若干新型超碱金属的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
团簇是当今化学比较活跃的研究领域,也是无机化学、材料化学等领域的研究热点,其在固体、表面物理、分子物理以及催化等方面也有重要作用。在团簇化学发展的过程中,人们发现某些特定尺寸和组分的团簇可以模拟元素周期表中单个原子的性质,这类原子团簇被描述为“超原子(Superatoms)”。超碱金属是超原子的一个重要分支,由于原子簇的聚集效应,超碱金属团簇通常具有比碱金属原子还低的电离势(IP)。本文从理论上考察了两类超碱金属体系,并对体系的几何结构、电子结构、成键特征等性质进行了详细的研究;此外还考察了超碱金属与有机配体构成的复合物体系,主要对其非线性光学性质进行了理论研究;并对超原子Al14团簇与水分子的反应进行了研究。主要贡献如下:
     1.首次预测了用氢原子作为配体构造超碱金属阳离子体系M2H2n+1+(M=F,O, N, C)。在OVGF/6-311++G(3df,3pd)水平下,计算得到了这些非金属阳离子的很低的电子亲和势(EA)3.55–4.48eV,因此它们可以归类于超碱金属阳离子。从键长可知,F2H3+和O2H5+阳离子可以分别表示为(HF)H+(FH)和(H2O)H+(H2O),包含强的对称氢键。同时,值得注意的是,包含传统氢键的N2H7+体系可以看作是由NH4+和NH3单元两部分组成,而C2H9+中弱的范德华相互作用使CH5+和CH4两个单元结合在一起。此外,根据正的解离能,M2H2n+1+阳离子很稳定不易解离出一个H+离子或者一个MHn分子。这个工作确定H原子可以作为配体设计超碱金属,为超碱金属家族引入了非金属成员。
     2.基于具有独特电子结构的超碱土金属团簇,我们理论设计了低电子亲和势的一类超原子复合物(M F)+(M=OLi4, NLi5, CLi6, BLi7和Al14)。超原子M和F之间具有很强的相互作用,复合物表现出相当大的HOMO LUMO能隙值及高解离能,说明这些超原子体系具有很好的稳定性。需要特殊指出的是,氟化作用对降低M+的VEA值起着重要的作用,低的VEA值使(M F)+氟化物可以归类于超碱金属家族。(M X)+(X=F, Cl和Br)体系的垂直电子亲和势,与卤素原子自身的亲和势没有直接关系,而与它的电负性相关。卤化作用对降低超碱土金属团簇的垂直电子亲和势值有积极的作用,这为新型超碱金属的设计提供了新的思路。
     3.采用密度泛函(DFT)理论对超碱金属电子化物Li3@calix[4]pyrrole和Li3O@calix[4]pyrrole的几何结构,相对稳定性和非线性光学性质进行了理论研究。通过与Li@calix[4]pyrrole比较发现,以超碱金属Li3和Li3O为电子供体可以给体系带来更大的非线性光学响应。此外,当Li3和Li3O分子平面与calix[4]pyrrole配体的四个N原子构成的平面平行作用时,超碱金属的电离程度更高,体系具有更大的一阶超极化率值。我们的工作为合成新型的基于超原子的非线性光学材料提供了理论指导。
     4. Al14团簇具有类似超碱土金属的特性,使用密度泛函理论B3LYP方法对Al14团簇与水分子的反应机理进行了研究。研究表明Al14团簇化学吸附水分子,并形成Al–O键。Al–O键相邻的Al原子可以作为路易斯碱位点,接受一个H原子,导致O–H键断裂,形成HAl14(OH)中间体。此外Al14团簇还可以与更多的水分子反应,甚至可以生成氢气。超碱土金属Al14依次吸附解离三个水分子及生成第一个H2分子的反应过程是放热的,反应后Al14单元的结构基本保持完整性。但是HAl14(OH)3中间体表面吸附解离第四个水分子之后,Al14单元的结构发生扭曲并且改变了其最初的构型。我们预测超原子可以催化水分子制取氢气,这为氢气的制备有一定的理论指导作用。
Clusters are of considerable interest in research on inorganic chemistry andmaterials chemistry, and play an important role in solid, surface physics, molecularphysics, catalysis and other fields. In preliminary work, Khanna and Jena haveproposed that atomic clusters with suitable size and composition could mimic thechemical behavior of atoms in the periodic table. Such intriguing species are, hence,termed as “superatoms”. A well-known subset of superatoms is superalkali, which arecharacterized by lower ionization potentials than those of alkali-metal atoms.
