可伸缩视频编码与基于P2P视频传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着互联网和视频编码技术的发展,网络视频应用越来越影响人们的生活方式。例如,视频会议、视频点播(Video-on-Demand, VoD)、视频监控等应用。然而要在互联网上传输视频数据,对视频编码算法,网络传输技术等方面又提出了诸多挑战。其一,由于网络自身的异构性和服务质量(Quality-of-Service, QoS)的不确定性,使得带宽波动和误码、丢包等现象经常发生;其二,由于不同的视频应用对视频传输的质量、时延、可交互性等要求也不同,所以要求传输的视频码流在服务质量QoS方面具有灵活的可适应性;其三,不同的客户端具有不同的带宽接入能力和视频解码播放能力,这就要求传输的视频码流具有相应的自适应结构以方便客户端的数据接收和解码;其四,在视频数据传输过程中,需要根据当前网络健康状况和应用服务的特定性要求,选择最方便快捷的数据传输技术,以保证视频传输的实时性和可靠性。
     所有上述问题的核心在于要求视频编码和网络传输能结合在一起,并在一定网络条件下最大限度的满足客户端多种多样的应用需求。最新的以H.264/AVC(Advanced Video Coding)为基础的可伸缩性视频编码标准(Scalable Video Coding, SVC)和基于点对点(Peer-to-Peer, P2P)技术的视频传输机制就是这样的两项非常有希望的技术。本文以网络视频应用系统为研究框架,同时从系统中的视频编码模块和视频传输模块入手,较深入地展开两方面研究:1)支持空域可伸缩性的视频编码相关算法,为降低层间上采样滤波运算量,研究其中的层间上采样滤波方案,为进一步拓展层间预测技术,研究适用于增强层上的扩展帧内预测算法;2)基于P2P技术的视频流传输算法,针对当前在非对称速率信道上进行P2P视频传输时所存在的实际问题,研究在多服务节点、单请求节点的传输模式下基于P2P的视频流快速传输算法。具体的研究工作和内容如下:
     从网络视频应用系统的角度出发,对系统组成结构作了功能模块划分。详细阐述了系统中关于视频编码和视频传输模块的理论基础,包括传统的视频编码技术、可伸缩视频编码技术、SVC标准中的关键技术以及P2P视频传输网络、协议和性能参数。
     研究了空间可伸缩视频编码的上采样滤波方案。在总结当前图象插值算法研究现状的基础上,提出了一种简单高效的区别图象分量的上采样滤波方案。该方案结合人眼视觉系统的基本特性,综合考虑采样精度和滤波运算量两方面因素,设计了三种不同复杂度的上采样滤波器,分别用于图象中不同分量的上采样滤波。通过对所有测试图象序列的实验结果表明,该方案均能够在保持良好的编码性能基本不变的前提下,大大降低滤波运算量。
     研究了空间可伸缩视频编码的帧内预测编码算法。在总结当前帧内预测算法研究现状的基础上,结合可伸缩性视频编码标准SVC中的层间预测原理,提出了一种适用于空间增强层的扩展帧内预测算法。新算法以H.264/AVC中的帧内预测算法为基础加以扩展,自适应的在本层邻块数据和基本层对应块解码重构数据之间选择最佳的数据组合作为预测数据源,用来预测编码当前宏块。特别是在本层邻块数据无法获取的情况下,利用基本层解码重构数据作为扩展预测源,使得帧内预测的预测精度明显提高。测试实验结果表明,该算法能提高编码性能,同时没有额外增加编码的计算复杂度。
     研究了基于P2P的视频流数据传输算法。在总结当前基于P2P的视频传输网络研究现状的基础上,分析了P2P视频传输技术和非对称速率信道的各自特点,建立了一个传输模型,用于描述服务节点个数、上传速率与节点下载速率之间的关系。然后针对当前模型中下行链路带宽利用率低下这一问题,提出了一种基于P2P的多点视频流快速传输算法。该算法将多个服务节点的视频数据经过组合排序后并行上传到请求节点,从而加快下载速率,提高下行链路的带宽利用率。仿真实验结果表明,该算法能够提高网络带宽利用率,同时节省视频流数据传输时间。
     本文的研究工作同时覆盖了视频编码和视频传输领域中的相关技术内容,具有一定的理论研究意义和实际应用价值。
With the development of both Internet and video coding techniques, video applications over Internet have transformed our lives through the way we communicate, such as video conference, video on demand (VoD), video monitoring service and so on. On the other hand, it will face some new challenges on video compression and network transmission over Internet. Firstly, the fluctuatation of bandwidth, packet loss and code error happen frequently due to heterogeneous networks and uncertain quality of service (QoS). Secondly, video compression for streaming should be adaptive on QoS to satisfy people's different requirements on quality, delay and interaction. Thirdly, video compression should support different decoder capacity and different requirements of play back functionality; it is because different clients have various network access capacity and video decoding capacity. Finally, according to the current status of network healthy and special requirement of application service, the best transmission mode should be chosen to guarantee the requirements of delay and reliability during the video data transmission.
