稀土—过渡金属配位聚合物的晶体工程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于晶体在基础和应用研究领域的重要性,人们开始采取分子设计手段去探索各种新型晶体材料。晶体工程涉及分子或化学基团在晶体中的行为、晶体的设计、结构和性能的控制以及晶体结构的预测等,是实现从分子到材料的一条重要途径。金属-有机配位聚合物是将晶体工程引入到设计新颖的超分子结构并控制其功能和性质方面最成功的范例。相对于由过渡金属或稀土离子与有机配体构筑的单一金属配位聚合物而言,稀土-过渡异金属配位聚合物的研究还比较滞后。不同化学行为的过渡金属离子和稀土离子在复杂的化学环境中通常表现出弱的选择性,这使得两种不同属性的金属离子与有机配体的竞争反应常常导致产物中仅含有一种金属离子。如何选择和设计合适的构筑单元,并通过特定组装来获得具有预期结构与功能的稀土-过渡异金属配位聚合物成为当今化学和晶体学领域的一个挑战。
     本论文运用晶体工程原理,提出了表面修饰策略、异金属构筑单元维度提升策略和配体导向组装策略,开展了新型稀土-过渡金属配位聚合物的结构、性能以及组装规律的研究。具体工作如下:
     一、选用3-氨基-1,2,4-三氮唑-5-羧酸、3,4-吡啶二羧酸、对苯二甲酸、异烟酸和硝酸为配体,研究了九个过渡金属和稀土配位聚合物。
     (1)以含羧基的有机化合物为桥连配体,合成了两个单一锌配位聚合物、两个Zn-Cu配位聚合物和两个单一稀土配位聚合物。具有三维结构的两个Zn-Cu配位聚合物,一个实现了二维锌-氧层和一维铜-碘链的构筑,另一个实现了Zn-Cu-有机层的构筑。
     (2)以硝酸根为表面修饰配体,构筑了目前最大的二十六核稀土聚集体。并以此为构筑单元,组装了两个超大的四聚体。其中,由二十六核镝和四核镝构筑的四聚体具有慢的磁弛豫行为。
     二、选取异烟酸为桥连配体、含羧基的有机化合物为辅助配体,研究了九个手性或非手性Ln-Ag异金属配位聚合物。
     (1)利用银离子诱导产生的一维无机螺旋链为手性单元,稀土离子和银离子与非手性异烟酸之间的配位键为手性相互作用,构筑了两个手性异金属配位聚合物。
     (2)通过调控桥连配体和辅助配体的种类,得到了七个由一维无机异金属链或稀土-羧酸单元构筑的非手性异金属配位聚合物。研究表明,利用维度提升策略所构筑的含有一维无机异金属链的配位聚合物具有定向组装性和较高热稳定性。
     三、选用具有导向功能的异烟酸为桥连配体、含羧基或磺酸基的有机化合物为辅助配体,以不同构型的铜-碘聚集体和稀土-氧聚集体(或稀土-羧酸聚集体)为构筑单元,研究了二十六个手性或非手性Ln-Cu异金属配位聚合物。
     (1)利用非手性异烟酸的自发拆分合成了一个由四核稀土-氧单元和六核铜-碘单元构筑的具有二重贯穿α-Po拓扑结构的手性配位聚合物。在此基础上,通过组装规律的探索,利用烟酸配体取代反应,合成了由四核稀土-氧和六核铜-碘单元构筑的具有7-连接特征的两个手性配位聚合物,实现了相同手性晶格内金属构筑单元从6-连接到7-连接的转变;利用多核铜-碘单元结构的多样性和立方烷型四核稀土-氧单元热力学上的稳定性,合成了由纳米级十五核铜-碘单元和四核稀土-氧单元构筑的具有12-连接性的两个手性配位聚合物。
     (2)根据软硬酸碱规则,在Ln-CuI-异烟酸体系中引入辅助配体(如醋酸、草酸、乙醇酸、己二酸、邻苯二甲酸和对甲苯磺酸)来修饰稀土构筑单元,拓展了异金属配位聚合物的研究,得到了二十一个其它八种类型的异金属配位聚合物,它们分别是由多核稀土-氧聚集体和一维铜-碘链、一维稀土-氧链和多核铜-碘聚集体、一维稀土-氧链和一维铜-碘链、二维稀土-氧层和一维铜-碘链、多核铜-碘聚集体和一维稀土-羧酸链、一维铜-碘链和不同维度稀土-羧酸单元、二维铜-碘层和不同维度的稀土-羧酸单元、多核异金属聚集体构筑的。
     本论文中,过渡金属离子和稀土离子选择性地与多功能桥连配体或辅助配体中的配位原子键合,从而很好地区分了两种金属离子的化学属性,使得两种金属离子能够形成具有特定结构的构筑单元,进而组装成具有预期特征的异金属配位聚合物。本论文所提出的表面修饰策略、异金属构筑单元维度提升策略、配体导向组装策略以及异金属配位聚合物的组装规律对设计合成结构和功能新颖的金属配合物具有重要的借鉴作用。
A variety of new crystals have been explored through molecular design strategies in view of their significance in the fields of fundamental and applied research. Crystal engineering involves the behavior of molecules or chemical groups in crystals, the crystal design, the control of structures and properties, and the prediction of crystal structures. It is an important approach for the fabrication of functional materials from molecules, with the help of which metal-organic coordination polymers has become a paradigm for the design of new supramolecular structures and the control of their properties. To date, the homometallic transition-metal or lanthanide coordination polymers have been widely studied. In contrast, the analogous chemistry of lanthanide-transition-metal (Ln-M) heterometals remains underdeveloped. The transition-metal ions and lanthanide ions exhibit weak selectivities under complicated coordination conditions, partially leading to homometallic complexes due to the competitive reaction between two different types of metal ions with organic ligands. Therefore, it remains a challenge for the chemists and crystallographers to select and design suitable building units and assemble them into the Ln-M coordination polymer with predictive structure and function.
     Three strategies including surface modification, enhanced dimension of heterometallic building unit, and ligand-directed assembly have been proposed for the study of the structures, properties and assembly principles of novel Ln-M coordination polymers. The detailed contents are listed as following:
     Ⅰ. Nine transition-metal and lanthanide coordination polymers have been studied by using 3-amino-1,2,4-triazole-5-carboxylate, 3,4-pyridinedicarboxylate, 1,4-benzenedicarboxylate, isonicotinate and nitrate as organic ligands.
     a) On the basis of bridging ligands containing carboxylate groups, two homometallic zinc coordination polymers, two Zn-Cu coordination polymers and two homometallic lanthanide coordination polymers have been synthesized. One 3D Zn-Cu coordination polymer is assembled from 2D zinc-oxygen layers and 1D copper-iodine chains, and the other is assembled from Zn-Cu-Ligand layers.
     b) By using nitrate as surface modification ligand, the largest hexacosanuclear lanthanide complex has been rationally synthesized, which, subsequently, has been employed to build up two supra-large tetramers. The tetramer consisting of {Dy_(26)} and {Dy_4} has been found to exhibit the slow relaxation of magnetization.
     Ⅱ. Nine chiral or achiral Ln-Ag coordination polymers have been studied by using isonicotinate as bridging ligand and carboxylate species as auxiliary ligand.
     a) Two homochiral heterometallic coordination polymers have been assembled from 1D inorganic helicates induced by silver ions as chiral units and coordination bonds beween isonicotinate and two different types of metal ions as homochiral interactions.
     b) Seven achiral heterometallic coordination polymers consisting of 1D inorganic heterometallic chains or lanthanide-carboxylate units have been obtained via tuning the bridging ligands and the auxiliary ligands. The results show that the coordination polymers constructed from 1D inorganic heterometallic chains by using enhanced dimension strategy exhibit target assembly characteristic and high thermal stability.