     In this thesis, two new kinds of superalkali cations are investigated by thequantum chemical method. Their structures, bonding features and other properties arediscusses in detail. We have discussed nonlinear optical properties of the(super)alkali-doped compounds by means of density functional theory. In addition, themechanism of the reaction between Al14cluster and H2O molecules has been studied.The main contributions are as follows:
     1. A new type of hydrogen-based M2H2n+1+(M=F, O, N, C) superalkali cationshas been theoretically predicted at the CCSD(T)/6-311++G(3df,3pd) level. Thesenonmetallic cations exhibit low vertical electron affinities of3.55–4.48eV at theOVGF/6-311++G(3df,3pd) level, and hence should be classified as superalkali cations.It is also worth mentioning that the weakly bound N2H7+and C2H9+cations exhibiteven lower VEA values than the ionization potential (IP) of Cs atom. In addition,according to the positive dissociation energies, the M2H2n+1+cations are stable withrespect to loss of an H+ion or an MHnmolecule. Our results presented in this worknot only verify the feasibility of utilizing hydrogen atoms as ligands in designingspecial superalkalies but add non-metallic candidates to the superalkali family.
     2. A new kind of cationic superatom compounds (M-F)+(M=OLi4, NLi5, CLi6,BLi7and Al14) with low vertical electron affinities (VEA) has been predicted andcharacterized in the present paper. The stability of the studied superatom compoundsis guaranteed by strong M-fluorine interactions, considerable HOMO LUMO gaps, as well as large dissociation energies. Interestingly, the introduction of F significantlyreduces the vertical electron affinities (VEA) of M+. The VEA for the (M-F)+(M=OLi4, NLi5, CLi6, BLi7) cations are within the3.42–3.85eV range, which are lowerthan the IP of Cs atom. The (Al14-F)+cations also exhibit low VEA values of4.60–5.06eV. Hence the studied cationic compounds further enrich the superalkali family.The researches for (OLi4-X)+and (Al14-X)+(X=F, Cl, Br) indicate that fluorination ismore effective than chlorination and bromination to reduce the VEA value of theOLi4+cation, while there is no obvious dependence of the VEA values of larger sized(Al14-X)+on the atomic number of the halogen atoms X. The new knowledge enrichesthe design ideas for superalkalies.
     3. By means of density functional theory, the optimized structures, relativestabilities and nonlinear optical properties of superalkali-based electridesLi3@calix[4]pyrrole and Li3O@calix[4]pyrrole were investigated. It has been foundthat, replacing alkali metal with superalkalis brings larger NLO responses to theelectrides. In addition, the Li3and Li3O molecules are ionized to a greater degreewhen they are parallel to the plane composed by four N atoms of the calix[4]pyrrolecomplexant. As a result, such structures exhibit larger first hyperpolarizabilities (β0)than the other isomers. The results presented in this work may offer meaningfulreferences to future investigation on other NLO materials with superatoms.