     All these factors require the cooperation of video compression and network transmission to satisfy different needs of streaming applications. The newest scalable video coding (SVC) scheme based on H.264/AVC and the P2P-based video transmission techniques are most two promising ones. In this thesis, we investigate some new algorithms of these two techniques: 1) spatially scalable video coding algorithms, in order to improve prediction precision, investigate the upsampling filter design, in order to extend the inter layer prediction technique, study the intra coding method for spatial enhancement layer. 2) The P2P-based video transmission scheme. In order to handle the problem of P2P video transmission in the asymmetrical speed channel, study the fast video transmission algorithm in the case of multiple service nodes to single request node. The main contributions of this thesis are as follows:
     First, the basic theoretical knowledge of video coding and video transmission is deeply introduced and described, which involves traditional video coding, scalable video coding techniques and video transmission networks, protocols and performance parameters.
     Second, at the aspect of spatially scalable video coding, a simple and efficient image component adaptive upsampling filter scheme in SVC is proposed. In order to increase coding efficiency of SVC, proposed scheme utilizes the basic characteristic of human vision system and differentiates image components. Considering both computational complexity and interpolation precision, it assigns the most suitable upsampling filters for interpolating different components. Experimental results of all testing video sequences show that proposed scheme causes negligible decrease on coding performance and reduces a lot of computational complexity.
     Third, at the aspect of inter layer prediction technique in SVC, an efficient enhancement layer scalable intra coding algorithm for spatial scalability in SVC is proposed. According to the coordinate attribute of the macroblock to be coded, proposed algorithm makes use of both enhancement layer data and base layer reconstructed data, and chooses the best data combination for intra prediction. Especially, at the case of that the enhancement layer data is not available, base layer reconstructed data is used as predictor instead for intra prediction, which extends the implementation of intra coding under this special situation. Experimental results show that some visible improvement of coding performance is achieved with almost no changes on computational complexity.
     Finally, at the aspect of bidirectional speed mismatch faced by video transmission in the asymmetrical network environment, a point to multi-point based dummy symmetrical speed video transmission algorithm is proposed. It groups up the video data packets from several source nodes and simultaneously sends them to the destination node, which makes the bidirectional speeds match approximately. Simulation results show that proposed algorithm can increase the utilization ratio of network bandwidth and also reduce the transmission past time of video data packet.
     The research work involves the techniques in both video coding and transmission domains; therefore, it has important theoretic and practical significances.
引文
[1]中国互联网络信息中心.第十九次中国互联网发展状况统计报告. http://www.cnnic.net.cn, 2007.
    [2] C. Krasic, A Framework for Quality-adaptive Media Streaming: Encode once-Stream Anywhere. PHD thesis, UMI 3119036, Feb. 2004.
    [3] M. T. Sun and A. Reibman, Compressed Video over Networks, Marcel Dekker, New York, 2001.
    [4] D. Wu, Y. W. Thomas, and Y. Q. Zhang, Transporting real-time video over the Internet: Challenges and Approaches, In Proceedings of IEEE, Dec. 2000, 88(12): 1855-1875
    [5] D. Wu, Y. W. Thomas, and Y. Q. Zhang, Scalable video coding and transport over broadband wireless networks, In Proceedings of IEEE, March 2001, 89(1): 657-664
    [6] J. Lu, Signal processing for Internet video streaming: a review. In Proceedings of SPIE, Image and Video Communications and Processing’00, Jan. 2000, 1-14
    [7] V. Paxson, End-to-end Internet packet dynamics, IEEE/ACM Trans. Networking, June 1999, 17(3): 277-292
    [8] J. G. Apostolopoulos, W. T. Tan, and S. J. Wee, Video streaming: concepts, algorithms, and systems. Technical report HPL-2002-260, HP Laboratories, 2002.