     Ⅲ. Twenty-six chiral and achiral Ln-Cu coordination polymers have been studied with copper-iodine complexes and lanthanide-oxygen complexes (or lanthanide-carboxylate complexes) with different geometries as bulding units, isonicotinates as directed bridging ligands and carboxylate or sulfonate species as auxiliary ligands.
     a) A chiral coordination polymer with two-fold interpenetratingα-Po topology has been constructed from tetranuclear lanthanide-oxygen unit and hexanuclear copper-iodine unit on the basis of the spontaneous resolution of achiral isonicotinate ligand. With the exploration of assembly principles, two seven-connected self-penetrating coordination polymers constructed from tetranuclear lanthanide-oxygen unit and hexanuclear copper-iodine unit have been rationally designed and synthesized, which implements the transformation from six-connected topology to seven-connected topology in one homochiral lattice through the nicotinate substitution. Furthermore, on the basis of the diversity of copper-iodine complexes and the thermodynamic stability of cubane lanthanide-oxygen unit, two 12-connected chiral coordination polymers have been rationally built up from nanoscale pentadecanuclear copper-iodine unit and tetranuclear lanthanide-oxygen unit.
     b) Based on the soft-hard/acid-base principle, various auxiliary ligands, such as acetate, oxalate, glycolate, adipate, 1,2-benzenedicarboxylate and p-toluenesulfonate, have been introduced into the Ln-CuI-Isonicotinate system to modify lanthanide structural motif, and the study on heterometallic coordination polymers has been extended to obtain twenty-one heterometallic polymers belonging to somne other eight types. These polymers are constructed from multinuclear lanthanide-oxygen complexes and 1D copper-iodine chains, 1D lanthanide-oxygen chains and multinuclear copper-iodine complexes, 1D lanthanide-oxygen chains and 1D copper-iodine chains, 2D lanthanide-oxygen layers and 1D copper-iodine chains, multinuclear copper-iodine complexes and 1D lanthanide-carboxylate chains, 1D copper-iodine chains and lanthanide-carboxylate complexes with different dimensions, 2D copper-iodine layers and lanthanide-carboxylate complexes with different dimensions, and multinuclear heterometallic complexes, respectively.
     In this thesis, transition-metal ions and lanthanide ions selectively bond to multifunctional organic bridging ligands or auxiliary ligands through the donor atoms, thus the chemical properties of two different types of metal ions are effectively identified, from which the building units with specific structures can be formed, leading to the formation of heterometallic coordination polymers with predictive features. The current surface modification strategy, enhanced dimension of heterometallic building unit strategy, ligand-directed assembly strategy, and heterometallic assembly principles can be heuristic in term of the design and synthesis of metal coordination complexes with novel topological architectures and functions.
引文
[1]薛冬峰.晶体的化学键和非线性光学效应:(博士学位论文).长春:中国科学院长春应用化学研究所,1998.
    [2]薛冬峰.晶体材料的设计与模拟.人工晶体学报,2007,36(4):743-749.
    [3]许东利,薛冬峰.结晶生长的化学键合理论.人工晶体学报,2006,35(3):598-650.
    [4]周公度,郭可信.晶体与准晶的衍射.北京:北京大学出版社,1999.
    [5]周公度.晶体结构的周期性和对称性.北京:高等教育出版社,1992.
    [6]Braga D,Grepioni F,Desiraju G R.Crystal Engineering and Organometallic Architecture.Chem.Rev.,1998,98(4):1375-1405.
    [7]Desiraju G R.Crystal Engineering:A Holistic View.Angew.Chem.Int.Ed.,2007,46(44):8342-8456.
    [8]Schmidt G J M.Photodimerization in the Solid State.Pure Appl.Chem.,1971,27:647-648.
    [9]Desiraju G R.Crystal Engineering:The Design of Organic Solids.Amsterdam,New York:Elsevier,1989.
    [10]Etter M C.Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds.Acc.Chem.Res.,1990,23(4):120.
    [11]Seddon K R,Zaworotko M J.Crystal Engineering:The Design and Application of Functional Solids,Dordrecht:Kluwer,1999
    [12]Moulton B,Zoworotko M J.From Molecules to Crystal Engineering:Supramolecular Isomerism and Polymorphism in Network Solids.Chem.Rev.,2001,101(6):1629-1658.
    [13]Braga D,Grepioni F,Orpen A G.Crystal Engineering:From Molecules and Crystals to Materials.Dordrecht:Kluwer,1999.
    [14]Hollingsworth M D.Crystal Engineering:From Structure to Function.Science,2002,295:2410-2413.
    [15]Swiegers G F,Malefetse T J.New Self-Assembled Structural Motifs in Coordination Chemistry.Chem.Rev.,2000,100(9):3483.
    [16]Seidel S R,Stang P J.High-Symmetry Coordination Cages via Self-Assembly.Acc.Chem.Res.,2002,35(11):972.
    [17]Evans O R,Lin W B.Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks.Acc.Chem.Res.,2002,35(7):511.
    [18]Rowsell J L C,Yaghi O M.Strategies for Hydrogen Storage in Metal-Organic Frameworks.Angew.Chem.Int.Ed.,2005,44(30):4670-4679.
    [19]James S L.Metal-Organic Frameworks.Chem.Soc.Rev.,2003,32:276-288.
    [20]Braga D.Crystal Engineering,Where from? Where to? Chem.Commun.,2003,2751-2754.
    [21] Chen X M, Tong M L. Solvothermal in Situ Metal/Ligand Reactions: A New Bridge between Coordination Chemistry and Organic Synthetic Chemistry. Acc. Chem. Res., 2007, 40(2): 162-170.
    