     4. It has been demonstrated that the Al14cluster can behave as an alkaline earthmetal atom, which arouses our interest to study the reaction of Al14with the H2Omolecules. The mechanism of the reaction between Al14cluster and H2O moleculeshas been investigated by means of density functional theory calculations. Ourcomputational results reveal that reaction begins with a water molecule chemicallyadsorbed to Al14and a nascent Al–O bond forms during the adsorption. A second Alatom neighboring to the Al–O bond acts as Lewis base and accepts the hydrogen atom,which results in the splitting of the O–H bond and the formation of the HAl14(OH)species. In addition, the Al14cluster could absorb more water molecules, and evenrelease H2with addition of multiple water molecules. It has been found that theprocess of superalkaline earth metal Al14adsorbing three water molecules and releasing the first H2is exothermic, during which the Al14moiety basically maintainsthe geometrical integrity of Al14cluster. However, the structure of Al14moietybecomes much more complex and deviates from its original frame after adsorbing anddissociating the fourth H2O molecule. Moreover, the whole process for release of thesecond H2is endothermic. Accordingly, we predict that the superatom may provide apossibility for hydrogen production.
引文
[1] LEUCHTNER R, HARMS A, CASTLEMAN JR A. Thermal metal cluster anionreactions: Behavior of aluminum clusters with oxygen[J]. J. Chem. Phys.,1989,91:2753-2754.
    [2] LEUCHTNER R, HARMS A, CASTLEMAN JR A. Aluminum clusterreactions[J]. J. Chem. Phys.,1991,94(2):1093-1101.
    [3] HARMS A, LEUCHTNER R, SIGSWORTH S, CASTLEMAN JR A. Gas-phasereactivity of metal alloy clusters[J]. J. Am. Chem. Soc.,1990,112(14):5673-5674.
    [4] LESKIW B, CASTLEMAN JR A. The interplay between the electronic structureand reactivity of aluminum clusters: model systems as building blocks for clusterassembled materials[J]. Chem. Phys. Lett.,2000,316(1):31-36.
    [5] KHANNA S N, JENA P. Assembling Crystals from Clusters[J]. Phys. Rev. Lett.,1992,69:1664.
    [6] KHANNA S N, JENA P. Designing ionic solids from metallic clusters[J]. Chem.Phys. Lett.,1994,219(5–6):479-483.
    [7] BERGERON D E, CASTLEMAN A W, MORISATO T, KHANNA S N.Formation of Al13I: Evidence for the Superhalogen Character of Al13[J]. Science,2004,304(5667):84-87.
    [8] JADZINSKY P D, CALERO G, ACKERSON C J, BUSHNELL D A,KORNBERG R D. Structure of a thiol monolayer-protected gold nanoparticle at1.1resolution[J]. Science,2007,318(5849):430-433.
    [9] SCHEBARCHOV D, GASTON N. Throwing jellium at gallium-a systematicsuperatom analysis of metalloid gallium clusters[J]. Phys. Chem. Chem. Phys.,2011,13(47):21109-21115.
    [10] WALTER M, AKOLA J, LOPEZ-ACEVEDO O, JADZINSKY P D, CALERO G,ACKERSON C J, WHETTEN R L, GR NBECK H, H KKINEN H. A unifiedview of ligand-protected gold clusters as superatom complexes[J]. Proc. Natl.Acad. Sci. USA,2008,105(27):9157-9162.
    [11] DU M-H, CHENG H-P. Manipulation of fullerene-induced impurity states incarbon peapods[J]. Phys. Rev. B,2003,68(11):113402.
    [12] MORAN D, WOODCOCK H L, CHEN Z, SCHAEFER III H F, PAUL V. R.SCHLEYER. On the Viability of Small Endohedral Hydrocarbon CageComplexes: X@C4H4, X@C8H8, X@C8H14, X@C10H16, X@C12H12, andX@C16H16[J]. J. Am. Chem. Soc.,2003,125(37):11442-11451.
    [13] AOYAGI S, NISHIBORI E, SAWA H, SUGIMOTO K, TAKATA M, MIYATA Y,KITAURA R, SHINOHARA H, OKADA H, SAKAI T. A layered ionic crystal ofpolar Li@C60superatoms[J]. Nat. Chem.,2010,2(8):678-683.