    [9] R. Braden, D. Clark, and S. Shenker, Integrated services in the Internet architecture: an overview, IETF RFC 1633, June 1994.
    [10] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An architecture for differentiated services, IETF RFC 2475, Dec. 1998.
    [11] D. Wu, Y. Hou, W. Zhu, Y. Q. Zhang, and J. Peha, Streaming video over the Internet: Approaches and Directions, IEEE Trans. on Circuits and Systems for Video Technology, March 2001, 79-95
    [12] J. Ohm, Advances in scalable video coding, In Proceedings of IEEE, Jan. 2005, 93(1): 42-56
    [13] Weiping Li, Overview of fine granularity scalability in MPEG-4 video standard, IEEE Trans. on Circuits and Systems for Video Technology, March 2001.
    [14] J. D. Salehi, Z. L. Zhang, J. Kurose, and D. Towsley, Supporting stored video:Reducing rate variability and end-to-end resource requirements through optimal smoothing, IEEE/ACM Trans. Networking, Aug. 1998.
    [15] G. Conklin, G. Greenbaum, K. Lillevold, A. Lippman, and Y. Reznik, Video coding for streaming media delivery on the Internet, IEEE Trans. Circuits and Systems for Video Technology, March 2001.
    [16] M. Hefeeda, B. Bhargava, D. Yau, A Cost-Effective Architecture for On-Demand Media Streaming, Journal of Computer Networks, May, 2003, 2(4): 86-97
    [17] G. J. Conklin, G. S. Greenbaum, K. O. Lillevold, A. F. Lippman, Y. A. Reznik. Video coding for streaming media delivery on the Internet. IEEE Trans. Circuits Syst. Video Technol., 2001, 11(3): 269~281
    [18] J. Apostolopoulos, T. Wong, W. Tan, S. Wee. On multiple description streaming with content delivery networks. In: Proceedings of. IEEE INFOCOM’02, New York, USA June 2002
    [19] R. Rejaie, S. Stafford. A framework for architecting peer-to-peer receiver-driven overlays. In Proceedings of ACM NOSSDAV. 2004, 42-47
    [20] S. Banerjee, S. Lee, B. Bhattacharjee, A. Srinivasan. Resilient multicast using overlays. In Proceedings of ACM SIGMETRICS’03, San Diego, CA, USA, Jun. 2003
    [21] Joint Video Team of ITU-T VCEG and ISO/IEC MPEG, Scalable Video Coding–Working Draft 2, Joint Video Team, Document JVT-O202-AnnexS, Apr. 2005.
