Opt. Soc. Am. A,2007,24:3554-3563
    [59] Ji X, Zhang E, LüB. Spectral Properties of Chirped Gaussian PulsedBeams Propagating through the Turbulent Atmosphere[J]. J. Mod. Opt.,2007,54:541-553
    [60] Cai Y, Chen Y, Eyyubo lu H. T, et al. Propagation of Laser Array Beamsin a Turbulent Atmosphere[J]. Appl. Phys. B,2007,88:467-475
    [61] Cai Y, Ge D. Analytical Formula for a Decentered Elliptical GaussianBeam Propagating in a Turbulent Atmosphere[J]. Opt. Commun.,2007,271:509-516
    [62] Du X, Zhao D, Korotkova O. Changes in the Statistical Properties ofStochastic Anisotropic Electromagnetic Beams on Propagation in theTurbulent Atmosphere[J]. Opt. Express,2007,15:16909-16915
    [63] Chen Z, Pu J. Propagation Characteristics of Aberrant StochasticElectromagnetic Beams in a Turbulent Atmosphere[J]. J. Opt. A: PureAppl. Opt.,2007,9:1123-1130
    [64] Eyyubo lu H T, Sermutlu E, Baykal Y, et al Intensity Fluctuations inJ-Bessel-Gaussian Beams of All Orders Propagating in TurbulentAtmosphere[J]. Appl. Phys. B,2008,93:605-611
    [65] Korotkova O. Scintillation Index of a Stochastic Electromagnetic BeamPropagating in Random Media[J]. Opt. Commun.,2008,281:2342-2348
    [66] Korotkova O, Pu J, Wolf E. Spectral Changes in ElectromagneticStochastic Beams Propagating through Turbulent Atmosphere[J]. J. Mod.Opt.,2008,55:1199-1208
    [67] Alavinejad M, Ghafary B, Razaaghi D. Spectral Changes of PartiallyCoherent Flat-Topped Beam in Turbulent Atmosphere[J]. Opt. Commun.,2008,281:2173-2178
    [68] Ji X, Chen X, Lü B. Spreading and Directionality of Partially CoherentHermite-Gaussian Beams Propagating through AtmosphericTurbulence[J]. J. Opt.Soc. Am. A,2008,25:21-28
    [69] Chen X, Ji X. Directionality of Partially Coherent Annular Flat-ToppedBeams Propagating through Atmospheric Turbulence[J]. Opt. Commun.,2008,281:4765-4770
    [70] Ji X, Ji G. Spatial Correlation Properties of Apertured Partially CoherentBeams Propagating through Atmospheric Turbulence[J]. Appl. Phys. B,2008,92:111-118
    [71] Ji X, Pu Z. Angular Spread of Gaussian Schell-Model Array BeamsPropagating through Atmospheric Turbulence[J]. Appl. Phys. B,2008,93:915-923
    [72] Ji X, Zhang E, Lü B. Superimposed Partially Coherent BeamsPropagating through Atmospheric Turbulence[J]. J. Opt. Soc. Am. B.2008,25:825-833
    [73] Li J, Yang A, Lü B. Comparative Study of the Beam-Width Spreading ofPartially Coherent Hermite-sinh-Gaussian Beams in AtmosphericTurbulence[J]. J. Opt. Soc. Am. A,2008,25:2670-2679
    [74] Yang A, Zhang E, Ji X, et al. Angular Spread of Partially CoherentHermite-cosh-Gaussian Beams Propagating through AtmosphericTurbulence [J]. Opt. Express,2008,16:8366-8383
    [75] Li J, Yang A, Lü B. The Angular Spread and Directionality of GeneralPartially Coherent Beams in Atmospheric Turbulence[J]. J. Opt. A: PureAppl. Opt.,2008,10:095003
    [76] Cai Y, Eyyubo lu H H, Baykal Y. Propagation Properties of AnomalousHollow Beams in Turbulent Atmosphere[J]. Opt. Commun.,2008,281:5291-5297
    [77] Zhang G, Pu J. Spectral Changes of Polychromatic StochasticElectromagnetic Vortex Beams Propagating through TurbulentAtmosphere[J]. J. Mod. Opt.,2008,55:2831-2842
    [78] Zhu Y, Zhao D, Du X. Propagation of Stochastic Gaussian-Schell ModelArray Beams in Turbulent Atmosphere[J]. Opt. Express,2008,16:18437-18442
    [79] Dan Y, Zhang B, Pan P. Propagation of Partially Coherent Flat-ToppedBeams through a Turbulent Atmosphere[J]. J. Opt. Soc. Am. A,2008,25:2223-2231