    [14] REN X Y, LIU Z Y. Structural and electronic properties of S-doped fullerene C58:Where is the S atom situated?[J]. J. Chem. Phys.,2005,122(3):34306-34306.
    [15] ZHAO J, XIE R-H. Density functional study of onion-skin-like [As@Ni12As20]3and [Sb@Pd12Sb20]3cluster ions[J]. Chem. Phys. Lett.,2004,396(1):161-166.
    [16] F SSLER T F, HOFFMANN S D. Endohedral zintl ions:Intermetalloidclusters[J]. Angew. Chem. Int. Ed.,2004,43(46):6242-6247.
    [17] NAGASE S, KOBAYASHI K. Theoretical study of the lanthanide fullereneCeC82. Comparison with ScC82, YC82and LaC82[J]. Chem. Phys. Lett.,1994,228(1-3):106-110.
    [18] HETTICH R, COMPTON R. EN DOHEDRAL METALLOFULLERENES[J].Advances in Metal and Semiconductor Clusters, Volume4: Cluster Materials,1998,4:179.
    [19] KUMAR V, KAWAZOE Y. Metal-doped magic clusters of Si, Ge, and Sn: Thefinding of a magnetic superatom[J]. Appl. Phys. Lett.,2003,83(13):2677-2679.
    [20] JIANG D-E, WHETTEN R L. Magnetic doping of a thiolated-gold superatom:First-principles density functional theory calculations[J]. Phys. Rev. B,2009,80(11):115402.
    [21] NEUKERMANS S, WANG X, VELDEMAN N, JANSSENS E, SILVERANS R,LIEVENS P. Mass spectrometric stability study of binary MSnclusters (S=Si,Ge, Sn, Pb, and M=Cr, Mn, Cu, Zn)[J]. Int. J. Mass Spectrom.,2006,252(2):145-150.
    [22] CHAUHAN V, MEDEL V M, ULISES REVELES J, KHANNA S N, SEN P.Shell magnetism in transition metal doped calcium superatom[J]. Chem. Phys.Lett.,2012,528:39-43.
    [23] CHAUHAN V, SEN P. Electronic and magnetic properties of3d transitionmetal-doped strontium clusters:Prospective magnetic superatoms[J]. Chem.Phys.,2013,417:37-44.
    [24] MEDEL V M, REVELES J U, KHANNA S N, CHAUHAN V, SEN P,CASTLEMAN A W. Hund’s rule in superatoms with transition metalimpurities[J]. Proc. Natl. Acad. Sci. USA,2011,108(25):10062-10066.
    [25] GONZáLEZ-RAMíREZ H, ULISES REVELES J, GóMEZ-SANDOVAL Z.High magnetic moments on binary yttrium-alkali superatoms[J]. Chem. Phys.Lett.,2013,583(0):97-102.
    [26] REVELES J U, CLAYBORNE P A, REBER A C, KHANNA S N, PRADHAN K,SEN P, Pederson M R. Designer magnetic superatoms[J]. Nat. Chem.,2009,1(4):310-315.
    [27] REVELES J U, SEN P, PRADHAN K, ROY D R, KHANNA S N. Effect ofElectronic and Geometric Shell Closures on the Stability of Neutral and AnionicTiNan(n=1–13) Clusters[J]. J. Phys. Chem. C2010,114:10739-10744.
    [28] ZHANG X, WANG Y, WANG H, LIM A, GANTEFOER G, BOWEN K H,REVELES J U, KHANNA S N. On the Existence of Designer MagneticSuperatoms[J]. J. Am. Chem. Soc.,2013,135(12):4856-4861.
    [29] WU C H, KUDO H, Ihle H R. Thermochemical properties of gaseous Li3O andLi2O2[J]. J. Chem. Phys.,1979,70(04):1815-1820.
