WASP水质模型应用与DO模型评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境技术的发展,水质模型在环境保护工作中的应用越来越广泛。许多模型的应用需要大量的外部数据,但是有些数据并不容易获得,为减少数据量的需求,国内外进行了大量地研究,例如采用不依赖反应动力学的神经网络方法等,但此类方法大多尚未成熟,远没有动力学模型应用广泛。因此,将现有的反应动力学公式,在精度允许的情况下做相应的简化以达到模拟的要求是本文的主要工作。
     本文首先总结了水质模型的发展历史以及应用情况,列举了应用广泛的几种水质模型,由于本文模拟对象为流速比较缓慢的平原河流,选用在平原河网模拟中比较成熟的WASP模型作为研究的对象。此模型具有参数输入相对比较灵活的特点,即对同一个模拟的项目可以使用不同复杂程度的动力学公式进行计算。本文将此模型对于水体中溶解氧的计算过程做了比较详细的介绍,对模型可以使用的各种不同数据量要求的溶解氧计算所包含的过程以及计算公式进行了分析和比较。
     本文使用WASP模型模拟了Brandywine河流1999年全年的水质变化情况,并将模拟结果与实测结果进行了比较,模拟预测的数据和实测数据符合的很好。本文还对敏感度比较高的模型参数如水温、流量Q、20℃CBOD衰减系数等进行了敏感度分析,得出水温是敏感度最高参数的结论。进一步使用四种不同复杂度的水体溶解氧公式进行模拟,并将模拟结果与实测值进行比较,显示使用改进的Streeter-Phelps方程可以满足此次模拟河流溶解氧变化的需要。本文还发现河流上游的堤坝对溶解氧浓度的影响很小。
     最后,使用改进的Streeter-Phelps方程对2006年汤河流经市区一段水体的水质进行了模拟验证,预测了本段河流在2006年6~8月份的水质,结果反映了水质情况。结果证实了WASP水质模型可以用于平原河流水质模拟。
The application of water quality model in environmental protection becomes more and more important with the development of environmental technology. Some models require large amounts of external data, which are not easily accessed. To reduce the data requirement, many methods have been proposed such as the neural network method. But many of such kinds of methods are not mature enough to replace the kinetic models applied widely. The main work of this dissertation is to simplify kinetic formulas to reach the requirement of data reduced.
     The development and application of the water quality models are summarized. The WASP model is chosen in this approach because the rivers studied here are plain rivers where the flow velocity is low. Although this model has a lot of successful applications, it is still lack at evaluating its model parameters and optimizing DO models. The four DO models are compared in this approach.
     The water quality of the Brandywine River in 1999 is simulated with the WASP model. The results show good agreements with the field observation data. The sensitivity analysis for the selected model parameters such as temperature, flux, CBOD decay rate at 20℃, etc. is studied. It is found that the water temperature is the most sensitive coefficient. Four water dissolved oxygen formula with different complexity are compared in detail. The result shows that modified Streeter-Phelps equations meet the need of WASP water quality simulation. The effects of the dam on DO are found small.
     The water quality of Tang River, which goes through the urban of Qinhuangdao city, is selected to be simulated. The change of water quality of Tang River from June to August in 2006 is forecast by applying WASP model with the modified Streeter-Phelps equations. The results show good performances of WASP model.
引文
[1]傅伟国,河流水质数学模型及其模拟计算,北京:中国环境科学出版社,1987
    [2]陈鸣钊,水环境系统分析与规划,海河大学内部教材,1990
    [3]金腊华,徐峰俊,水环境数值模拟与可视化技术,北京:化学工业出版社,2004
    [4] Kazmi, Absar A. Numerical models in water quality management: a case study for the Yumuna River. Water Science and Technology,1997,36(5):193~200
    [5]李平衡,陈凯麟,鲁四光等,温排水对陡河水库富营养化影响的预测研究——电厂温排水对陡河水库富营养化影响研究之二,水资源保护,2001(2):15~18
    [6]徐祖信,卢士强,潮汐河网水环境容量的计算分析,上海环境科学,2003,22(4):254~257
    [7] MIKE11: A modeling system for rivers and channels reference manua.Danish Hydraulic Institutio, 2002
    [8] Hutchinson C. Uses of satellite data for famine early warning in Sub-Saharam Africa. International Journal of Remote Sensing, 1991, 12: 1405~1421
    [9]李继选,王军,水环境数学模型研究进展,水资源保护,2006,22(1):9~14
    [10]谢永明,环境水质模型概论,北京:中国科学技术出版社,1996
    [11]徐祖信,廖振良,水质模型研究的发展阶段与空间层次,上海环境科学, 2003,22(3):79~85
    [12]郭劲松,李胜海,龙腾锐,水质模型及其应用研究进展,重庆建筑大学学报,2002,24(2):109~115
    [13] WASP4: A hydrodynamic and water quality mode, EPA, 1988
    [14]全为民,严力蛟,湖泊富营养化模型研究进展,生物多样性,2001,9(2):168~175
    [15]金明,一维稳态河流的随机微分方程模型,水利学报,1991(2):19~25
    [16] Finney B A, Bowles D S, Windham M P. Random differential equations in river water quality modeling, Water Resource Research, 1982, 18(1): 122~134
    [17]马蔚纯,张超,基于GIS的水质数值模拟——以上海市苏州河为例,地理学报,1998,53(12):68~75