    [80] Dan Y, Zhang B. Beam Propagation Factor of Partially CoherentFlat-Topped Beams in a Turbulent Atmosphere[J]. Opt. Express,2008,16:15563-15575
    [81] Wang H, Li X. Changes in the Spectrum of Twist Anisotropic GaussianSchell-Model Beams Propagating through Turbulent Atmosphere[J]. Opt.Commun.,2008,281:2337-2341
    [82] Kashani F D, Alavinejad M, Ghafary B. Polarization Characteristics ofAberrated Partially Coherent Flat-Topped Beam Propagating throughTurbulent Atmosphere[J]. Opt. Commun.,2009,282:4029-4034
    [83] Gu Y, Korotkova O, Gbur G. Scintillation of Nonuniformly PolarizedBeams in Atmospheric Turbulence[J]. Opt. Lett.,2009,34:2261-2263
    [84] Cil C Z, Eyyubo lu H T, Baykal Y, et al. Beam Wander Characteristicsof Cos and Cosh-Gaussian Beams[J]. Appl. Phys. B.2009,95:763-771
    [85] Eyyubo lu H T, Baykal Y, Sermutlu E, et al. Scintillation Index ofModified Bessel-Gaussian Beams Propagating in Turbulent Media[J]. J.Opt. Soc. Am. A,2009,26:387-394
    [86] Li X, Chen X, Ji X. Influence of Atmospheric Turbulence on thePropagation of Superimposed Partially Coherent Hermite-GaussianBeams[J]. Opt. Commun.,2009,282:7-13
    [87] Li J, Lü B, Zhu S. Spatial Distributions of the Energy and Energy FluxDensity of Partially Coherent Electromagnetic Beams in AtmosphericTurbulence[J]. Opt. Express,2009,17:11399-11408
    [88] Li X, Ji X. Angular Spread and Directionality of the Hermite-GaussianArray Beam Propagating through Atmospheric Turbulence[J]. Appl. Opt.,2009,48:4338-4347
    [89] Li J, Lü B. Composite Coherence Vortices in Superimposed PartiallyCoherent Vortex Beams and Their Propagation through AtmosphericTurbulence[J]. J. Opt. A: Pure Appl. Opt..2009,11:075401
    [90] Li J, Lü B. Propagation of Gaussian Schell-Model Vortex Beams throughAtmospheric Turbulence and Evolution of Coherent Vortices[J]. J. Opt.A: Pure Appl. Opt.,2009,11:045710
    [91] Yuan Y, Cai Y, Qu J, et al. M2-Factor of Coherent and PartiallyCoherent Dark Hollow Beams Propagating in Turbulent Atmosphere[J].Opt. Express,2009,17344-17356
    [92] Du X, Zhao D. Polarization Modulation of Stochastic ElectromagneticBeams on Propagation through the Turbulent Atmosphere[J]. Opt.Express,2009,17:4257-4262
    [93] Pu J, Korotkova O. Propagation of the Degree of Cross-Polarization of aStochastic Electromagnetic Beam through the Turbulent Atmosphere[J].Opt. Commun.,2009,282:1691-1698
    [94] Wang T, Pu J, Chen Z. Beam-Spreading and Topological Charge ofVortex Beams Propagating in a Turbulent Atmosphere[J]. Opt. Commun.,2009,282:1255-1259
    [95] Dan Y, Zhang B. Second Moments of Partially Coherent Beams inAtmospheric Turbulence[J]. Opt. Lett.,2009,34:563-565
    [96] Wang L, Zheng W. The Effect of Atmospheric Turbulence on thePropagation Properties of Optical Vortices Formed by Using CoherentLaser Beam Arrays[J]. J. Opt. A: Pure Appl. Opt.,2009,11:065703
    [97] Cui L, Xue B, Cao X, et al. Generalized Atmospheric Turbulence MTFfor Wave Propagating through Non-Kolmogorov Turbulence[J]. OpticsExpress,2010,18:21269-21283
    [98] Gu Y, Gbur G.. Scintillation of Airy Beam Arrays in AtmosphericTurbulence[J]. Opt. Lett.,2010,35:3456-3458
    [99] Korotkova O, Schepakina E. Color Changes in Stochastic Light FieldsPropagating in Non-Komogorov Turbulence[J]. Opt. Lett.,2010,35:3772-3774
    [100] Gercekcioglu H, Baykal Y, Nakiboglu C. Annular Beam Scintillations inStrong Turbulence[J]. J. Opt. Soc. Am. A,2010,27:1834-1839
