非相干光—光纤耦合关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤技术的迅猛发展,光纤传感器在传感器领域中占据了很重要的位置。光纤传感器的光源通常是气体激光器、半导体激光器等相干光源,而相干光源由于其自身的光束特性,极容易在光纤端面形成干涉,这也给光纤传感器的后期的信号处理带来了极大的不便。因此,若实现非相干光源的光纤耦合,可以消除光纤传感器中由于模间干涉产生的噪声,提高光纤传感器的信噪比,成为一个急需解决的问题。
     本文从光源与光纤的基本耦合原理出发,对影响非相干光束光纤耦合的若干因素进行了分析,从压缩光束发散角,提高光束能量集中程度以及针对提高光纤耦合效率的光纤端面处理方法进行了研究。主要包括以下几方面内容:
     从提高光纤耦合效率的角度入手,对光纤端面结构与光纤数值孔径的关系进行了理论研究,对光纤端面结构的处理方法进行了详细的分析,并针对多种光纤结构的耦合试验结果进行了对比分析。
     对非相干光-光纤耦合系统进行了设计,通过基本光学设计理论确定了光纤耦合系统的初始参数,透镜类型以及基本相差容限。使用ZEMAX光学仿真软件对光学系统初始参数进行优化,并通过软件的仿真结果光学系统的性能作出了评价。利用ZEMAX软件对光学系统进了公差分析,保证光学系统
     在现有的加工精度和装配精度上依然可以实现预期的功能指标。对本文中设计的光纤耦合光学系统进行了加工、装配。调试了光纤耦合模块,完成对不同光纤光纤耦合方式的对比,实验中光纤出射端最高功率可以达到132.0μW。
     实验表明,采用本文设计的非相干光光纤耦合模块进行光纤耦合,光纤出光端光功率从之前的53.6μW上升至132.0μW,本文中研究设计的光纤耦合光学系统,以及提高光纤数值孔径方法均在很大程度上提升了光纤耦合效率,为进一步提升光纤传感器的性能提供了一种技术途径。
With the fast development of the optical fiber technology, the optical fiber sensor plays a very important role in the sensing area. Usually the fiber-coupled light sources used in the optical sensor are gas lasers, semiconductor lasers and other coherent light source. Because of its beam characteristics, it is very easy for coherent light to interference in the fiber-coupling process; this also has brought a great inconvenience in the signal processing. Therefore, to realize the fiber coupling of incoherent light, to eliminate the noise due to the inter-mode interference, and to improve the SNR of fiber optic sensors become urgent tasks. Starting from the basic principles of coupling between light and fiber, we analyze several factors which affect the coupling. From the aspect of compressing beam divergence angle, concentrating beam energy and fiber end surface processing approach to enhance the efficiency of optical fiber-coupled. The main works of the paper are as follows:
     First, we study the relationship between the structure of the fiber end surface and the fiber numerical aperture with respect to the improvement of the efficiency of fiber coupling. In particular, we analyze the processing method for the structure of the fiber end face in detail and we compare the results with different fiber structures.
     Next, we design incoherent optical fiber coupling system, employing the basic optical designing theory to decide the initial parameters of fiber-coupled system, lens type and fundamental differential tolerance. Using the ZEMAX to optimize the initial parameters of the optical system and evaluate the performance of the optical system. We also analyze the tolerance to ensure that we can still realize the anticipated function index with the existing machining precision and assembly accuracy.
     Finally, we process and assemble the optical system which was designed above. We also debug the fiber-coupled modules and make the contrast of different couple pattern. In our experiment, we reach the exit power up to 132.0μW.
     Experiments show that using this design of the incoherent light fiber-coupling module for coupling, the effluent light power of the effluent fiber increases from the previous 53.6μW to 132.0μW. The fiber-coupling optical systems proposed in this paper and the fiber numerical aperture improving methods are greatly enhance the optical coupling efficiency, which provide a technical way to further improve the performance of fiber optic sensors.
引文
1单丹喜.光纤传感器工业化生产技术的研究[J] . 2003:8-9
    2 Schepperie K. Coordinate measuring apparatus having a probe in the form of solid-state oscillator[J]. 1998, USP5782004
    3陈世丽.双光纤共球耦合传感器图像信号处理关键技术研究[D].哈尔滨工业大学仪器科学与技术学科硕士学位论文2010:3-4
    4王璘,施浣芳,王忠厚,韦明智.半导体激光器光束准直系统设计[D]. 2004 :39~41
    5 Rudolk Kingslake, Lens Design Fundamentals. Academic Press[M], New York, 1978: 301-303
    6王之江,光学设计理论基础[M].科学出版社,1985: 301-306
    7王加强,岳新全,李勇等.光纤通信工程[M].北京,北京邮电出版社,2003:35-36.
    8原荣.光纤通信网络[M].北京:电子工业出版社, 1999:56-57.