    [18]贾海峰,程声通,杜文涛,GIS与地表水水质模型WASP5的集成,清华大学学报:自然科学版,2001,41(8):125~129
    [19] Goodchild M F. The state of GIS for environmental provlem-solving, Goodchild M F, STEYAERT L T, PARKS B O. Environmental modeling with GIS. New York: Oxford Univ. Press, 1993
    [20] Maidment D R. GIS and hydrological modeling GOODCHILD M F, STEYAERT L T, PARKS B O. Environmental modeling with GIS. New York: Oxford Univ. Press, 1993
    [21] Liao H, TIM U S. An interactive modeling environment for Non-point source pollution control.Journal of the American Water Resource Association, 1997, 33(3): 591~603
    [22] Srinivas M, Patnaik L M. Adaptive probability of crossover and mutation in genetic algorithm.IEEE Trans on SMC, 1994, 24(4): 656~667
    [23]李海英,秦肖生,综合性遗传算法用于水质模型参数估值,中国给水排水,2002,18(5):28~30
    [24]申玮,郭宗楼,周新超,直接搜索——模拟退火算法在水质模型参数识别中的应用,西北农林科技大学学报,2004,32(5):101~105
    [25] Sharad K J. Development of integrated sediment rating curves using ANNs, Journal of Hydraulic Engineering, 2001, 127(1): 30~37
    [26] Marina C. Forecasting river flow rate during low-flow period using neural network. Water Resources Research, 1999, 35(11): 3547~3552
    [27]魏文秋,孙春鹏,灰色神经网络水质预测模型,武汉水利电力大学学报,1998,31(4):26~29
    [28] Zhang B. Prediction of water runoff using B ayesian concepts and modular neural network. Water Resources Research, 2000, 36(3): 753~762
    [29]廖振良,供水系统宏观模型优化调度的研究,硕士学位论文,同济大学, 1997
    [30] Harvey E Jobson.Lagrangian Model of Nitrogen Kinetics in the Chattahooche River. Journal of Environmental Engineering, 1987, 113(2): 35~46
    [31]严新华,水力学(第一版),北京:科学技术文献出版社,1997
    [32] Richard P. Signell and Bradford Butman.Modeling Tidal Exchange and Dispersion in Boston Harbor. Journal of Geophysical Research, 1992, 97(10): 235~252
    [33] J.Russell, Manson and Steve G.Wallis, Toward an Accurate Fate and Transport Model for Nonuniform Surface Waters.Advances in Environmental Research, 1997, 1(1): 327~344
    [34]谢永明,环境水质模型概论,北京:中国科学技术出版社,1996
    [35] Charpra, S. C., Pelletier, G.J.and Tao, H.2006.QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality, Version 2.04: Documentation and Users Manual
    [36] DHI. Water &Environment.MIKE11, A Modeling System for Rivers and Channels Reference Manual. 2000
    [37]杜国志,李开杰,洪水风险图有关问题探析,中国水利,2006,5:33~36
    [38]卢士强,徐祖信,林卫青,综合调水对苏州河周边水系水质影响的数值模拟,环境污染与防治,2005,27(6):9~14
    [39]徐祖信,卢士强,林卫青,苏州河干流防洪水位的数值计算海河大学学报2006,34(2):148~151
    [40] DHI. MIKE21 User Guide and Reference Manual. Danish Hydraulics Institute, Copenhagen. 1998
    [41] Ambrose R B, Wool T A, and Martin J L. The Water Quality Analysis Simulation Program WASP5. U.S. EPA Center for Exposure Assessment Modeling, Athens, 1993: 8~14
    [42] U.S. Environment Protection Agency http: //www.epa.gov/athens/wwqtsc/html/ wasp.html, 2006
    [43]王建平,贾海峰等,密云水库及其流域营养物集成模拟的模型体系研究,环境科学,2006,27(7):1286~1291
    [44]廖振良,徐祖信,苏州河干流水质模型的开发研究,上海环境科学,2002,21(3):136~142
    [45]杨家宽,肖波等,WASP水质模型应用于汉江襄樊段水质模拟研究,水资源保护,2005,21(4):8~10
    [46] Thomann R V, Fitzpatrick J F. Calibration and verification of a mathematical model of the eutrophication of the Potomac Estuary, 1982
    [47]廖振良,感潮河流河网水质模型研究及苏州河水环境整治目标分析,博士论文,同济大学,2002
    [48]徐贵泉,宋德藩,黄士力等,感潮河网水量水质模型及其数值模拟,应用基础与工程科学学报,1996 1:94~104
    [49] Lung W S. Water Quality Modeling for Wasteload Allocations and TMDLs, New York: John Wiley & Sons, Inc, 2001
    [50] Ambrose R B, Wool T A, and Martin J L. The Water Quality Analysis Simulation Program WASP5. U.S. EPA Center for Exposure Assessment Modeling, Athens, 1993: 8~14
    [51] Robert B, Ambrose. The Water Quality Analysis Simulation Program, WASP5, Part B: The WASP5 Input Dataset, 1993. Enviroment Research Laboratory, A thens, Georgia
    [52] Thomann R V, Fitzpatrick J F. Calibration and verification of a mathematical model of the eutrophication of the Potomac Estuary, 1982
    [53]王敏,张明旭,苏州河武宁路断面底泥需氧量的测定,上海环境科学,2002,22(6):418~422

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700