    [101] Toselli I, Agrawal B, Restaino S. Light Propagation through AnisotropicTurbulence[J]. J. Opt. Soc. Am. A,2011,28:483-488
    [102]王庆喜,吕百达.贝塞耳函数调制的高斯光束通过有光阑ABCD光学系统的传输[J].物理学报,2001,4:682-685
    [103] Lin Q, Cai Y. Tensor ABCD Law for Partially Coherent TwistedAnisotropic Gaussian-Schell Model Beams[J]. Opt. Lett.,2002,216-218
    [104] Lü B, Luo S. Analytical Expression for the Kurtosis Parameter ofFlattened Gaussian Beams Propagating through ABCD OpticalSystems[J]. J. Mod. Opt.,2002,49:1731-1738
    [105] Cai Y, Lin Q. The Elliptical Hermite-Gaussian Beam and Its Propagationthrough Paraxial Systems[J]. Opt Commun.,2002,207:139-147
    [106] Cai Y, Lin Q. Propagation of Elliptical Hermite-Gaussian Beam throughMisaligned Optical System[J]. Opt Commun.,2003,224:13-19
    [107] Cai Y, Lin Q. Hollow Elliptical Gaussian Beam and its PropagationThrough Aligned and Misaligned Paraxial Optical Systems[J]. J. Opt.Soc. Am. A,2004,21:1058-1065
    [108] Duan K, B. Lü. Propagation of Hermite-Laguerre-Gaussian Beamsthrough a Paraxial Optical ABCD System with Rectangular Hard-EdgedAperture[J]. Opt. Commun.,2005,250:1-9
    [109] Cai Y, Zhang L. Propagation of a Hollow Gaussian Beam through aParaxial Misaligned Optical System[J]. Opt Commun.,2006,265:607-615
    [110] Du X, Zhao D. Propagation of Elliptical Gaussian Beams in Aperturedand Misaligned Optical Systems[J]. J. Opt. Soc. Am. A,2006,23:1946-1950
    [111] Chafiq A, Hricha Z, Belafhal A. Flat-Topped Mathieu-Gauss Beam andits Transformation by Paraxial Optical Systems[J]. Opt. Commun.,2007,278:142-146
    [112] Chu X. Propagation of a Cosh-Gaussian Beam through An OpticalSystem in Turbulent Atmosphere[J]. Opt. Express,2007,15:17613-17618
    [113] Du X, Zhao D. Propagation of Random Electromagnetic Beams throughAxially Nonsymmetrical Optical Systems[J]. Opt. Commun.,2008,281:2711-2715
    [114] Du X, Zhao D. Changes in the Polarization and Coherence of a RandomElectromagnetic Beam Propagating through a Misaligned OpticalSystem[J]. Opt. Soc. Am. A,2008,25:773-779
    [115] Du X, Zhao D. Changes in Generalized Stokes Parameters of StochasticElectromagnetic Beams on Propagation through ABCD Optical Systemsand in Turbulent Atmosphere[J]. Opt. Commun.,2008,281:5968-5972
    [116] Zhu Y, Zhao D. Propagation of a Random Electromagnetic Beam througha Misaligned Optical System in Turbulent Atmosphere[J]. J. Opt. Soc.Am. A,2008,25:2408-2414
    [117] Cai Y, Korotkova O, Eyyubo lu H T, et al. Active Laser Radar Systemswith Stochastic Electromagnetic Beams in Turbulent Atmosphere[J]. Opt.Express.2008,16:15834-15846
    [118] Chu X, Liu Z, Wu Y. The Propagation of a Flattened Circular GaussianBeam through an Optical System in Turbulent Atmosphere[J]. Appl.Phys. B,2008,92:119-122
    [119] Gao Y, Zhu B, Liu D, et al. Propagation of Flat-Topped Multi-GaussianBeams through An Apertured ABCD Optical System[J]. J. Opt. Soc. Am.A,2009,26:2139-2146
    [120] Zhao D, Zhu Y. Generalized Formulas for Stochastic ElectromagneticBeams on Inverse Propagation through Nonsymmetrical OpticalSystems[J]. Opt. Lett.,2009,34:884-886
    [121] Zhu Y, Zhao D. Propagation of a Stochastic Electromagnetic GaussianSchell-Model Beam through an Optical System in TurbulentAtmosphere[J]. Appl. Phys. B,2009,96:155-160
    [122] Chafiq A, Hricha Z, Belafhal A. Propagation of GeneralizedMathieu-Gauss Beams through Paraxial Misaligned Optical Systems[J].Opt. Commun.,2009,282:3934-3939
    [123] Feng Y, Zhang R, Zhang B. Propagation Properties of the BeamGenerated by Gaussian Mirror Resonator Passing through a ParaxialABCD Optical System[J]. Optics&Laser Technology,2010,42:662-668