    [22] H. Deshpande, M. Bawa, H. Garcia-Molina. Streaming live media over a Peer-to-Peer network. Database Group Technical Report, Stanford University, Aug. 2001
    [23]余丹娴.内容分发网络CDN的发展与应用.中山大学研究生学刊(自然科学、医学版), 2006, 26(1), 96-102
    [24] ITU-T Recommendation H.263. Video Voding for Low Bit Rate Communication. 1996
    [25] ITU-T Recommendation H.261. Video CODEC for Audio-Visual Services at 64kbit/s. 1993
    [26] Draft ITU-T Recommmendation H.263:“Video coding for low bitrate communication”, 1998
    [27] ISO/IEC. IS 13818-1: Information technology-generic coding of moving pictures and associated audio information: System, 1995
    [28] ISO/IEC 13818-2. Information technology - Generic Coding of Moving Pictures and Associated Audio Part 2: Video. 1995
    [29] ISO/IEC. IS 11172-1: Information technology-coding of moving pictures and associated audio for digita storage media at up to about 1.5mbit/s: System, 1993
    [30] ISO/IEC. IS 11172-2: Information technology-coding of moving pictures and associated audio for digita storage media at up to about 1.5mbit/s: Video, 1993
    [31] ISO/IEC FDIS 14496-1, Information Technology-Generic Coding of Audio-Visual Objects, Part 1: System, 1998
    [32] ISO/IEC FDIS 14496-2. Information Technology-Generic Coding of Audio-Visual Objects, Part 2: Visual. 1998
    [33] ISO/IEC JTC1/SC29/WG11, MPEG-4 video verification mode version 13.3, ISO/IEC JTC1/SC29/WG11, MPEG99/4960, Melbourne: 1999
    [34] ISO/IEC JTC1/SC29/WG11, MPEG-4 applications, ISO/IEC JTC1/SC29/WG11, N2724, Seoul: 1999
    [35] ISO/IEC JTC1/SC29/WG11, MPEG-4 requirements, version 13, ISO/IEC JTC1/SC29/WG11, N3154, Maui: 1999
    [36] Koenen R. MPEG-4 overview, ISO/IEC JTC1/SC29/WG11, version 18, N4030, Singapore, March 2001
    [37]钟玉琢,王琪,贺玉文.基于对象的多媒体数据压缩编码国际标准-MPEG-4及其校验模型.北京:科学出版社, 2000
    [38] G. Sullivan, K. Hibi. Draft call for proposals for H.26L vedio coding, Geneva:1998
    [39] ITU-T Recommendation. H.264-ISO/IEC 14496-10 (AVC): Advanced Video Coding for Generic Audiovisual Services. 2003
    [40]数字音视频编码技术标准工作组, http://www.avs.org.cn
    [41] GB/T 20090.2-2006,信息技术先进音视频编码第2部分:视频, 2006
    [42] M. Van der Schaar, H. Radha, A hybrid temporal SNR fine granular scalability for internet video. IEEE Trans. On Circuits, System and Video for Video Technology, 2001, 318-331
    [43] H.Schwarz, T.Hinz, H.kirchhoffer and D.Marpe, Tehnical description of the HHI proposal for SVC CE1, ISO/ IEC JTC1/WG11, Doc.m11244, Spain, Oct. 2004.
    [44] J.Reichel, H.Schwarz and M.Wien, Scalable Video Coding–Joint Draft 1, Joint Video Team (JVT), Doc. JVT-N020, Hong Kong, Jan. 2005.
    [45] B. Furht, R. Westwater, J. Ice. Multimedia broadcasting over the Internet: Part II– Video compression. IEEE multimedia, 1999, 6(1): 85-89
    [46] A. Vetro, C. Christopoulos, H.Sun. Video transcoding architectures and techniques: an overview. IEEE Signal Processing Mag., 2003, 20(2): 18-29
    [47] C. Krasic. A framework for quality-adaptive media streaming: encode once– stream anywhere. Ph.D. Dissertation, Oregon Health & Science University, Feb. 2004.
    [48] R. Rejaie and A. Reibman, Design issues for layered quality-adaptive internet video playback, In Proceedings of the Thyrrhenian International Workshop on Digital Communications: Evolutionary Trends of the Internet, Lecture Notes In Computer Science, 2001, 433-451
    [49] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Prentice Hall, Englewood Cliffs, NJ, 1995.
