钢板桩围堰体系静、动受力变形特性数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外有许多双排钢板桩型式的围堰结构,由于其整体性强,施工手段方便成熟,监测手段也较多,因此在港口工程中被广泛的采用。为了计算方便,常规方法主要以土压力理论为基础,无法考虑诸如土石物与板桩接触特性等因素的影响。为此,本文将针对双排钢板桩围堰体系静、动力受力变形特性,采用数值计算方法手段,主要围绕以下两个方面展开:
     1通过建立双排钢板桩围堰体系弹塑性有限元数值模型,采用基于Mohr-Coulomb破坏准则的理想弹塑性本构模型考虑土石物的弹塑性性质,采用罚函数接触算法描述界面接触特性,针对不同水位下钢板桩围堰在加载过程中呈现的受力变形特征进行了分析与讨论
     2通过建立双排钢板桩围堰体系动力有限元数值模型,采用Lanczos特征值模态法提取围堰体系自然频率与振型,采用Newmark逐步积分方法求解考虑几何非线性的动力平衡方程,并在此基础上,针对水平地震力作用下钢板桩围堰体系的动力受力变形特性分别进行振型分解反应谱分析和动力时程分析,并将计算结果加以比较。
At present, there are many domestic and overseas engineering practices of double-walled cofferdam with steel sheet piles. Due to its good integrity, construction convenience and multifold testing measures, double-walled cofferdam with steel sheet piles is widely employed in port engineering. For computational convenience, conventional methods is mainly based on earth-pressure theory, thus can not consider these factors such as the effects of contact behavior between backfill and sheet piles. Therefore, the static and dynamic characteristics of double-walled cofferdam with steel sheet piles are conducted around two faces as follows by numerical method in this paper:
     1 Based on ABAQUS codes platform, the characteristics of internal forces and deformation of double-walled cofferdam with steel sheet piles at different water heights are analyzed by developing elasto-plastic FE model in plane stress state, adopting Mohr-Coulomb yield criterion to describe the elaso-plasticity of subsoil and Coulomb contact pair theory to simulate the contact behavior between sheet piles and backfill.
     2 On the basis of ABAQUS programs, dynamic FEM model is developed with Lanczos eigenvalue method to abstract natural frequency and mode, and with Newmark step-by-step integration method to solve dynamic equations considering geometrical nonlinearity. And then dynamic characteristics of double-walled cofferdam with steel sheet piles are discussed by numerical analyses of seismic response spectrum method and dynamic time-history method.
引文
[1]中华人民共和国交通部.干船坞设计规范(JTJ239-2005)[S].2005.
    [2]Sunirmai B.Design charts for double-walled cofferdam[J].Journal of Geotechnical Engineering,1993,119(2):214-222.
    [3]Buhan P,Corfdir A.Limit design of axisymmetric shells with application to cellular cofferdams[J].Journal of Engineering Mechanics,1994,122(10):921-929.
    [4]陶锴,张翔.番禺大桥钢板桩围堰的技术特点[J].华东公路,1999,117(2):9-11.
    [5]聂栓林,苗中海,曾锡庭.软土地基中钢板桩挡土墙偏移原因[J].港工技术,1999,11:43-44.
    [6]高鸣安,甘军,刘思君.三峡工程围堰基础淤沙物理力学参数分析[J].长江科学院院报,1999,16(2):54-56.
    [7]胡黎明,濮家骝.施工及运行期三峡二期围堰防渗墙有限元分析[J].水利水电技术,1999,30(5):64-66.
    [8]包承纲,钱胜国,马时冬等.三峡二期围堰下淤砂层的动力特性及有关工程问题的研究[J].岩土工程学报,2000,22(4):402-207.
    [9]刘松涛,饶锡保,任志伟.三峡深水围堰及防渗墙基坑抽水阶段的数值分析[J].长江科学院院报,2000,17(1):25-29.
    [10]史迅.塑性混凝土防渗墙在三峡二期围堰中的应用[J].施工技术,2000,29(5):36-37.
    [11]Lefas I D,Georgiannou V N.Analysis of a co?erdam support and design implications[J].Computers and Structures,2001,79:2461-2469.
    [12]刘幼如,王振铺.海岸工程使用钢板桩作水工建筑物主体的探讨[J].水运工程,200l,335(12):21-23.
    [13]胡黎明,濮家骝.施工及运行期三峡二期围堰防滲墙有限元分析[J].清华大学学报,2001,41(54):240-243.
    [14]黄薇,陈进.三峡三期上游RCC围堰接头块应力及稳定研究[J].长江科学院院报,2001,18(6):23-25.
    [15]鲁晓兵,郭易圆,李世海.爆炸载荷下三峡三期纵向围堰响应的离散元分析[J].岩石力学与工程学报,2002,21(2):158-162.
    [16]田庆利,李宝华,祝业浩.大型固化土充泥模袋的研究及在天津港南疆围堰工程中的应用[J].港口工程,2002.4:50-53.
    [17]王传鹏,梁德礼,于华等.高压旋喷桩配合双壁钢围堰施工深水承台的实践[J].桥梁建设,2002,4:49-52
    [18]郑守仁.三峡工程三期围堰及截流设计关键技术问题[J].人民长江,33(1):7-9.