    [124] Zhou G, Chu X. Propagation of Super-Lorentzian Beams through aParaxial ABCD Optical System[J]. Optics&Laser Technology,2010,42:1093-1098
    [125] Pan L, Zhang B. Spectral Shifts of Partially Coherent Radial ArrayBeams Passing through ABCD Optical Systems[J]. Opt. Commun.,2010,283:2193-2201
    [126] Stamnes J J, Sherman G C. Radiation of Electromagnetic Fields inUniaxially Anisotropic Media[J]. J. Opt. Soc. Am.,1976,66:780-788
    [127] Seshadri S R. Paraxial Wave Equation for the Extraordinary-Mode Beamin a Uniaxial Crystal[J]. J. Opt. Soc. Am. A.2001,18:2628-2629
    [128] Ciattoni A, Crosignani B, Porto P Di. Vectorial Theory of Propagation inUniaxially Anisotropic Media[J]. J. Opt. Soc. Am. A,2001,18:1656-1661
    [129] Ciattoni A, Palma C. Hermite-Gauss Beams in Uniaxially AnisotropicCrystals[J]. IEEE J. Quantum Electron.,2001,37:1517-1524
    [130] Ciattoni A, Cincotti G, Palma C, et al. Energy Exchange between theCartesian Components of a Paraxial Beam in A Uniaxial Crystal[J]. J.Opt. Soc. Am. A,2002,19:1894-1900
    [131] Provenziani D, Ciattoni A, Cincotti G, et al.. Diffraction by Elliptic andCircular Apertures in Uniaxially Anisotropic Crystals: Theory andExperiment[J]. J. Opt. A: Pure Appl. Opt.,2002,4:424-432
    [132] Seshadri S. R. Basic Elliptical Gaussian Wave and Beam in a UniaxialCrystal[J]. J. Opt. Soc. Am. A,2003,20:1818-1826
    [133] Ciattoni A, Cincotti G, Palma C. Circularly Polarized Beams and VortexGeneration in Uniaxial Media[J]. J. Opt. Soc. Am. A,2003,20:163-171
    [134] Ciattoni A, Palma C. Nondiffracting Beams in Uniaxial MediaPropagating Orthogonally to The Optical Axis [J]. Opt. Commun.,2003,224:175-183
    [135] Ciattoni A, Cincotti G, Palma C. Angular Momentum Dynamics of aParaxial Beam in Uniaxial Crystal[J]. Phys. Rev. E,2003,37:036618
    [136] Ciattoni A, Palma C. Anisotropic Beam Spreading in UniaxialCrystals[J]. Opt. Commun.,2004,231:79-92
    [137] Muryǐ A A, Stroganov V I..Conditions for Bringing the Ordinary andExtraordinary Rays into Coincidence in a Plane-Parallel Plate Fabricatedfrom an Optical Uniaxial Crystals[J]. J. Opt. Technol.,2004,71:283-285
    [138] Lu B, Luo S. Propagation Properties of Three-Dimensional FlattenedGaussian Beams in Uniaxially Anisotropic Crystals[J]. Opt. LaserTechnol.,2004,36:51-56
    [139] Seshadri S R. Beam Dynamics of Two Modes Propagating Along theOptic Axis in a Uniaxial Crystal[J]. J. Opt. Soc. Am. A,2005,22:361-369
    [140] Deng D, Shen J, Tian Y, et al. Propagation Properties of BeamsGenerated by Gaussian Mirror Resonator in Uniaxial Crystals[J]. Optik.2007,118:547-551
    [141] Li J, Jiang H, Xiao J, et al. The Mechanism of Multi-Focusing of Lasersinto Uniaxial Crystals[J]. J. Opt. A: Pure Appl. Opt.,2007,7:664-672
    [142] Fadeyeva T, Egorov Y, Rubass A, et al. Indistinguishability Limit forOff-Axis Vortex Beams in Uniaxial Crystals[J]. Opt. Lett.,2007,3116-3118
    [143] Deng D, Yu H, Xu S, et al. Propagation and Polarization Properties ofHollow Gaussian Beams in Uniaxial Crystals[J]. Opt. Commun.,2008,281:202-209
    [144] Fadeyeva T A, Volyar A V. The Vortex-Bearing Singular Beams inUniaxial Crystals[C]. Proc. of SPIE,2008,7008:700808
    [145] Rubass A, Kotlyarov K I, Egorov Y A, et al. Transformation andUnfolding of Polarization Singularities in Off-Axis Vortex-BeamsTransmitting Through Uniaxial Crystals[C]. Proc. of SPIE,2008,7008:K80.