    [50] A. Lippman, Video coding for multiple target audiences, In Proceedings of. SPIE, Visual Communications and Image Processing’99, Jan. 1999, 780-782
    [51] S. Y. Cheung, M. H. Ammar, and X. Li, On the use of destination set grouping to improve fairness in multicast video distribution, In Proceedings of IEEE Infocom’96, San Fransisco, CA, Apr. 1996, 553-560
    [52] http://www.realnetworks.com
    [53] S. Wee, J. Apostolopoulos, and N. Feamster, Field-to-frame transcoding with temporal and spatial downsampling, In Proceedings of IEEE International Conference on Image Processing, Oct. 1999, 822-825
    [54] S. Tamer and G. Mohammed, Heterogeneous video transcoding to lower spatio-temporal resolutions and different encoding formats, IEEE Transaction on Multimedia, June 2000, 2(2): 101-110
    [55] J. C. Bolot and T. Turletti, Experience with rate control mechanisms for packet video in the Internet, Computer Communication Review, Jan. 1998, 407-419
    [56] J. Apostolopoulos, Reliable video communication over lossy packet networks using multiple state encoding and path diversity, In Proceedings of SPIE Visual Communications and Image Processing’01, Jan. 2001, 1632-1635
    [57] J. R. Ohm, Multimedia Communication Technology. New York: Springer-Verlag, 2004
    [58] R. Schafer, H. Schwarz, D. Marpe, T. Schierl, and T. Wiegand, MCTF and scalability extension of H.264/AVC and its application to video transmission, storage, and surveillance, In Proceedings of SPIE Visual Communications and Image Processing’05, July. 2005, 449-452
    [59] B. Girod, J. Chakareski, M. Kalman, Y. J. Liang, E. Setton, R. Zhang. Advances in network-adaptive video streaming. In: Proceedings of. Tyrrhenian International Workshop on Digital Communications (IWDC 2002), Capri, Italy, Sept. 2002, 1-8
    [60] R. Braden, D. Clark, S. Shenker. Integrated services in the Internet architecture: An overview. RFC 1633, July 1994
    [61] S. Shenker, C. Partridge, R. Guerin. Specification of guaranteed quality of service. RFC 2212, Sep. 1997
    [62] D. Clark, S. Shenker, L. Zhang. Supporting real-time applications in an integrated services packet network: architecture and mechanisms. In: Proc. ACM SIGCOMM’92, Baltimore, MD, USA, Aug. 1992, 151-154
    [63] L. Zhang, S. Deering, D. Estrin, S. Shenker, D. Zappala. RSVP: A new resource reservation protocol. IEEE Network Mag., 1993, 7(5): 8-18
    [64] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss. Architecture for differentiated services. RFC 2475, Dec. 1998
    [65] K. Nichols, V. Jacobson, L. Zhang, A two-bit differentiated services architecture for the Internet. RFC 2638, July 1999
    [66] Y. Cui, B. Li, K. Nahrstedt, oStream: asynchronous streaming multicast in application-layer overlay networks, IEEE J. Selected Areas Commun. 2004, 22(1): 91-106
    [67] M. Heffeeda, A. Habib, B. Botev, D. Xu, B. Bhargava. PROMISE: Peer-to-Peer media streaming using CollectCast. In Proc. ACM Multimedia (MM’03), Berkeley, CA, Nov. 2003, 77-81
    [68] http://www.napster.com. Napster Website.
    [69] http://www.gnutella.com. Gnutella Website.
    [70] http://www.bittorrent.com. Bittorrent Website.
    [71] S. Banerjee, B. Bhattacharjee, C. Kommareddy. Scalable Application LayerMulticast. In Proceedings of ACM SIGCOMM. Pittsburgh, Pennsylvania, Aug. 2002, 373-376
    [72] D. A. Tran, K. A. Hua, S. Sheu. ZIGZAG: An efficient peer-to-peer scheme for media streaming. In Proceedings of IEEE INFOCOM. San Francisco, CA, USA, March 2003, 914-917
    [73] V. N. Padmanabhan, H. J. Wang, P. A. Chou, K. Sripanidkulchai. Distributing Streaming Media Content Using Cooperative Networking. In Proceedings of International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV). Miami Beach, FL, USA, May 2002, 289-293
    [74] V. N. Padmanabhan, H. J. Wang, P. A. Chou. Resilient peer-to-peer streaming. In Proceedings of IEEE International Conference on Network Protocols (ICNP). Atlanta, GA, USA, November 2003, 1044-1047
    [75] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron, A. Singh. SplitStream: High bandwidth multicast in a cooperative environment. In Proceedings of 19th ACM Symposium on Operating Systems Principles (SOSP). Lake Bolton, New York, October 2003, 886-889
    [76] V. N. Padmanabhan, K. Sripanidkulchai. The case for cooperative networking. In Proceedings of 1st International Workshop on Peer-to-Peer Systems (IPTPS). Cambridge, MA, USA, March 2002, 1311-1314
    [77] S. Viswanathan. Pyramid broadcasting for video on demand service. In Proceedings of IEEE Multimedia Computing and Networking Conference, San Jose, CA, 1995, 66-77.