    [30] GUTSEV G L, BOLDYREV A. DVM X calculations on the electronic structureof “superalkali” cations[J]. Chem. Phys. Lett.,1982,92(3):262-266.
    [31] BENGTSSON L, HOLMBERG B, ULVENLUND S. Fluorodilithium1+andhydroxodilithium1+in molten alkali-metal nitrate[J]. Inorg. Chem.,1990,29(18):3615-3618.
    [32] YOKOYAMA K, HAKETA N, TANAKA H, FURUKAWA K, KUDO H.Ionization energies of hyperlithiated Li2F molecule and LinFn1(n=3,4)clusters[J]. Chem. Phys. Lett.,2000,330(3):339-346.
    [33] NE KOVI O M, VELJKOVI M V, VELI KOVI S R, PETKOVSKA L T,PERI‐GRUJI A A. Ionization energies of hypervalent Li2F, Li2Cl and Na2Clmolecules obtained by surface ionization electron impact neutralization massspectrometry[J]. Rapid Commun. Mass Spectrom.,2003,17(3):212-214.
    [34] SCHLEYER P V R, WUERTHWEIN E U, POPLE J A. Effectively hypervalentfirst-row molecules.1. Octet rule violations by OLi3and OLi4[J]. J. Am. Chem.Soc.,1982,104(21):5839-5841.
    [35] WURTHWEIN E U, SCHLEYER P V R, POPLET J A. HypermetalationInvolving Sodium: ONa3, ONa4, HONa2, and HONa3[J]. J. Am. Chem.Soc.,1984,106:6973-6978
    [36] GOLDBACH A, HENSEL F, RADEMANN K. Formation of potassium oxideclusters by seeded supersonic expansion[J]. Inter. J. Mass Spect. Ion Process,1995,148(1): L5-L9.
    [37] REHM E, BOLDYREV A I, SCHLEYER P V R. Ab initio study of superalkalis.First ionization potentials and thermodynamic stability[J]. Inorg. Chem.,1992,31(23):4834-4842.
    [38] LI Y, WU D, LI Z-R, SUN C-C. Structural and electronic properties ofboron-doped lithium clusters: Ab initio and DFT studies[J]. J. Comp. Chem.,2007,28(10):1677-1684.
    [39] TONG J, LI Y, WU D, LI Z-R, HUANG X-R. Low ionization potentials ofbinuclear superalkali B2Li11[J]. J. Chem. Phys.,2009,131(16):164307.
    [40] TONG J, LI Y, WU D, LI Z-R, HUANG X-R. Ab Initio Investigation on a NewClass of Binuclear Superalkali Cations M2Li2k+1+(F2Li3+, O2Li5+, N2Li7+, andC2Li9+)[J]. J. Phys. Chem. A,2011,115(10):2041-2046.
    [41] ANUSIEWICZ I. The Na2X Superalkali Species (X=SH, SCH3, OCH3, CN, N3)as Building Blocks in the Na2XY Salts (Y=MgCl3, Cl, NO2). An Ab Initio Studyof the Electric Properties of the Na2XY Salts[J]. Aust. J. Chem.,2010,63:1573-1581.
    [42] TONG J, WU D, LI Y, WANG Y, WU Z J. Superalkali Character ofAlkali-Monocyclic (Pseudo) oxocarbons Clusters[J]. Dalton Trans.,2013,42:9982-9989.
    [43] TONG J, WU Z, LI Y, WU D. Prediction and characterization of novelpolynuclear superalkali cations[J]. Dalton Trans.,2013,42(2):577-584.
    [44] VELI KOVI S R, DJUSTEBEK J B, VELJKOVI F M, RADAK B B,VELJKOVI M V. Formation and ionization energies of small chlorine-dopedlithium clusters by thermal ionization mass spectrometry[J]. Rapid Comm. MassSpect.,2012,26(4):443-448.