    [146] Zhang Z, Pu J, Wang X. Tight Focusing of Radially and AzimuthallyPolarized Vortex Beams through A Uniaxial Birefringent Crystal[J].Appl. Opt.,2008,47:1963-1967.
    [147] Izdebskaya Y, Brasselet E, Shvedov V, et al. Dynamics of Linear Polariz-ation Conversion in Uniaxial Crystals[J]. Opt. Express.2009,17:18196-18208
    [148] Fadeyeva F A, Rubass A F, Sokolenko B. V, et al. The Vortex-Beam‘Precession’ in a Rotating Uniaxial Crystal[J]. J. Opt. A: Pure Appl. Opt.,2009,11:094008.
    [149] Zhang B. Hermite-Cosine-Gaussian Beams Propagating in UniaxialCrystals Orthogonal to the Optical Axis[J]. J. Opt. Soc. Am. A.2009,26:2480-2487
    [150] Brasselet E, Izdebskaya Y, Shvedov V, et al. Dynamics of OpticalSpin-Orbit Coupling in Uniaxial Crystals[J]. Opt. Lett.,2009,34:1021-1023.
    [151] Wu H, Zhang C, Bai X. A Complete Description of Polarization andTransmission of Nonormal Incident Rays in a Uniaxial Birefringent Platewith Arbitrary Optic Axis[J]. Opt. Commun.,2010,283:4129-4134.
    [152] Yuan Q, Wu Z, Li Z. Electromagnetic Scattering for a UniaxialAnisotropic Sphere in an Off-Axis Obliquely Incident Gaussian Beam[J].J. Opt. Soc. Am. A,2010,27:1457-1465.
    [153] Li J, Chen Y, Xin Y, et al. Propagation of Higher-Order Cosh-GaussianBeams in Uniaxial Crystal Orthogonal to the Optical Axis[J]. Eur. Phys.J. D.,2010,57:419-425.
    [154] Hacyan S. Derivation of the Paraxial Equation for Extraordinary Wavesin Uniaxial Media[J]. J. Opt. Soc. Am. A,2010,27:602-604.
    [155] Oron R, Blit S, Davidson N, et al. Formation of Laser Beams with PureAzimuthal or Radially Polarization[J]. Appl. Phys. Lett.,2000,77:3322-3324.
    [156] Moh K, Yuan X, Bu J, et al. Generating radial or azimuthal polarizationby axial sampling of circularly polarized vortex beams[J]. Appl.Opt.,2007,46:7544-7551
    [157] Cincotti G, Ciattoni A, Sapia C. Radially and Azimuthally PolarizedVortices in Uniaxial Crystals[J]. Opt. Commun.,2003,220:33-40.
    [158] Salamin Y. Accurate Fields of a Radially Polarized Gaussian LaserBeam[J]. New Journal of Physics,2006,8:133.
    [159] Yan S, Yao B. Radiation Forces of a Highly Focused Radially PolarizedBeam on Spherical Particles[J]. Phys. Rev. A,2007,76:053836.