    [78] K. A. Hua, et al. Skyscraper broadcasting: A new broadcasting scheme for metropolitan VoD systems. In Proceedings of ACM SIGCOMM’97, Cannes, France, 1997, 89-100.
    [79] A. Dan, et al. Scheduling policies for an on-demand video server with batching. In Proceedings of ACM Multimedia, San Francisco, California, 1994, 15-23
    [80] K. A. Hua, et al., Patching: A Multicast technique for true video on-demand service. In Proceedings of ACM Multimedia, Britstol, UK, 1998, 191-200
    [81] Y. Cai, K. A. Hua. Sharing multicast videos using patching streams. Multimedia Tools and Application Journal, 2003, 21(2): 125-146
    [82] P. White, et al. Optimized batch patching with classes of service. ACM SIGCOMMComputer Communication Review, 2000, 30(4), 21-28
    [83] D. Tran, K. Hua, T. Do, A peer-to-peer architecture for media streaming, IEEE J. Selected Areas Commun. 2004, 22(1): 121-133.
    [84] X. Zhang, J. Liu, B. Li, T. P. Yum. CoolStreaming/DONet: A Data-driven Overlay Network for Peer-to-Peer Live Media Streaming. In: Proceedings of IEEE INFOCOM’05, Miami, FL, USA, March 2005, 614-618
    [85]罗建光,张萌,赵黎,杨士强.基于P2P网络的大规模视频直播系统.软件学报. 2007, 18(2): 391-399
    [86]杨传栋,余镇危,王行刚.结合CDN与P2P技术的混合流媒体系统研究.计算机应用. 2005, 25(9): 2204-2207
    [87] MMUSIC WG. RFC2326: Real Time Streaming Protocol (RTSP). IETF, 2003
    [88] Network Working Group. RFC2327: Session Description Protocol (SDP). IETF, 1998
    [89] Audio-Video Transport Working Group. RFC1889: A Transport Protocol for Real-Time Application (RTP). IETF, 1996.
    [90] R.Braden, L.Zhang, S.Berson, S.Herzog, and S.Jamin. Resource Reservation Protocol (RSVP)– Version 1 Functional Specification. IETF, 1997
    [91] A. J. Secker, Motion-apaptive transforms for highly scalable video compression, PHD thesis, School of Electrical Engineering and Telecommunications, The University of New South Wales, 2004.
    [92] N. Ahmed, T. Natarajan, and R. Rao, Discrete cosine transform, IEEE Transactions on Computers, Jan. 1974. 90–97
    [93] Y. Meyer, Orthonormal wavelets, In Wavelets, Time-Frequency Methods and Phase Space, New York: Springer-Verlag, 1989
    [94] S. Mallat, A theory for multiresolution signal decomposition: The wavelet representation, IEEE Trans. Part. Anal. Machine Intellgence, 1989, 11(7): 674-693
    [95] R. M. Gray and D. L. Neuhoff, Quantization, IEEE Trans. Inform. Theory, Oct. 1998, 44(6): 2325-2383
    [96] A. Gersho, Asymptotically optimal block quantization, IEEE Trans. Inform. Theory, July 1979. 373–380
    [97] P. Elias, Bounds on performance of optimum quantizers, IEEE Trans. Inform. Theory, Mar. 1970, 172–184
    [98] N. Farvardin and J. W. Modestino, Optimum quantizer performance for a class of non-gaussian memoryless sources, IEEE Trans. Inform. Theory, May 1984, 30(3): 485-497
    [99] C. E. Shannon, A mathematical theory of communication, Claude Elwood Shannon: Collected Papers, N. J. A. Sloane and A. D. Wyner, Eds. Piscataway, IEEE Press, , 1993. 5-83
    [100] Shannon. A mathematical theory of communication. Bell system technical Journal, 1948, 27(3): 379-423.