    [22] 洪茂椿,陈荣,梁文平.21世纪的无机化学.北京:科学出版社,2005.
    
    [23] Zaworotko M J. Superstructural Diversity in Two Dimensions: Crystal Engineering of Laminated Solids, Chem. Commun., 2001, 1-9.
    
    [24] Chui S S Y, Lo S M F, Charmant J P H et al. A Chemically Functionalizable Nanoporous Material [Cu_3(TMA)_2(H_20)_3]_n. Science, 1999, 283:1148-1150.
    
    [25] Zou R Q, Sakurai H, Xu Q. Preparation, Absorption Properties, and Catalytic Activity of 3D Porous Metal-Organic Frameworks Composed of Cubic Building Blocks and Alkali-Metal Ions. Angew. Chem. Int. Ed., 2006, 45(30):2542-2546.
    
    [26] Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers. Angew. Chem. Int. Ed., 2004, 43(18):2334-2375.
    
    [27] Jain R, Kabir K, Gilroy J B et al. High-Temperature Metal-Organic Magnets. Nature, 2007, 445:291-294.
    
    [28] Matsuda R, Kitaura R, Kitagawa S et al. Highly Controlled Acetylene Accommodation in a Metal-Organic Microporous Material. Nature, 2005, 436:238-240.
    
    [29] Humphrey S M, Wood P T. Multiple Areas of Magnetic Bistability in the Topological Ferrimagnet [Co_3(NC_5H_3(C0_2)_2-2, 5)_2(μ_3-0H)_2(0H_2)_2]. J. Am. Chem. Soc., 2004, 126(41) : 13236- 13237.
    
    [30] Lin W, Evans 0 R, Xiong R G et al. Supramolecular Engineering of Chiral and Acentric 2D Networks. Synthesis, Structure, and Second-Order Nonlinear Optical Properties of Bis(nicotinato)zinc and Bis{3-[2-(4-pyridyl)ethenyl]benzoato}cadmium. J. Am. Chem. Soc, 1998, 120(50):13272-13273.
    
    [31] Rao C N R, Natarajan S, Vaidhyanathan R. Metal Carboxylates with Open Architectures. Angew. Chem. Int. Ed., 2004, 43(12):1466-1496.
    
    [32] Bu X H, Tong M L, Chang H C et al. A Neutral 3D Copper Coordination Polymer Showing 1D Open Channels and the First Interpenetrating NbO-Type Network. Angew. Chem. Int. Ed., 2004, 43(2):192-195.
    
    [33] Zhang J P, Lin Y Y, Huang X C et al. Copper (I)1, 2, 4-Triazolates and Related Complexes: Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties. J. Am. Chem. Soc, 2005, 127(15) :5495-5506.
    
    [34] Wells A F. Three-dimensional Nets and Polyhedra. New York: Wiley-Interscience, 1977.
    
    [35] Wells A F. Further Studies of Three-Dimensional Nets. ACA Monograph 8, American Crystallographic Association, 1979.
    
    [36] Hoskins B F, Robson R. Infinite Polymeric Framework Consisting of Three Dimensionally Linked Rod-Like Segments. J. Am. Chem. Soc, 1989, 111 (5) : 5962-5964.
    [37]Batten S R,Robson R.Interpenetrating Nets:Ordered,Periodic Entanglement.Angew.Chem.Int.Ed.,1998,37(11):1460-1494.
    [38]Batten S R.Topology of Interpenetration.CrystEngComm,2001,3:1-7.
    [39]徐如人,庞文琴.无机合成与制备化学.北京:高等教育出版社,2001.
    [40]Rao C N R,Gopalakrishnan J著,刘新生译.固态化学的新方向.长春:吉林大学出版社,1990.
    [41]师昌绪.新型材料与材料科学.北京:科学教育出版社,1988.
    [42]Sampanthar J T,Vittal J J.Syntheses and Crystal Structures of the Dimmer [{Zn(SPh)_2(bpy)}_2(μ-bpy)]and Two Forms of the Zigzag Coordination Polymer [{Zn(SPh)_2(μ-bpy)}_n],(bpy=4,4'-bipyridyl).J.Chem.Soc.,Dalton Trans.,1999,1993-1998.
    [43]Tong M L,Chen H J,Chen X M.Molecular Ladders with Multiple Interpenetration of the Lateral Arms into the Squares of Adjacent Ladders Observed for[M_2(4,4'-bpy)_3(H_2O)_2(phba)_2](NO_3)_2·4H_2O (M=Cu~(2+) or Co~(2+);4,4'-bpy=4,4'-Bipyridine;phba=4-Hydroxybenzoate).Inorg.Chem.,2000,39(10):2235-2238.
    [44]Biradha K,Seward C,Zaworotko M.J.Helical Coordination Polymers with Large Chiral Cavities,Angew.Chem.Ind.Ed.,1999,38(4):492-495.
    [45]Yaghi O M,Li M G.Mutually Interpenetration Sheets and channels in the Extended Structure of[Cu(4,4'-bpy)Cl],Angew.Chem.Int.Ed.,1995,34(2):207-209.
    [46]Evans O R,Xiong R G,Wang Z et al.Crystal Engineering of Noncentrosymmetric Diamondoid Metal-Organic Coordination Networks.Angew.Chem,Int.Ed.,1999,38(4):536-538.
    [47]Prasad T K,Tajasekharan M V,Costes J P.A Cubic 3d-4f Structure with Only Ferromagnetic Gd-Mn Interactions.Angew.Chem.Int.Ed.,2007,46(16):2851-2854.
    [48]Hagrman P J,Hagrman D,Zubieta J.Organic-Inorganic Hybrid Materials:From “Simple”Coordination Polymers to Organodiamine-Templated Molybdenum Oxides.Angew.Chem.Int.Ed.,1999,38(18):2638-2684.
    [49]Blake A J,Champness N R,Hubberstey P et al.Inorganic Crystal Engineering Using Self-Assembly of Tailored Building-Blocks.Coord.Chem.Rev.,1999,183:117-138.
    [50]Takeda N,Umemoto K,Yamaguchi K et al.A Nanometre-Sized Hexahedral Coordination Capsule Assembled from 24 Components.Nature,1999,398:794-796.
    [51]Fujita M,Tominaga M,Hori A et al.Coordination Assemblies from a Pd(Ⅱ)-Cornered Square Complex.Acc.Chem.Res.,2005,38(4):369-378.
    [52]Yamauchi Y,Yoshizawa M,Fujita M.Engineering Stacks of Aromatic Rings by the interpenetration of Self-Assembled Coordination Cages.J.Am.Chem.Soc.,2008,130(18):5832-5833.
    [53]Kesanli B,Lin W.Chiral Porous Coordination Networks:Rational Design and Applications in Enantioselective process.Coord.Chem.Rev.,2003,246:305-326.
    [54] Zhang X M. Hydro(solvo)thermal In Situ Ligand Syntheses. Coord. Chem. Rev., 2005, 249:1201-1219.
    
    [55] Carlucci L, Ciani G, Proserpio D M. Polycatenation, Polythreading and Polyknotting in Coordination Network Chemistry. Coord. Chem. Rev., 2003, 246:247-289.
    
    [56] Gao E Q, Yue Y F, Bai S Q et al. From Achiral Ligands to Chiral Coordination Polymers: Spontaneous Resolution, Week Ferromagnetism, and Topological Ferrimagnetism. J. Am. Chem. Soc., 2004, 126 (5):1419-1429.
    
    [57] Zhang J P, Lin Y Y, Zhang W X et al. Temperature- or Guest-Induced Drastic Single-Crystal-to-Single-Crystal Transformations of a Nanoporous Coordination Polymer. J. Am. Chem. Soc., 2005, 127(41): 14162-14163.
    
    [58] Xiong R G, Xue X, Zhao H et al. Novel, Acentric Metal-Organic Coordination Polymers from Hydrothermal Reactions Involving In Situ Ligand Synthesis. Angew. Chem. Int. Ed., 2002, 41(20):3800-3803.
    
