变周期慢波系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢波系统是行波管的重要组成部分之一。由于行波管的工作依赖于电子注与线路行波场之间的相互作用而完成,所以沿轴向传输的行波场应与电子注有近乎相同的速度,而且该速度应该远比光速小。产生这些沿轴向传输的且相速远比光速小的行波场的电路称为慢波系统(或慢波电路),若这些慢波系统的结构具有周期性,则称为周期慢波系统。
     但是,由于在慢波系统中电子注与线路行波场之间的能量交换属于动能与电磁场能的交换,所以,当电子注将其相当一部分动能交给行波场后,电子注的平均速度将会变慢,而当电子注的平均速度变慢到与电磁波的相速相等,甚至小于电磁波的相速时,则电子注与该电磁波就不能再继续维持同步状态,也就使得电子注与行波场不能再继续进行有效的正向能量转换,甚至会发生反向能量转换,即电子注又从行波场吸取能量。所以,慢波系统中的电子注与电磁波的同步问题是限制行波管的效率的根本原因之一。
     由对这一物理机理的分析可以想到,如果能设法保持电子注与电磁波在整个互作用过程中一直同步,那么,行波管的效率必然能得到显著改善。而从上面的分析可以发现,要保持电子注与电磁波在整个互作用过程中一直同步不外乎两种方法:一种方法是使慢波系统中的电磁波的相速随着轴向传播距离的增加而逐渐减小;另一种方法则是设法使电子注在慢波系统中行进一段距离后,其动能可以得到附加场的补充,从而使得其平均速度增大,恢复与电磁波的同步。前一种方法称为相速渐变;后一种方法则称为电压跳变。本论文所采用的变周期的方法正是相速渐变的一种。
     本论文以折叠波导慢波系统为具体研究对象,研究内容包括变周期折叠波导内的空间谐波的分析,三段周期跳变折叠波导和变周期折叠波导选择空间谐波的分析,不均匀折叠波导的同步问题的研究,变周期折叠波导的同步问题的研究,再通过电磁仿真软件和粒子模拟软件验证所得出的结论。
     本文的组织结构为:
     第一章为绪论,介绍了研究的背景,微波真空电子器件的发展趋势,相位聚焦的概念等,并阐明了论文的研究意义和范围。
     第二章分析了三段周期跳变折叠波导和变周期折叠波导的空间谐波的选择性,并分别推导了能够实现选择空间谐波的三段周期跳变折叠波导和变周期折叠波导应该满足的条件。
     第三章提出了不均匀折叠波导内若存在一次空间谐波能够与电子注在整个互作用过程中一直同步,那么它应该满足的条件,并分析了其结构尺寸的变化对耦合阻抗的影响,然后利用电磁仿真软件HFSS的模拟结果验证了该条件,最后利用粒子模拟软件MAGIC研究了这种结构对输出功率和互作用效率的影响。
     第四章分析了变周期慢波系统的空间谐波的情况,讨论了利用变周期慢波结构来保持电子注与电磁波在整个互作用过程中一直同步的问题,并探讨了其物理意义。
     第五章分析了变周期折叠波导内的空间谐波,并推导了若能使变周期折叠波导内有一次空间谐波在整个互作用过程中与电子注一直同步,那么该结构应该满足的条件,并通过电磁仿真软件HFSS验证了所得出的条件,最后利用粒子模拟软件MAGIC分析了各种变周期折叠波导的输出功率与互作用效率的提高情况。
     第六章是总结。
Slow-wave structures are the major components of the travelling wave tube(TWT).To utilize the interaction between the microwave and the electron beam in aTWT,the microwave phase velocity should be made approximately equal to theelectron velocity.And this velocity is far slower than the light velocity.Sequentially,microwave circuits in which the microwave propagates are defined as slow-wavestructures (or slow-wave circuits).If the structures are periodic,it is called periodicslow-wave structures.
     However,when electrons transfer the kinetic energy to the microwave,theelectron velocity is decrease.In the process of the beam-wave interaction,electronscontinuously lose their kinetic energy.Therefore,their velocities continuously decrease.Sequentially,the decrease of the electron velocity would cause the electron beamnon-synchronizes the microwave.This is an important reason to the limitation of thetravelling wave efficiency.