    [101] D. A. Huffman, A method for the construction of minimum redundancy codes, Proc. IRE, 1952, 1098-1101
    [102] J. Rissanen and G. Langdon, Arithmetic coding, IBM J. Res. Develop. Mar. 1979. 149-162
    [103] G. Sullivan, T. Wiegand, Video Compression—From Concepts to the H.264/AVC Standard, Proceedings of the IEEE, Jan 2005, 1221-1224
    [104] D. Marpe, H. Schwarz, and T. Wiegand, Context-adaptive binary arithmetic coding in the H.264/AVC video compression standard, IEEE Trans. Circuits Syst. Video Technol., July 2003, 620–636
    [105] .B. Meng, Efficient Intra-Prediction Algorithm in H.264, In Proc. IEEE International Conference on Image Processing (ICIP), 2003. 216-219
    [106] T. Wiegand, X. Zhang, and B. Girod, Long-Term Memory Motion-Compensated Prediction, IEEE Transactions on Circuits and Systems for Video Technology, Feb. 1999, 9(1): 70-84
    [107] Joint Video Team of ITU-T and ISO/IEC: Draft Text of H.264/AVC Fidelity Range Extensions Amendment, Doc. JVT-L047, Sept. 2004
    [108] T. Berger, Rate Distortion Theory. Englewood Cliffs, Prentice- Hall, 1971.
    [109]周树民,黄晁,李锦涛,宋磊,混合视频编码控制中一种新的自适应Lagrange乘数选取模型,计算机研究与发展,2005, 11(2): 2558-2564
    [110]柳薇,马争鸣.网络视频编码技术.通信学报., 2005, 26 (9): 85-92
    [111] P. Amon, K. Illgner, J. Pandel, SNR scalable layered video coding, presented at the Int. Packet Video Workshop, Pittsburgh, PA, 2002. Available: http://amp.ece.cmu.edu/packetvideo2002/ papers/59–ethpsnsons.pdf.
    [112] F. Wu, S. Li, and Y.-Q. Zhang, DCT-prediction based progressive fine granularityscalable coding, In Proc. IEEE Int. Conf. Image Processing, 2000, 1903–1906.
    [113] B. Girod, M. Kalman, Y.J. Liang, and R. Zhang, Advances in video channel-adaptive streaming, in Proc. ICIP 2002, Rochester, NY, Sept. 2002. 365-368
    [114] C. Mayer, H. Crysandt, and J.-R. Ohm, Bit plane quantization for scalable video coding, Proc. SPIE, Visual Commun. Image Processing, 2002. 1142–1152
    [115] F. Wu, S. Li, and Y.-Q. Zhang. A Framework for Efficient Progressive Fine Granularity Scalable Video Coding. IEEE Trans. Circuits and Systems for Video Technology. 2001, 11(3): 332~344
    [116] X. Y. Sun, F. Wu, S. Li, W. Gao and Y.-Q. Zhang. Macroblock-Based Progressive Fine Granularity Scalable (PFGS) Video Coding with Flexible Temporal-SNR Scalabilities. In Proceedings of. International Conf. Image Processing, Thessalonik, 2001, 1025-1028
    [117] Joint Video Team of ITU-T VCEG and ISO/IEC MPEG. Joint Scalable Video Model (JSVM) 1.0 Reference Encoding Algorithm Description. Document JVT-N6899, 2005
    [118] J.Reichel, H.Schwarz and M.Wien, Joint Scalable Video Model 2.0 Reference Encoding Algorithm Description, ISO/IEC JTC/SC29/WG11/N7084, Busan, Korea, Apr. 2005.
    [119] G. Boisson, E. Francois, D. Thoreau, and C. Guillemot, Motion compensated spatio-temporal context-based arithmetic coding for full scalable video compression, In Proc. Picture Coding Symp., 2003, 71–76.
    [120] Joint Video Team(JVT) of ISO/IEC MPEG & ITUT VCEG,‘Intra-BL prediction considering phase shift, JVT-O023, 15th Meeting: Busan, Korea, April 2005
    [121] H. Schwarz, D. Marpe, and T. Wiegand, Inter-layer Prediction of Motion and Residual Data, ISO/IEC JTC1/SC29/WG11/M11043, USA, July. 2004.