    [59] Fang Q R, Zhu G S, Xue M et al. A Metal-Organic Framework with the Zeolite MTN Topology Containing Large Cages of Volume 2. 5 nm~3. Angew. Chem. Int. Ed., 2005, 44(25):3845-3848.
    
    [60] Wang X L, Qin C, Wang E B et al. Interlocked and Interdigitated Architectures from Self-Assembly of Long Flexible Ligands and Cadmium Salts. Angew. Chem. Int. Ed., 2004, 43(38):5036-5040.
    
    [61] Tong M L, Chen X M, Batten S R. A New Self-Penetrating Uniform Net, (8,4)(or 8~6), Containing Planar Four-Coordinate Nodes. J. Am. Chem. Soc, 2003, 125(52) : 16170-16171.
    
    [62] Ye B H, Tong M L, Chen X M. Metal-Organic Molecular Architectures with 2,2' -bipyridyl-Like and Carboxylate Ligands. Coord. Chem. Rev., 2005, 249:545-565.
    
    [63] Chun H, Kim D, Dybtsev D N et al. Metal-Organic Replica of Fluorite Built with an Eight-Connecting Tetranuclear Cadmium Cluster and a Tetrahedral Four-Connecting Ligand. Angew. Chem. Int. Ed., 2004, 43(8):971-974.
    
    [64] Abrahams B F, Moylan M, Orchard S D et al. Zinc Saccharate: A Rubust, 3D Coordination Network with Two Types of Isolated, Parallel Channels, One Hydrophilic and the Other Hydrophobic. Angew. Chem. Int. Ed., 2003, 42(16):1848-1851.
    
    [65] Kitaura R, Kitagawa S, Kubota Y et al. Formation of a One-Dimensional Array of Oxygen in a Microporous Metal-Organic Solid. Science, 2002, 298:2358-2361.
    
    [66] Uemura K, Kitagawa S, Fukui K et al. A Contrivance for a Dynamic Porous Frameworks: Cooperative Guest Adsorption Based on Square Grids Connected by Amide-Amide Hydrogen Bonds. J. Am. Chem. Soc, 2004, 126(12) :3817-3828.
    
    [67] Horike S, Matsuda R, Tanaka D et al. Immobilization of Sodium Ions on the Pore Surface of a Porous Coordination Polymer. J. Am. Chem. Soc, 2006, 128(13) :4222-4223.
    
    [68] Uemura T, Kitaura R, Ohta Y et al. Nanochannel-Promoted Polymerization of Substituted Acetylenes in Porous Coordination Polymers. Angew. Chem. Int. Ed., 2006, 45(25) : 4112-4116.
    [69] Moulton B, Lu J, Zaworotko M J. Periodic Tiling of Pentagons: The First Example of a Two-Dimensional (5~3,4)-net. J. Am. Chem. Soc., 2001, 123(37):9224-9225.
    
    [70] Lu J, Mondal A, Moulton B et al. Polygons and Faceted Polyhedra and Nanoporous Networks. Angew. Chem. Int. Ed., 2001, 40(10:2113-2116.
    
    [71] Moulton B, Lu J, Hajndl R et al. Crystal Engineering of a Nanoscale Kgaome Lattice. Angew. Chem. Int. Ed., 2002, 41(15):2821-2824.
    
    [72] Wang Z, Kravtsov V Ch, Zaworotko MJ. Ternary Nets Formed by Self-Assembly of Triangles, Squares, and Tetrahedra. Angew. Chem. Int. Ed., 2005, 44(19):2877-2880.
    
    [73] Perry J J, Kravtsov V Ch, McManus G J et al. Bottom up Synthesis that Does Not Start at the Bottom: Quadruple Covalent Cross-Linking of Nanoscale Faceted Polyhedra. J. Am. Chem. Soc., 2007, 129(33): 10076-10077.
    
    [74] Cairns A J, Perman J A, Woitas L et al. Supermolecular Building Blocks (SBBs) and Crystal Design: 12-Connected Open Frameworks Based on a Molecular Cubohemioctahedron. J. Am. Chem Soc., 2008, 130(5): 1560-1561.
    
    [75] Wu C D, Lin W. High Porous, Homochiral Metal-Organic Frameworks: Solvent-Exange- Induced Single-Crystal to Single-Crystal Transformations. Angew. Chem. Int. Ed., 2005, 44 (13):1958-1961.
    
    [76] Wu C D, Hu A, Zhang L. A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. J. Am. Chem. Soc, 2005, 127(25): 8940-8941.
    
    [77] Cui Y, Lee S J, Lin W. Interlocked Chiral Nanotubes Assembled from Quintuple Helices.J. Am. Chem. Soc, 2003, 125(20):6014-6015.
    
    [78] Li H, Eddaoudi M, 0' Keffe M et al. Design and Synthesis of an Exceptionally Stable and High Porous Metal-Organic Framework. Nature, 1999, 402:276-279.
    
    [79] Ferey G, Mollot-Draznieks C, Serre C et al. Crystallized Frameworks with Giant Pores: Are There Limits to the Possible? Acc. Chem. Rec., 2005, 38(4):217-225.
    
    [80] Chen B, Eddaoudi M, Hyde S T et al. Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores. Science, 2001, 291:1021-1023.
    
    [81] Chae H K, Siberio-Perez D Y, Kim J et al. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals. Nature, 2004, 427:523-527.
    
    [82] Banerjee R, Phan A, Wang B et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to C0_2 Capture. Science, 2008, 319:939-947.
    
    [83] Eddaoudi M, Kim J, Rosi N et al. Systematic Deisgn of Pore Size and Functionality in Isoreticular MOFs and There Application in Methane Storage. Science, 2002, 295:469-472.
    