     According to reason above,it is assumed that if the electron beam synchronizesthe microwave during the whole interaction process,the interaction efficiency can beimproved.Currently,two ways are presented to improve efficiency.The one is to applya dc voltage gradient along the beam or structure,the other is to taper the RF circuitphase velocity.And the theory adopted in this dissertation belongs to the velocitytapering.
     In this dissertation,the space harmonic selectivity of period-varying foldedwaveguides are analyzed,the nonuniform folded waveguides are studied,thesynchronization in period- varying folded waveguides is analyzed,and the conclusionsobtained are proved by the software simulation.
     The structure of this dissertation is presented as follow:
     Chapter 1 is introduction.The background of research and the obstacles ofpresent TWTs will be firstly explained.Then,the significance and the researching scopeof this dissertation will be presented.
     In chapter 2,the space harmonics in period-varying folded waveguides and folded waveguides with jumping-period are analyzed,then conditions to select spaceharmonic in these structures are obtained.
     In chapter 3,the space harmonics are discussed in nonuniform folded waveguides,conditions to maintain one space harmonic synchronizes the electron beam during thewhole interaction process are presented,and the coupling impedance in each period isanalyzed.Finally,output power and interaction efficiency in this structure are analyzedby the particle simulation software MAGIC,and these conditions are proved.
     In chapter 4,the space harmonics in period-varying slow-wave structures areanalyzed,conditions to maintain synchronization between the electron beam and themicrowave in period-varying slow-wave structures are discussed.And the physicalmeaning of these structures is presented.
     In chapter 5,the space harmonics are analyzed in period-varying foldedwaveguides,the space harmonics amplitude are deduced,principles of one spaceharmonic synchronizing the electron beam during the whole interaction process areobtained,and these principles are proved by the software simulation.Finally,improvements of output power and interaction efficiency in period-varying foldedwaveguides are presented.
     The chapter 6 is conclusion.
引文
[1]廖复疆,吴固基.真空电子技术—信息装备的心脏.北京:国防工业出版社,1999, 1-14
    [2]R.K.Parker, R.H.Abrams, B.Danly, et al.Vacuum electronics.IEEE Tran.MTT,2002, 50(3): 835-845
    [3]R.H.Abram, A.A.Mondeli, R.K.Parker.Vacuum electronics for the 21~(st) century.IEEE Microwave Magazine, 2001,2(3):61-72
    [4]R.K.Parker, C.M.Armstrong.Vacuum Electronics at the Dawn of the Twenty-First Century.IEEE Microwave Magazine, 1999, 87(5): 702-716
    [5]邬显平.世纪之交的微波真空器件.真空电子技术,2003, 1: 1-7
    [6]K.Posthumus.Oscillation in split-anode magnetron.Wireless Engineer and Experimental Wireless, 1935, 12(1): 126-132
    [7]R.Kompfner.The traveling wave vale.Wireless Word, 1946, 53(2): 369-372