    [19]吴建军.深水墩双壁钢围堰施工[J].铁道建筑,2002,12:31-33.
    [20]王光勇.在特殊条件下采用钢插板辅助钢围堰挡水[J].铁道建筑,2002,1:3-5.
    [21]薛政群,顾卫东.单层钢板桩深水围堰[J].公路,2003,3:81-85.
    [22]蒋中明,徐卫亚.格构形复合抗滑钢板桩的阻滑机理研究[J].岩石力学与工程学报,22(8):1372-1376.
    [23]刘全,胡志根,李燕群等.过水土石围堰下游混凝土板护坡反滤层的可靠性分析[J].武汉大学学报,2003,36(5):43-46.
    [24]丁勇,吴志刚.桐柏抽水蓄能电站上库围堰抗滑稳定分析[J].人民长江,2003,34(3):37-38.
    [25]叶李.大型钢吊箱围堰在承台施工中的应用[J].公路,2004,4:56-60.
    [26]李虎章,唐儒敏.盘石头水库大坝工程过水围堰设计综述[J].人民长江,2004,35(7):34-35.
    [27]黄碧珊,赵世强,张绪进.黄石长江公路主墩钢围堰下沉试验研究[J].水运工程,2004,368(9):82-85.
    [28]杨森浩,秦铎,赵忠旭.控制性水泥灌浆工艺在围堰防渗工程中的应用[J].人民长江,:2004,35(7):11-12.
    [29]程展林.三峡二期围堰垂直防渗墙的应变形态[J].长江科学学院院报,2004,21(6):34-37.
    [30]曹广晶,钟登华,胡程顺.三峡工程碾压混凝土围堰施工若干重大技术问题研究[J].水力发电学报,2004,23(2):79-82.
    [31]杨华全,李家正,董维佳等.三峡工程三期围堰碾压混凝土试验研究[J].长江科学院院报,2004,21(2):6-9.
    [32]李树忱,李术才,邹淑平.水中填筑围堰边坡稳定的流-固耦合分析[J].岩土力学,2004,25(1):82-86
    [33]Benmebarek N,Benmebarek S,Kastner R.Numerical studies of seepage failure of sand within a cofferdam[J].Computers and Geomechanics,2005,32:264-273.
    [34]邱训兵.大型钢板桩围堰施工设计的思考[J].铁道建筑,2005,9:12-14.
    [35]龚明,赵永杰.钢板桩海上施打实践[J].中国港湾建设,2005,139:54-55.
    [36]于成雨.钢板桩围堰海上施工[J].港工技术,2005,12(S1):77-80.
    [37]王伟,易富慧,韦顺敏等.控制性帷幕灌浆防渗技术在上石围堰中的应用[J].水利水电技术,2005,36(1):59-62.
    [38]王令振.某特大桥吊箱围堰设计与施工[J].桥梁,2005,6:74-76.
    [39]戴会超,王玲玲.三峡深水高土石围堰工程的渗流研究[J].水科学进展,2005,16(6):849-852.
    [40]夏仲平.水利王程施工围堰技术进展[J].人民长江,2005,11:1-3.
    [41]姜治兵,金峰,王才欢.围堰溃决的数值模拟[J].2005,36(10):38-41.
    [42]肖群香,胡志根,刘全.向家坝水电站纵向围堰堰脚冲刷可靠性分析[J].水力发电,2005,31(2):29-30
    [43]曹洪,罗彥,周红星.新光大桥桥墩钢板桩围堰抗渗问题分析[J].岩石力学与王程学报,2006,25(1):152-157.
    [44]Hu Z,FAN X,HUAI W,et aI.Coupling effect between reliability of bedding layer and stability of downsream concrete slab of overflow earth-rock cofferdam[J].Journal of Hydrodynamics,2007,19(5):613-622.
    [45]刘凤兰,岳红波.东江大桥双壁围堰设计与施工[J].桥梁建设,2007,S1:103-105.
    [46]汪明元,程展林,包承纲,李青云.三峡工程二期深水围堰工程性状反分析研究[J].土木工程学报,2007,40(6):105-110.
    [47]蒋中明,顾正华,张新敏等.三峡工程二期围堰运行期变形特性研究[J].岩土力学,2007,28(4):747-753.
    [48]于建军,丁飞鹏,王长江等.深水施工吊箱围堰的有限元分析[J].河海大学学报,2007,35(5):546-548.
    [49]任亮.广州新光大桥深水承台钢板桩围堰施工[J].中外公路,2006,26(4):94-98.
    [50]Hibbitt,Karlsson and Sorensen,Inc.ABAQUS Theory Manual[M].USA:Hibbitt,Karlsson &Sorensen,Inc,2002.
    [51]庄茁,张帆,岑松.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2004.
    [52]雷哓燕.岩土工程数值计算[M].北京:中国铁道出版社,1999.
    [53]龚晓南.土工计算与计算机分析[M].杭州:浙江大学出版社,2000.
    [54]Gwinner J,Brosowski B.A penalty approximation for a unilateral contact problem in non-linear elasticity[J].Mathematical Methods in the Applied Sciences,1989,11(4):447-458.
    [55]大崎顺彦.吕敏申,谢礼立译.地震动的谱分析入门[M].北京:地震出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700