    [84] Serre C, Millange F, Surble S et al. A Route to the Synthesis of Trivalent Transition-Metal Porous Carboxylates with Trimeric Secondary Building Units. Angew. Chem. Int. Ed., 2004, 43(46):6285-6289.
    [85]Mellot-Draznieks C,Dutour J,Ferey G.Hybrid Organic-Inorganic Frameworks:Routes for Computational Design and Structure Prediction.Angew.Chem.Int.Ed.,2004,43(46):6290-6296.
    [86]Ferey G,Serre C,Mellot-Draznieks C et al.A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry,Simulation,and Powder Diffraction.Angew.Chem.Int.Ed.,2004,43(46):6296-6301.
    [87]Ferey G,Mellot-Draznieks C,Serre C et al.A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area.Science,2005,309:2020-2042.
    [88]Zhang X M,Fang R W,Wu H S.A Twelve-Connected Cu_6S_6 Cluster-Based Coordination Polymer.J.Am.Chem.Soc.,2005,127(21):7670-7671.
    [89]Wang X L,Qin C,Wang E Bet al.Self-Assembly of Nanometer-Scale[Cu_(24)I_(10)L_(12)]~(14+) Cages and Ball-Shaped Keggin Clusters into a(4,12)-Connected 3D Framework with Photoluminescent and Electrochemical Properties.Angew.Chem.Int.Ed.,2006,45(44):7411-7414.
    [90]黄春辉.稀土配位化学.北京:北京科学出版社,1997.
    [91]Aspinall H C.Chiral Lanthanide Complexes:Coordination Chemistry and Applications.Chem.Rev.,2002,102(6):1807-1805.
    [92]Tang J,Hewitt I,Madhu N T et al.Dysprosium Triangles Showing Single-Molecule Magnet Behavior of Thermally Excited Spin States.Angew.Chem.Int.Ed.,2006,45(11),1729-1933.
    [93]Hanaoka K,Kikuchi K,Kojima Het al.Selective Detection of Zinc Ions with Novel Luminescent Lanthanide Probes.Angew.Chem.Int.Ed.,2003,42(26):2996-2999.
    [94]Gunnlaugsson T,Leonard J P,Senechal K et al.pH Responsive Eu(Ⅲ)-Phenanthroline Supramolecular Conjugate:Novel "Off-On-Off' Luminescent Signaling in the Physiological ph Range.J.Am.Chem.Soc.,2003,125(40):12062-12063.
    [95]Ngo H L,Lin W.Chiral Crown Ether Pillared Lamellar Lanthanide Phosphonates.J.Am.Chem.Soc.,2002,124(48):14298-14299.
    [96]hiu W,Jiao T,Li Y et al.Lanthanide Coordination Polymers and Their Ag~+-Modulated Fluorescence.J.Am.Chem.Soc.,2004,126(8):2280-2281.
    [97]Piguet C,Bernardinelli G,Hopfgartner G.Helicates as Versatile Supramolecular Complexes.Chem.Rev.,1997,97(6):2005-2062.
    [98]Ling D L,Blake A J,Champness N R et al.Lanthanum Coordination Networks Based on Unusual Five-Connected Topologies.J.Am.Chem.Soc.,2001,123(14):3401-3402.
    [99]Long D L,Blake A J,Champness N R.Unprecedented Seven- and Eight-Connected Lanthanide Coordination Networks.Angew.Chem.Int.Ed.,2001,40(13):2443-2447.
    [100]Long D L,Hill R J,Blake A Jet al.Non-Natural Eight-Connected Solid-State Materials:A New Coordination Chemistry.Angew.Chem.Int.Ed.,2004,43(14):1851-1854.
    [101] Hill R J, Long D L, Champness N R et al. New Approaches to the Analysis of High Connectivity Materials: Design Frameworks Based upon 4~4- and 6~3-Subnet Tectons. Acc. Chem. Res., 2005, 38(4):337-350.
    
    [102] Vaidhyanathan R, Natarajan S, Rao C N R. Three-Dimensional Open-Framework Neodymium Oxalates with Organic Functional Groups Protruding in 12-Member Channels. Inorg. Chem., 2002, 41(17):4496-4501.
    
    [103] Reineke TM, Eddaoudi M, 0' Keeffe M et al. A Microporous Lanthanide-Organic Framework. Angew. Chem. Int. Ed., 1999, 38(17):2590-2594.
    
    [104] Reineke T M, Eddaoudi M, Fehr M et al. From Condensed Lanthanide Coordination Solids to Microporous Frameworks Having Accessible Metal Sites. J. Am. Chem. Soc., 1999, 121 (8):1651-1657.
    
    [105] Reineke T M, Eddaoudi M, Moler D et al. Large Free Volume in Maximally Interpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb_2(ADB)_3[(CH_3)_2SO]_4·16[(CH_3)_2-SO]. J. Am. Chem. Soc, 2000, 122(19) :4843-4844.
    
    [106] Pan L, Huang X, Li J et al. Novel Single- and Double-Layer and Three-Dimensional Structures of Rare-Earth Metal Coordination Polymers: The Effect of Lanthanide Contraction and Acidity Control in Crystal Structure Formation. Angew. Chem. Int. Ed., 2000, 39(3):527-530.
    
    [107] Devic T, Serre C, Audebrand N et al. MIL-103, A 3-D Lanthanide-Based Metal Organic Framework with Large One-Dimensional Tunnels and A High Surface Area. J. Am. Chem. Soc., 2005, 127(37):12788-12789.
    
    [108] Ma B Q, Zhang D S, Gao S et al. From Cubane to Supercubane: The Design, Synthesis, and Structure of a Three-Dimensional Open Framework Based on a Ln_4O_4 Cluster. Angew. Chem. Int. Ed., 2000, 39(20):3644-3646.
    
    [109] Winpenny R E P. The Structures and Magnetic Properties of Complexes Containing 3d- and 4f-metals. Chem. Soc. Rev., 1998, 6:447-452.
    
    [110] Sakamoto M, Manseki K, Okawa H. d-f Heteronuclear Complexes: Synthesis, Structures and Physicochemical Aspects. Coord. Chem. Rev., 2001, 219-221:379-414.
    
    [111] Plecnik C E, Liu S, Shore S G. Lanthanide-Transition-Metal Complexes: From Ion Pairs to Extended Arrays. Acc. Chem. Res., 2003, 36(7):499-508.
    
    [112] Bencini A, Benelli C, Caneschi A et al. Crystal and Molecular Structure of and Magnetic Coupling in Two Complexes Containing Gadolinium (III) and Copper(II) Ions. J. Am. Chem. Soc, 1985, 107(26):8128-8136.
    
    [113] Chen X M, Aubin S M J, Wu Y L et al. Polynuclear Cu~(II)_(12)M~(III)_6 (M = Y, Nd, or Gd) Complexes Encapsulating a C10_4~- Anion: [Cu_(12)M_6(OH)_(24)(H_2O)_(18)(pyb)_(12)(ClO_4)] (ClO_4)_(17·nH_2O (Pyb = Pyridine Betaine).J. Am. Chem. Soc, 1995, 117(37): 9600-9601.
    [114] Kahn M L, Mathoniere C, Kahn 0. Nature of the Interaction between Ln~(III) and Cu~(II) Ions in the Ladder-Type Compounds (Ln_2[Cu(opba)]_3}·S (Ln = Lanthanide Element; opba = ortho-Phenylenebis(oxamato), S = Solvent Molecules). Inorg. Chem., 1999, 38(16):3692-3697.
    
    [115] Kahn M L, Lecante P, Verelst M et al. Structural Studies and Magnetic Properties of Polymeric Ladder-Type Compounds {Ln_2[Ni(opba)]_3}·S (Ln = Lanthanide Element; opba = o-Phenylenebis(oxamato), S = Solvent Molecules). Chem. Mater., 2000, 12(10):3073-3079.
    
    [116] Du B, Meyers E A, Shore S G. Direct Evidence for 0-H…NC Hydrogen Bonding in a Cyanide-Bridged Lanthanide-Transition-Metal Complex (H_20)_6(DMF)_6Ho_2[Ni(CN)_4]_3: An Eight-Coordinated Holmium Center with a Bicapped (Square Face) Trigonal Prismatic Geometry. Inorg. Chem. ,2000, 39(20):4639-4645.
    