    [8]R.Kompfner.The Traveling Wave Tubes as an Amplifier at Microwaves.Proc.IRE,1947, 35(2): 124-127
    [9]皮尔斯.行波管(,吴鸿适,田志仁).北京:科学出版社,1961, 1-239
    [10]J.R.Pierce, L.M.Field.Traveling Wave Tubes.Proc.IRE, 1947, 35(2): 108-111
    [11]杨祥林,张兆镗,张祖舜.微波器件原理.北京:电子工业出版社,1994, 1-20
    [12]邮电部506厂《行波管》编写组.行波管.北京:人民邮电出版社,1979
    [13]蔡军.W波段折叠波导慢波系统的研究:[博士学位论文].济南:山东大学, 2006
    [14]S.A.Gilmour.Principles of TWTs.Norwood, MA: Artech House, 1998: 1-402
    [15]R.Barker, E.Schamiloglu.高功率微波源与技术(,刘国治,周传明).北京:清华大学出版社,2005, 1-29
    [16]R.Daniel.45 GHz TWT-Recent advancements.The First IEEE International Vacuum Electronics Conference, 2000, 33
    [17]程兆华,祝大军,刘盛纲.太赫兹探测技术的研究进展.电子测量与仪器学报,2005,19(4) : 1-5
    [18]B.Ferguson,张希成.太赫兹科学与技术研究回顾.物理,2003, 32(5): 286-293
    [19]曹俊诚.太赫兹辐射源与探测器研究进展.功能材料与器件学报,2003, 9(2):111-117
    [20]王少宏,许景,周江力,等.THZ技术的应用及展望.物理,2001, 30(10):612-615
    [21]吕振国,吴起,张希成.THZ电磁场的新型电光探测技术及应用.物理,1997,26(1): 51-54
    [22]J.Faist, F.Capasso, D.Sivco, et al.Quantum Cascade Laser.Science, 1994, 264(4)553-556
    [23]牛新建.高功率微波传输线及模式变换研究:[博士学位论文].成都:电子科技大学,2003
    [24]R.Huffer.Beam and Wave Electronics in Microwave Tubes.New York:VanNostrand, 1960
    [25]L.Ives, C.Kory, M.Read, et al.MEMS-Based TWT Development.ⅣEC 2003,2003, 64-65
    [26]刘顺康,周彩玉,包正强.折叠波导慢波电路的传输特性.真空电子技术,2002, 39(4): 39-43
    [27]H.Ha, S.Jung, G.Park.Theoretical study for folded waveguide traveling wave tube.International Journal of Infrared and Millimeter Waves, 1998, 19(9):1229-1245
    [28]刘顺康,周彩玉,包正强.新型毫米波大功率器件—折叠波导行波管.电子器件,2001, 24(2) : 158-160
    [29]殷海荣.光子晶体行波管研究:[博士学位论文].成都:电子科技大学,2007
    [30]刘盛纲,李宏福,王文祥,等.微波电子学导论.北京:国防工业出版社,1985,97-116
    [31]L.M.Field.Some Slow-Wave Structure for TWT.Proc.IRE, 1949, 37(1): 34-40
    [32]王文祥,余国芬,宫玉彬.行波管慢波系统的新进展—全金属慢波结构.真空电子技术,1995, 5: 30-37
    [33]郭开周.行波管研制技术.北京:电子工业出版社,2008, 75-85
    [34]P.K.Tien, L.R.Walker, V.M.Wolontis.A Large Signal Theory of Traveling-Wave Amplifiers.Proceedings of IRE, 1955, 43(3): 260-277
    [35]J.E.Rowe.A Large-Signal Analysis of the Traveling-Wave Amplifier: Theory and General Results.IRE Tran.Elec.Devi..1955.3(1):39-56
    [36]J.G.Meeker, J.E.Rowe.Phase Focusing in Linear-Beam Devices.IRE Tran.Elec.Devi., 1962, 9(3): 257-266
    [37]J.E.Rowe, C.A.Brackett.Velocity Tapering in Microwave Amplifiers.IEEE Tran.Elec.Devi., 12(8): 441-447
    [38]L.Schachter, J.A.Nation.Analytical method for studying a quasiperiodic disk loaded waveguide.Appl.Phys.Lett., 1993, 63(17): 2441-2443
    [39]L.Schachter.High-efficiency beam-wave interaction in quasiperiodic structures.Phys.Revi.E, 1993, 52(2): 2037-2044
    [40]L.Schachter, J.A.Nation.Propagation of Electromagnetic and Space-Charge Waves in Quasi-Periodic Structures.Phys.Plasmas, 1995, 2(3): 889-901
    [41]L.Schachter, J.A.Nation, D.A.Shiffler.Theoretical studies of high-power Cerenkov amplifiers.J.Appl.Phys., 1991, 70(1): 114-124
    [42]L.Schachter, J.A.Nation.Slow-wave amplifiers and oscillators: A unified study.Phys.Revi.A, 1992, 45(12): 8820-8832