    [122] A. Segall, Up-/Down-sampling for Spatial SVC, Doc. JVT-Q083, 17th Meeting: Nice, France, Oct. 2005
    [123] P. Thbvenaz, T. Blu, M. Unser, Interpolation Revisited, IEEE Trans. Med. Imag., 2000, 19(7): 739-758
    [124]陈芳,邹修明.基于二次曲面拟合的插值算法.计算机应用与软件. 2006, 23(11): 105-107
    [125]郑胜,田金文,柳健.基于向量机的图象插值算法研究.中国图象图形学报. 2005, 10(3): 338-343
    [126]孟晋宇,舒华忠,鲍旭东,李松毅,罗立民.基于形状的二维灰度图象插值.中国图象图形学报. 2003, 8(3): 311-316
    [127]谢美华,王正明.基于图象梯度信息的插值方法.中国图象图形学报. 2005, 10(7): 856-861
    [128]付树军,阮秋琦,穆成坡,王文洽.基于双向耦合扩散的自适应图象插值.通信学报. 2007, 28(2): 29-32
    [129]朱静芬,邓小炎.解非线性偏微分方程的插值小波算法.浙江大学学报(理学版). 2007, 34(1): 28-32
    [130] S. Battiato, G. Gallo, and F. Stanco, Smart interpolation by anisotropic diffusion. In Proceedings of 12th International Conference on Image Analysis and Processing, Sept., 2003, 572-577.
    [131] M.M. Hadhoud, M.I. Dessouky, et al, Adaptive image interpolation based on local activity levels. In Proceedings of the 20th National Radio Science Conference, March, 2003, 44-48.
    [132]冈萨雷斯.数字图象处理(第二版).北京:电子工业出版社. 2003.
    [133] J.Reichel, H.Schwarz and M.Wien, Joint Scalable Video Model 4.0 Reference Encoding Algorithm Description, ISO/IEC JTC1/SC29/WG11/N7556, Nice, France, Oct.2005.
    [134] S. Bauer, et al., The MPEG-4 multimedia coding standard: Algorithms, architectures and applications, Journal of VLSI Signal Processing. Boston: Kluwer, Oct. 1999, 23(1): 7–26
    [135] T.Wiegand, G.J.Sullivan and A.Luthra, Overview of the H.264/AVC video coding standard, IEEE Trans.on CSV-T, July 2003, 13(7): 560-576
    [136]倪伟,郭宝龙.一种适用于H. 264/ AVC的自适应空域帧内预测算法.计算机学报. 2005, 28(11): 1853-1860
    [137]裴世保,李厚强,俞能海.一种快速的H.264/AVC帧内预测模式选择算法.计算机工程与应用. 2005, 2(10): 71-73
    [138] K. Changsung, H. H. Shih, C. C. Jaykuo. Feature-based intra prediction mode decision for H.264. International Conference on Image Processing (ICIP), 2004. 769-772
    [139] P. Zhang, D.B. Zhao, S.W. Ma, Y. Lu, W. Gao. Multiple Modes Intra-Prediction in Intra Coding. IEEE International Conference on Multimedia and Expo. (ICME), 2004, 419-422.
    [140] E G Richardson, H.264/MPEG-4 Part 10 White Paper: Prediction of Intra Macroblocks. http://www.vcodex.fsnet.co.uk/h264.html
    [141] T. Stockhammer, D. Kontopodis, and T. Wiegand, Rate-distortion optimization for H.26L video coding in packet loss environment, In Proceedings of Packet Video Workshop, Pittsburgh, PY, April 2002.
    [142] Joint Video Team(JVT) of ISO/IEC MPEG & ITU-T VCEG, Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification, JVT-G050, March 2003.
    [143] Y. Guo, K. Suh, J. Kurose, D. Towsley. P2Cast: peer-to-peer patching scheme for VoD service. In Proceedings of 12th World Wide Web Conference (WWWC), Budapest, Hungary, May, 2003, 437-441
    [144] T. T. Do, K. A. Hua, M. Tantaoui. P2VoD: providing fault tolerant video-on-demand streaming in peer-to-peer environment. In Proceedings of IEEE International Conference on Communications (ICC), Paris, France, April, 2003, 1033-1036
    [145] Y. Guo, K. Suh, J. Kurose, D. Towsley. A peer-to-peer on-demand streaming service and its performance evaluation. In Proceedings of IEEE International Conference on Multimedia and Expo. (ICME), Baltimore, MD, July 2003, 791-794
    [146]周宇亮, ADSL线路速率的估算方法.湘潭师范学院学报(自然科学版), 2005, 27(1): 38-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700