    [117] Figuerola A, Diaz C, ElFallah M S et al. Structure and Magnetism of the First Cyano-Bridged Hetero-One-Dimensional Gd~(III)-Cr~(III) Complexes. Chem. Commun., 2001, 1204-1205.
    
    [118] Tanase S, Andruh M, Muller A et al. Construction of 3d~4f Heterometallic CoordinationPolymers by Simultaneous Use of Hexacyanometalate Building-Blocks and Exo-bidentate Ligands. Chem. Commun., 2001, 1084-1085.
    
    [119] Liu S, Meyers E A, Shore S G. An Inclusion Complex with [Gd(dmf)_8]~(3+) Ions Encapsulated in Pockets of an Anionic Array of [{Cu_6(CN)_9}∞ Units; A Cyanide-Bridged Cu-Gd Layer Structure. Angew. Chem. Int. Ed., 2002,41(19):3609-3611.
    
    [120] Daiguebonne C, Guillou 0, Kahn M L et al. A Nd~(III)Cu~(II) Molecular Material with a Honeycomb-like Structure. Inorg. Chem., 2001, 40(1):176-178.
    
    [121] Ma B Q, Gao S, Su G et al. Cyano-Bridged 4f-3d Coordination Polymers with a Unique Two-Dimensional Topological Architecture and Unusual Magnetic Behavior. Angew. Chem. Int. Ed., 2001, 40(2):434-437.
    
    [122] Kou Hu Z, Zhou B C, Gao S et al. A 2D Cyano- and Oxamidato-Bridged Heterotrimetallic Cr~(III)-Gu~(II)-Gd~(III) Complex. Angew. Chem. Int. Ed., 2003, 42(28):3228-3291.
    
    [123] Baggio R, Garland M T, Moreno Y et al. Synthesis, Structure and Magnetic Properties of the 2, 2' -oxydiacetato-bridged Cu(II) -Ln(III) Complexes [{Cu_3Ln_2(oda)_6(H_20)_6}·12H_20]_(?) (Ln= Y, Gd, Eu, Nd, Pr). J. Chem. Soc., Dalton Trans., 2000, 2061-2067.
    
    [124] Ren Y P, Long L S, Mao B W et al. Nanoporous Lanthanide-Copper(II) Coordination Polymers: Syntheses and Crystal Structures of [{M_2(Cu_3(iminodiacetate)_6)} ·8H_2O]n (M = La, Nd, Eu). Angew. Chem. Int. Ed., 2003, 42(5):532-535.
    
    [125] Liang Y, Cao R, Su W et al. Syntheses, Structures, and Magnetic Properties of Gadolinium(II)-Copper(II) Coordination Polymers by a Hydrothermal Reaction. Angew. Chem. Int. Ed., 2000, 39(18) :3304-3307.
    
    [126] Liang Y, Hong M, Su W et al. Preparations, Structures, and Magnetic Properties of a Series of Novel Copper(II)-Lanthanide(III) Coordination Polymers via Hydrothermal Reaction. Inorg. Chem., 2001, 40(18):4574-4582.
    [127] Zhou Y, Hong M, Wu X. Lanthanide-Transition Metal Coordination Polymers Based on Multiple N- and 0- Donor Ligands. Chem. Coramun., 2006, 135-143.
    
    [128] Zhou Y F, Jiang F L, Yuan D Q et al. Copper Complex Cation Templated Gadolinium(III)-Isophthalate Frameworks. Angew. Chem. Int. Ed., 2004, 43(42): 5665-5668.
    
    [129] Zhao B, Cheng P, Dai Y et al. A Nanotubular 3D Coordination Polymer Based on a 3d-4f Heterometallic Assembly. Angew. Chem. Int. Ed., 2003, 42(8):934-936.
    
    [130] Zhao B, Chen X Y, Cheng P et al. Coordination Polymers Containing 1D Channels as Selective Luminescent Probes. J. Am. Chem. Soc., 2004, 126(47):15394-15395.
    
    [131] Zhao B, Cheng P, Chen X et al. Design and Synthesis of 3d-4f Metal-Based Zeolite-Type Materials with a 3D Nanotubular Structure Encapsulated "Water" Pipe. J. Am. Chem. Soc., 2004, 126(10):3012-3013.
    
    [132] Wang S N, Pang Z, Wagner M J. Comparative Study of Crystal Structures and Thermal Magnetic Properties of a Yttrium-Copper Y_2CU_8 and a Neodymium-Copper Nd_2Cu_8 Complex. Inorg. Chem. 1992, 31(26):5381-5388.
    
    [133] Blake A J, Cherepanov V, Dunlop A A et al. Synthesis, Crystal Structures and Thermal Decomposition Studies of a Series of Copper - Lanthanoid Complexes of 6-methyl-2-pyridone. J. Chem. Soc, Dalton Trans., 1994, 2719-2727.
    
    [134] Blake A J, Gould R 0, Grant C M et al. Reactions of Copper Pyridonate Complexes with Hydrated Lanthanoid Nitrates. J. Chem. Soc., Dalton Trans., 1997, 485-496.
    
    [135] Yukawa Y, Lgarashi S, Yamano A et al. Structure of the Centred Icosahedral Samarium Cluster Formed by Bis(l-prolinato)nickeKii) Ligands. Chem. Commun, 1997, 711-712.
    
    [136] He F, Tong M L, Yu X L et al. Controlled Aggregation of Heterometallic Nanoscale Cu_(12)Ln_6 Clusters (Ln = Gd~(III) or Nd~(III)) into 2D Coordination Polymers. Inorg. Chem., 2005, 44(3): 559-565.
    
    [137] Muller A, Shah S Q N, Bogge H et al. Molecular Growth from a Mo_(176) to a Mo_(248) Cluster. Nature, 1999, 397:48-50.
    
    [138] Muller A, Beckmann E, Bogge H et al. Inorganic Chemistry Goes Protein Size: A Mo_(368) Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking. Angew. Chem. Int. Ed., 2002, 41(7):1162-1167.
    
    [139] Muller A, Pope M T, Maria Todea A et al. Metal-Oxide-Based Nucleation Process underConfined Conditions: Two Mixed-Valence V_6-Type Aggregates Closing the W_(48) Wheel-Type Cluster Cavities. Angew. Chem. Int. Ed., 2007, 46(24):4477-4480.
    
    [140] Pradeep C P, Long D L, Newton G N et al. Supramolecular Metal Oxides: Programmed Hierarchical Assembly of a Protein-Sized 21 kDa [(C_(16)H_(36)N)_(19){H_2NC(CH_2O)_3P_2V_3W_(15)O_(59)}_4]~(5-) Polyoxometalate Assembly. Angew. Chem. Int. Ed., 2008, 47(23):4388-4391.
    
    [141] Howell R C, Perez F G, Jain S et al. A New Type of Heteropolyoxometalates Formed from Lacunary Polyoxotungstate Ions and Europium or Yttrium Cations. Angew. Chem. Int. Ed., 2001, 40(21):4031-4034.
    [142] Soghomonian V, Chen Q, Haushalter R C et al. An Inorganic Double Helix: Hydrothermal Synthesis, Structure, and Magnetism of Chiral [(CH_3)_2NH_2]K_4[V_(10)O_(10)(H_2O)_2(OH)_4(PO_4)_7]·4H_2O, Science, 1993, 259:1596-1599.
    