    [160] Martinez-Herrero R, Mejias P. Propagation of High Fields with Radial orAzimuthal Polarization Distribution at a Transverse Plane[J]. OpticsExpress,2008,16:9021-9033.
    [161] Martinez-Herrero R, Mejias P, Bosch S. On the Vectorial Structure ofNon-Paraxial Radially Polarized Light Fields[J]. Opt. Commun.,2008,281:3046-3050.
    [162] Machavariani G, Lumer Y, Moshe I, et al. Spatially-variable RetardationPlate for Efficient Generation of Radially-and Azimuthally-PolarizedBeams[J]. Opt. Commun.,2008,281:732-738.
    [163] Cai Y, Lin Q, Eyyuboglu H, et al. Average Irradiance and PolarizationProperties of a Radially or Azimuthally Polarized Beam in a TurbulentAtmosphere[J]. Optics Express,2008,16:7665-7673.
    [164] Lin H, Pu J. Propagation Properties of Partially Coherent RadiallyPolarized Beam in a Turbulent Atmosphere[J]. Journal of Modern Optics,2009,56:1296-1303.
    [165] Banerjee P, Cook G, Evans D. A Q-parameter Approach to Analysis ofPropagation, Focusing, and Waveguiding of Radially Polarized GaussianBeams[J]. J. Opt. Soc. Am. A,2009,26:1366-1374.
    [166] Salamin Y. Fields of a Tightly Focused Radially Polarized Laser Beam:the Truncated Series versus the Complex-Source-Point Spherical WaveRepresentation[J]. New Journal of Physics,2009,11:033009.
    [167] Du D, Zhao D. Statistical Properties of Correlated Radial StochasticElectromagnetic Array Beams on Propagation[J]. Opt. Commun.,2009,282:1993-1997.
    [168] Luo Y, LüB. Phase Singularities of High Numerical Aperture Radiallyand Azimuthally Polarized Beams in the Focal Region[J]. J. Opt. A: PureAppl. Opt.,2009,11:015707.
    [169] Li X, Ji X, Yang F. Beam quality of Radial Gaussian Schell-Model ArrayBeams[J]. Optics&Laser Technology.2010,42(4):604-609.
    [170] Luo Y, Lü B.. Spectral Stokes Singularities of Partially CoherentRadially Polarized Beams Focused by a High Numerical ApertureObjective[J]. J. Opt.,2010,12(11):115703.
    [171] Kotlyar V, Kovalev A. Nonparaxial Propagation of a Gaussian OpticalVortex with Initial Radial Polarization[J]. J. Opt. Soc. Am. A,2010,27:372-380.
    [172] Chen B, Chen Z, Pu J, Propagation of Partially CoherentBessel-Gaussian Beams in Turbulent Atmosphere[J]. Optics&LaserTechnology.2008,40:820–827.
    [173] Pan L,Lu B. Propagation Properties of Partially Polarized GaussianSchell-Model Beams through an Axis-Unsymmetric Paraxial ABCDSystem[J],Optical andQuantum Electronics.2003,35:129–138.
    [174] Qiu Y, Chen Z, Liu L. Partially Coherent Dark Hollow BeamsPropagating through Real ABCD Optical Systems in a TurbulentAtmosphere[J]. Journal of Modern Optics.2010,57(8):662–669.
    [175] Liu D,Zhou Z. Propagation of Partially Polarized, Partially CoherentBeams in Uniaxial Crystals Orthogonal to the Optical Axis[J]. EuropeanPhysical Journal D.2009,54:95-101.
    [176] Wolf E. Unified Theory of Coherence and Polarization of RandomElectromagnetic Beams[J]. Phys. Lett. A,2003,312:263-267.
    [177] Yura H Y, Hanson S G. Optical Beam Wave Propagation throughComplex Optical Systems[J]. J. Opt. Soc. Am. A,1987,4:1931-1948.
    [178] Yura H Y., Hanson S G. Second-order Statistics for Wave Propagationthrough Complex Optical Systems[J]. J. Opt. Soc. Am. A,1989,6:564-575.
    [179] Carter W H.. Spot Size and Divergence for Hermite Gaussian Beams ofAnyOrder [J]. Appl. Opt.1980,19:1027~1029.
    [180] Korotkova O. and Wolf E.. Generalized Stokes Parameters of RandomElectromagnetic Beams[J]. Opt. Lett..2005,30:198~200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700