    9 Shao-Yun Fu and Bernd Lauke Comparison of the stress transfer in single-and multi-fiber composite pull-out tests.[J].Journal of Adhesion Science and Technology,2000,14(3):437-452
    10 Fan Tso Yee. Efficient Coupling of Multiple Diode Laser Arrays to an Optical Fiber by Geometric Multiplexing[J]. Applied Optics, 1991, 30(6):630
    11陈曲.大功率半导体激光光纤耦合输出技术的研究,2010:16-17
    12吉贵军.一种光学接触式测量方法和使用该方法的微型三维测头.中国国家发明专利.申请号:CN98115367.4.1999:1-9
    13 B.Muralikrishnan, J.A.Stone, J.R.Stoup. Fiber deflection probe for small hole metrology. Precision Engineering.2006,30:154-164
    14 B.Muralikrishnan, J.A.Stone, J.R.Stoup. Ehanced capabilities of the NIST fiber probe for micro feature metrology. Proceedings of the Annual Meeting of the ASPE,Monterey,CA,USA.2006:1-4
    15谭久彬,崔继文,邹丽敏等.基于双光纤耦合的微小内腔尺寸测量装置与方法.中国国家发明专利.申请号:ZL200510102478.6.2005:1-3
    16蔡任燕.压缩半导体激光器光斑的光路分析及数值计算, 2005:20-24
    17傅汝廉,王广军,张凌倩,王肇圻,巴恩旭,母国光,胡新华.全固化激光器中的耦合系统—透镜导管的简化设计[J].光电子·激光, 1998,(02):2-3
    18 Beach R J. Theory and optimization of lens ducts .Applied Optics, 1996,35, 35 (12) :205-215 .
    19田雁.相干条件与光源的相干性,2002:1-2
    20 E.Fred Schuber. Light-Emitting Diodes. Cambridge Press(2003),101-132
    21宋金莲,太阳能发电原理与应用[M].北京:人民邮电出版社. 2007, 7: 7-10
    22廖延彪.光纤光学.清华大学出版社. 2000:38-42
    23 Lindberg, H. Strassner, M. Gerster, E. Bengtsson, J. Larsson, A.Thermal management of optically pumped long-wavelength InP-based semiconductor disk laser, IEEE Journal of Selected Topics in Quantum Electronics, Vol.11, Iss.5, pp.1126, 2005, ISSN: 1077260X
    24马艳,谢福增.用于半导体激光器到单模光纤祸合的圆锥端微透镜设计[J].半导体学报. 2004:25(11):355-359
    25 S.Kumagai, K.Midorikawa. Fabrication of single-mode wave guide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser Applied Physics.[J]. 2003,77(3):359-362
    26 Cheng W H,Sheen M T,Wang G L,etc,Fiber alignment shift formation mechanisms of fiber-sold-ferrule joints in laser module packaging[J],Light wave Technol,2001, 19(8):1177-1184
    27 Yang H M , An optimum approach for fabrication of tapered hemispherical-end fiber for laser module packaging[J] , Electronic Materials,2001, 30(3):271-274
    28韦朝灵,查开德,王新宏.尖锥端光纤和半导体激光器的祸合.[J]中国激光,1998,A25(l): 46-50
    29 Lilian L. LO. The meniscus on a needle-a lesson in matching.[J]. Fluid Mech.,1983,132: 65-78
    30 Quere D and Meglio J M. The meniscus on a fibre. [J].Adv. Colloid Interface Sci.,1994, 48: 141-150.
    31 Clanet C and Quere D.Onset of menisci[J]. J.Fluid. Mech, 2002, 460:131-149
    32 N Grote,H Venghaus,Fiber Optic Communication Devices[M](王景山等译),北京,国防工业出版社,2003: 7-9
    33 LEE K S, BARNES F S. Microlenses on the End of Single-mode Optical Fibers for Laser Applications[J]. Applied Optics, 1989, 24( 9):3134-3139.
    34王飞.基于微焦准直的微深内腔尺度超精密测量方法研究,2010: 49-51
    35杜章永,郭汝静.光纤球端面直径与光纤数值孔径关系的实验研究,2010:3-4
    36徐金庸,孙培家著.光学设计[M]北京:国防工业出版社,1989:23-41
    37刘钧,高明著.光学设计[M]西安:西安电子科技大学出版社,2006 : 69-81
    38 Jun Ho Lee, Jun Youn Kim, Sang Moon Lee, Jae Ryung Yoo, Ki Sung Kim, Soo Haeng Cho, Seong Jin Lim, Gi Bum Kim, Sung Min Hwang, Taek Kim, Yong Jo Park, "9.1-W High-Efficient Continuous-Wave End-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Laser", Photonics Technology Letters, IEEE, On page(s): 2117 - 2119, Volume: 18 Issue: 20, Oct. 2006
    39 Kemp, A.J., Hopkins, J.-M., Maclean, A.J., Schulz, N., Rattunde, M., Wagner, J., Burns, D., "Thermal Management in 2.3-μm Semiconductor Disk Lasers: A Finite Element Analysis", Quantum Electronics, IEEE Journal of, On page(s), Volume: 44 Issue: 2, Feb. 2008: 125 - 135
    40 Rosener, B., Schulz, N., Rattunde, M., Manz, C., Kuhler, K., Wagner, J., "High-Power High-Brightness Operation of a 2.25- m (AlGaIn)(AsSb)-Based Barrier-Pumped Vertical-External-Cavity Surface-Emitting Laser", Photonics Technology Letters, IEEE, On page(s), Volume: 20 Issue: 7, April1, 2008: 502 - 504
    41 A. Cox. A System of Optical Design.London. Focal Press.1964:137-140

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700