    [143] Soghomonian V, Chen Q, Haushalter R C et al. Vanadium Phosphate Framework Solid Constructed of Octahedra, Square Pyramids, and Tetrahedra with a Cavity Diameter of 18.4 A. Angew. Chem. Int. Ed., 1993, 32(4):610~612.
    
    [144] Khan M I, Yohannes E. [M_3V_(18)0_(420(H_20)_(12)(X0_4)]·24H_20 (M = Fe, Co; X = V, S) : Metal Oxide Based Framework Materials Composed of Polyoxovanadate Clusters. Angew. Chem. Int. Ed., 1999, 38(9):1292-1294.
    
    [145] Zaleski C M, Depperman E C, Kampf J W et al. Synthesis, Structure, and MagneticProperties of a Large Lanthanide-Transition-Metal Single-Molecule Magnet. Angew. Chem. Int. Ed., 2004, 43(30):3912-3914.
    
    [146] Mishra A, Wernsdorfer W, Abboud K et al. Initial Observation of Magnetization Hysteresis and Quantum Tunneling in Mixed Manganese-Lanthanide Single-Molecule Magnets. J. Am. Chem. Soc., 2004, 126(48):15648-15649.
    
    [147] Mori F, Nyui T, Ishida T et al. Oximate-Bridged Trinuclear Dy-Cu-Dy Complex Behaving as a Single-Molecule Magnet and Its Mechanistic Investigation. J. Am. Chem. Soc, 2006, 128(5):1440-1441.
    
    [148] Aronica C, Pilet G, Chastanet G et al. A Nonanuclear Dysprosium(III)-Copper(II) Complex Exhibiting Single-Molecule Magnet Behavior with Very Slow Zero-Field Relaxation. Angew. Chem. Int. Ed., 2006, 45(28):4659-4662.
    
    [149] Zhang J J, Xia S Q, Sheng T L et al. A Novel 2D Net-Like Supramolecular Polymer Constructed from Ln_6Cu_(24) Node and trans-Cu(Gly)2 Bridge. Chem. Commun., 2004, 1186-1187.
    
    [150] Zhang J J, Sheng T L, Hu S M et al. Two 3D Supramolecular Polymers Constructed from an Amino Acid and a High-Nuclear Ln_6Cu_(24) Cluster Node. Chem. Eur. J. 2004, 10:3963-3969.
    
    [151] Xiang S, Hu S, Sheng T et al. A Fan-Shaped Polynuclear Gd_6Cu_(12) Amino Acid Cluster: A "Hollow" and Ferromagnetic [Gd_6(μ_3-OH)_8] Octahedral Core Encapsulated by Six [Cu_2] Glycinato Blade Fragments. J. Am. Chem. Soc, 2007, 129(49): 15144-15146.
    
    [152] Kong X J, Long Y P, Long L S et al. A Keplerate Magnetic Cluster Featuring an Icosidodecahedron of Ni(II) Ions Encapsulating a Dodecahedron of La (III) Ions. J. Am. Chem. Soc, 2007, 129(22):7016-7017.
    
    [153] Kong X J, Ren Y P, Chen W X et al. A Four-Shell, Nesting Doll-Like 3d-4f Cluster Containing 108 Metal Ions. Angew. Chem. Int. Ed., 2008, 47(13):2398-2401.
    
    [154] Pope M T, Muller A. Polyoxometalate Chemistry. Dordrecht: Kluwer, 2001.
    
    [155] Nyman M, Bonhomme F, Alam T M et al. A General Synthetic Procedure for Heteropolyniobates. Science, 2002, 297:996-998.
    [156] Muller A, Roy S. En Route from the Mystery of Molybdenum Blue via Related Manipulatable Building Blocks to Aspects of Materials Science. Coord. Chem. Rev., 2003, 245:153-166.
    
    [157] Coronado E, G6mez-Garcia C J. Polyoxometalate-Based Molecular Materials. Chem. Rev., 1998, 98(1): 273-296.
    
    [158] Muller A, Toma L, Bogge H et al. Porous Capsules Allow Pore Opening and Closing That Results in Cation Uptake. Angew. Chem. Int. Ed., 2005, 44(47):7757-7761.
    
    [159] Hall N. Bring Inorganic Chemistry to Life. Chem. Commun., 2003, 803-806.
    
    [160] Poncelet 0, Sartain W J, Hubert-Pfalzgraf L G et al. Chemistry of Yttrium Triisopropoxide Revisted. Characterization and Crystal Structure of Y_5(μ_3-O)(μ_3-O'Pr)_4- (μ_2-O~iPr)_4(O~iPr)_5. Inorg. Chem., 1989, 28(2):263-267.
    
    [161] Burgstein M R, Roesky P W. Nitrophenolate as a Building Block for Lanthanide Chains and Clusters. Angew. Chem. Int. Ed., 2000, 39(3):549-551.
    
    [162] Xu J, Raymond K N. Lord of the Rings: An Octameric Lanthanum Pyrazolonate Cluster. Angew. Chem. Int. Ed., 2000, 39(15):2745-2747.
    
    [163] Wang R. Song D, Wang S. Toward Constructing Nanoscale Hydroxo-Lanthanide Clusters: Synthesis and Characterization of Novel Tetradecanuclear Hydroxo-Lanthanide Clusters. Chem. Commun., 2002, 368-369.
    
    [164] Zheng Z. Ligand-Controlled Self-Assembly of Polynuclear Ligand-Oxo/Hydroxo Complexes: From Synthetic Serendipity to Rational Supramolecular Design. Chem. Commun., 2001, 2521-2529.
    
    [165] Wang R, Selby H D, Liu H et al. Halide-Templated Assembly of Polynuclear Lanthanide- Hydroxo Complexes. Inorg. Chem. 2002, 41(2):278-286.
    
    [166] Mahe N, Guillou 0, Daiguebonne C et al. Polynuclear Lanthanide Hydroxo Complexes: New Chemical Precursors for Coordination Polymers. Inrog. Chem., 2005, 44(22):7743-7750.
    
    [167] Kajiwara T, Wu H, Ito T et al. Octalanthanide Wheels Supported by p-tert-Buty1- sulfonylcalix[4]arene. Angew. Chem. Int. Ed., 2004, 43(14):1832-1835.
    
    [168] Xu G, Wang Z M, He Z et al. Synthesis and Structural Characterization of Nonanuclear Lanthanide Complexes. Inorg. Chem., 2002, 41(25):6802-6807.
    
    [169] Gunnar Westin L, Kritikos M, Caneschi A. Self Assembly, Structure and Properties of the Decanuclear Lanthanide Ring Complex, Dy_(10)(0C_2H_40CH_3)_(30). Chem. Commun., 2003, 1014-1015.
    
    [170] BUrgstein M R, Gamer M T, Roesky P W. Nitrophenolate as Building Block for Lanthanide Chains, Layers, and Cluster. J. Am. Chem. Soc., 2004, 126(16):5213-5218.
    