    [43]V.Srivastava, R.G.Carter, B.Ravinder, et al.Design of Helix Slow-Wave Structures for High Efficiency TWTs.IEEE Tran.Elec.Devi., 2000, 47(12):2438-2443
    [44]S.S.Jung, A.V.Soukhov, Baofu Jia, et al.Positive Phase-Velocity-Tapering of Broadband Helix TWTs for Efficiency Enhancement.Applied Physics Letters,2002, 80(16): 3000-3002
    [45]T.K.Ghost, A.J.Challis, A.Jacob, et al.Improvements in Performance of Broadband Helix Traveling-Wave Tubes.IEEE Tran.Electron Devices, 2008,55(2): 668-673
    [46]V.A.Solntsev.Planar Spiral Systems with Waves of Constant Radial Phase Velocity.Journal of Communication Technology and Electronics, 1994, 39(8):42-48
    [47]V.A.Solntsev.Pseudoperiodical Waveguides with Selection of Spatial Harmonics and Modes.Journal of Communication Technology and Electronics, 1998, 43(11):1285-1290
    [48]V.A.Solntsev.Pseudoperiodical Slow-Wave Structures for High-Power Broadband TWT.AIP Conference Proceedings, 2003, 691:291-299
    [49]陆钟祚.行波管.上海:上海科学技术出版社,1962, 204-263
    [50]V.A.Solntsev, D.Y.Nikonov.Pseudoperiodic Folded Waveguide for Broadband Unimode TWT.2003 4th IEEE International Conference on Vacuum Electronics,2003, 153-154
    [51]V.A.Solntsev.Mode Selection in Pseudoperiodical Waveguides and Slow-Wave Structures.Proc.SPIE Int.Soc.Opt.Eng., 1994, 2250: 399
    [52]G.Dohler, D.Gagne, D.Gallagher, et al.Serpentine Waveguide TWT.IEDM 87,1987, 485-488
    [53]A.K.Ganguly, J.J.Choi, C.M.Armstrong.Linear Theory of Slow Wave Cyclotron Interaction in Double-Ridged Folded Rectangular Waveguide.IEEE Tran.Elec.Devi., 1995, 42(2): 348-354
    [54]薛东海.曲折槽波导新型慢波结构的高频特性研究:[硕士学位论文].成都:电子科技大学,2006
    [55]S.Han, K.Jang, J.So, et al.Low-Voltage Operation of Ka-Band Folded Waveguide Traveling-Wave Tube.IEEE Tran.Plas.Scie., 2004, 32(1): 60-66
    [56]G.L.Chen, T.L.Owens, J.H.Whealton.Theoretical Study of the Folded Waveguide.IEEE Tran.Plas.Scie., 1988, 16(2): 305-3 11
    [57]Y.H.Na, S.W.Chung, J.J.Choi.Analysis of a Broadband Q Band Folded Waveguide Traveling-Wave Tube.IEEE Tran.Plas.Scie., 2002, 30(3):1017-1023
    [58]J.H.Booske, M.C.Converse, C.L.Kory, et al.Accurate Parametric Modeling of Folded Waveguide Circuits for Millimeter-Wave Traveling Wave Tubes.IEEE Tran Elec.Devi., 2005, 52(5):685-694
    [59]廖承恩.微波技术基础.西安:西安电子科技大学出版社,1994, 16-104
    [60]顾继慧.微波技术.北京:科学出版社,2004, 7-183
    [61]N.Marcuvitz.Waveguide handbook.London: P.Peregrinus on behalf of the Institution of Electrical Engineers, 1986, 312-335
    [62]张可潜,李德杰.微波与光电子学中的电磁理论.北京:电子工业出版社,2001,382-460
    [63]吴鸿适.微波电子学原理.北京:电子工业出版社,1987, 58-91
    [64]电子科技大学应用数学系.线性代数与空间解析几何.北京:高等教育出版社,2000, 111-153
    [65]南京工学院数学教研组.积分变换.北京:高等教育出版社,1989, 3-45
    [66]吕乃光.傅里叶光学.北京:机械工业出版社,2006, 4-43
    [67]W.K.Linvill, R.E.Scott, E.A.Guillemin.Evaluation of Fourier Transforms.IRE Tran.Circ.Theo., 2(3): 1955, 243-250
    [68]吴伯瑜,张克潜.微波电子学.北京:电子工业出版社,1986, 108-193
    [69]张兆镗.微波管高频系统的测量.北京:国防工业出版社,1982, 185-199
    [70]宫玉彬.新型大功率行波管的研究:[博士学位论文].成都:电子科技大学,1998
    [71]J.E.罗埃.电子与波的非线性互作用现象(,张静波,刘国政,黄妙珠).北京:科学出版社,1979, 175-511

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700