    [171] Benelli C, Gatteschi D. Magnetism of Lanthanides in Molecular Materials with Transition-Metal Ions and Organic Radicals. Chem. Rev., 2002, 102(6):2369-2387.
    
    [172] Mereacre V M, Ako A M, Clerac R et al. A Bell-Shaped Mn_(11)Gd_2 Single-Molecule Magnet. J. Am. Chem. Soc, 2007, 129(30) :9248-9249.
    [173] Bunzli J C G, Chopin G R. Lanthanide Probes in Life, Chemicals and Earth Science: Theory and Practice. Amasterdam, Netherlands: Elsevier, 1989.
    
    [174] Yaghi 0 M, 0' Keeffe M, Ockwig N W et al. Reticular Synthesis and the Design of New Materials. Nature, 2003, 423:705-714.
    
    [175] Bradshaw D, Claridge J B, Cussen E J et al. Design, Chirality, and Flexibility in Nanoporous Molecule-Based Materials. Acc. Chem. Res., 2005, 38:273-283.
    
    [176] Perez-Garcia L, Amabilino D B. Spontaneous Resolution under Supramolecular Control. Chem. Soc. Rev., 2002, 31:342-356.
    
    [177] Seo J S, Whang D, Lee H et al. A Homochiral Metal-Organic Porous Material for Enantioselective Separation and Catalysis. Nature, 2000, 404:982-986.
    
    [178] Dybtsev D N, NuzhdinA L, Chun H et al. A Homochiral Metal-Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity. Angew. Chem. Int. Ed., 2006, 45:916-920.
    
    [179] Sasa M, Tanaka K, Bu X H et al. Spontaneously Resolved Chiral Interpenetrating 3-D Net with Two Different Zinc Coordination Polymers. J. Am. Chem. Soc, 2001, 123(43): 10751-10752.
    
    [180] Janiak C. Engineering Coordination Polymers towards Applications. J. Chem. Soc, Dalton Trans., 2003, 2781-2804.
    
    [181]SuCY, Goforth A M, SmithMDetal. Exceptionally Stable, Hollow Tubular Metal-Organic Architectures: Synthesis, Characterization, and Solid-State Transformation Study. J. Am. Chem. Soc, 2004, 126(12):3576-3586.
    
    [182] Serpaggi F, Ferey. Hybrid Open Frameworks (MIL-n). Part 4 Synthesis and Crystal Structure of MIL-8, a Series of Lanthanide Glutarates with an Open Framework, [Ln(H_20)]_2[(0_2C(CH_2)_3C0_2]. J. Chem. Mater., 1998, 8:2737-2741.
    
    [183] Serre C, Pelle F, Gardant N et al. Synthesis and Characterization of MIL. J. Chem. Mater., 2004, 16:1177-1182.
    
    [184] Serre C, Millange F, Thouvenot C et al. Synthesis, Characterization and Luminescent Properties of a New Three-Dimensional Lanthanide Trimesate: M((C_6H_3)-(CO_2)_3) (M - Y, Ln) or MIL-78. J. Chem. Mater., 2004, 14:1540-1543.
    
    [185] Cutland-Van Noord A D, Kampf J W, Pecoraro V L. Preparation of Resolved Fourfold Symmetric Amphiphilic Helices Using Chiral Metallacrown Building Blocks. Angew. Chem. Int. Ed., 2002, 41(24):4668-4670.
    
    [186] Wu J Y, Yeh T T, Wen Y S et al. Unusual Robust Luminescnet Porous Frameworks Self-Assembled from Lanthanide Ions and 2,2' -Bipyridine-4,4' -dicarboxylate. Cryst. Growth Des. 2006, 6(2):467-473.
    [187] Kim Y, Suh M, Jung D. Crystal Structure and Spectroscopic Study of Novel Two- and Three-Dimensional Photoluminescent Eu(III)-Adipate Compounds. Inorg. Chem., 2004, 43(1):245-250.
    
    [188] Muller A, Peters F, Pope M T et al. Polyoxometalates: Very Large Clusters-Nanoscale Magnets. Chem. Rev., 1998, 98(1):239-271.
    
    [189] Feng P, Bu X, Zheng N. The Interface Chemistry between Chalcogenide Clusters Open Framework Chalcogenides. Acc. Chem. Res., 2005, 38(4):293-303.
    
    [190] Bertaina S, Gambarelli S, Mitra T et al. Quantum Oscillations in a Molecular Magnet. Nature, 2008, 453:203-206.
    
    [191] 王恩波,胡长文,许林.多酸化学导论.北京:化学工业出版社,1998.
    
    [192] Bunzli JG, Piguet C. Lanthanide-Containing Molecular and Supramolecular Polymetallic Functional Assemblies. Chem. Rev., 2002, 102(6):1897-1928.
    
    [193] Muller A, Zhou Y, Bogge H et al. "Gating" the Pores of a Metal Oxide Based Capsule: After Initial Cation Uptake Subsequent Cations Are Found Hydrated and Supramolecularly Fixed above the Pores. Angew. Chem. Int. Ed., 2006, 45(3):460-465.
    
    [194] Forster P M, Cheetham A K. Open-Framework Nickel Succinate, [Ni_7(C_4H_4O_4)_6(OH_2O)_2]·2H_2O: A New Hybrid Material with Three-Dimensional Ni-O-Ni Connectivity. Angew. Chem. Int. Ed., 2002, 41(3):457-459.
    
    [195] Guillou N, Livage C, Beek W et al. A Layered Nickel Succinate with Unprecedented Hexanickel Units: Structure Elucidation from Powder-Diffraction Data, and Magnetic Sorption Properties. Angew. Chem. Int. Ed., 2003, 42(6):644-647.
    
    [196] Anokhina E V, Jacobson A J. [Ni_(20)(L-Asp) (H_20)_2]·4H_20: A Homochiral 1D Helical Chain Hybrid Compound with Extended Ni-O-Ni Bonding. J. Am. Chem. Soc., 2004, 126(10):3044-3045.
    
    [197] Serre C, Ferey G. Hydrothermal Synthesis, Thermal Behaviour and Structure Determination from Powder Data of a Porous Three-Dimensional Europium Thrmesate: Eu_3(H_2O)(OH)_6[C_6H_3(CO_2)_3]·3H_2O or MIL-63. J. Mater. Chem., 2002, 12:3053-3057.
    
    [198] Ford PC, Cariati E, Bourassa J. Photoluminescence Properties of Multinuclear Copper (I) Compounds. Chem. Rev., 1999, 99(12):3625-3647.
    
    [199] Arnby C H, Jagner S, Dance I. Questions fro Crystal Engineering of Halocuprate Complexes: Concepts for a Difficult System. CrystEngComm, 2004, 6:257-275.
    
    [200] Thebault F, Barnett S A, Blake A J et al. Control of Copper(I) Iodide Architectures by Ligand Design: Angular versus Linear Bridging Ligands. Inorg. Chem., 2006, 45(16):6179-6187.
    
    [201] Song R F, Xie Y B, Li J R et al. Syntheses and Crystal Structures of the Copper(I) Complexes with Quinoline-Based Monothioether Ligands. CrystEngComm, 2005, 7:249-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700