    [45] MORAN D, STAHL F, JEMMIS E D, SCHAEFER H F, SCHLEYER P V R.Structures, Stabilities, and Ionization Potentials of Dodecahedrane EndohedralComplexes[J]. J. Phys. Chem. A,,2002,106(20):5144-5154.
    [46] CHEN D-L, TIAN W-Q, LU W-C, SUN C-C. Special stability of cationicMPb12+clusters and superalkali character of neutral MPb12clusters (M=B, Al,Ga, In, and Tl)[J]. J. Chem. Phys.,2006,124(15):154313.
    [47] VELI KOVI S, USTEBEK J, VELJKOVI F, VELJKOVI M. Formationof positive cluster ions LinBr (n=2–7) and ionization energies studied bythermal ionization mass spectrometry[J]. J. Mass. Spectrom.,2012,47(5):627-631.
    [48] VELICKOVIC S R, VELJKOVIC F M, PERIC-GRUJIC A A, RADAK B B,VELJKOVIC M V. Ionization energies of K2X (X=F, Cl, Br, I) clusters[J].Rapid Commun. Mass Spectrom.,2011,25(16):2327-2332.
    [49] ALEXANDROVA A N, BOLDYREV A I. ó-Aromaticity and ó-Antiaromaticityin Alkali Metal and Alkaline Earth Metal Small Clusters[J]. J. Phys. Chem. A,2003,107:554-560.
    [50] USTEBEK J, VELI KOVI S R, VELJKOVI F M, VELJKOOVI M V.PRODUCTION OF HETEROGENEOUS SUPERALKALI CLUSTERS LinF (n=2–6) BY KNUDSEN–CELL MASS SPECTROMETRY[J]. Dig. J. Nanomater.Bios.2012,7(4):1365-1372.
    [51] ZINTL E, MORAWIETZ W. Orthosalze von Sauerstoffs uren[J]. Z. Anorg. Allg.Chem.,1938,236(1):372-410.
    [52] LI Z-R, WANG F-F, WU D, LI Y, CHEN W, SUN X-Y, GU F L, AOKI Y. Royalcrown-shaped electride Li3-N3-Be containing two superatoms: New knowledgeon aromaticity[J]. J. Comput. Chem.,2006,27(8):986-993.
    [53] WANG F-F, LI Z-R, WU D, SUN X-Y, CHEN W, LI Y, SUN C-C. NovelSuperalkali Superhalogen Compounds (Li3)+(SH)(SH=LiF2, BeF3, and BF4)with Aromaticity: New Electrides and Alkalides[J]. Chem. Phys. Chem,2006,7(5):1136-1141.
    [54] WANG Y F, CHEN W, YU G T, LI Z R, SUN C C. Novel Metal-[MetalOxide]-Nonmetal Sandwich-Like Superalkali Compounds Li3OMC5H5(M=Be,Mg, and Ca): How to Increase the Aromaticity of Li3Ring?[J]. Int. J. QuantumChem.,2010,110(10):1953-1963.
    [55] CHEN W, LI Z-R, WU D, LI Y, SUN C-C. Li3–O–Li3molecule: Ametal-nonmetal-metal sandwichlike compound with a distending electroncloud[J]. J. Chem. Phys.,2005,123(16):164306.
    [56] GUTSEV G. L., BOLDYREV A. I. DVM-X calculations on the ionizationpotentials of MXk+1complex anions and the electron affinities of MXk+1“superhalogens”[J]. J. Chem. Phys.,1981,56:277-283.
    [57] WANG X-B, DING C-F, WANG L-S, BOLDYREV A I, SIMONS J. Firstexperimental photoelectron spectra of superhalogens and their theoreticalinterpretations[J]. J. Chem. Phys.,1999,110(10):4763-4771.
    [58] ELLIOTT B M, KOYLE E, BOLDYREV A I, WANG X-B, WANG L-S.MX3superhalogens (M=Be, Mg, Ca; X=Cl, Br): A photoelectronspectroscopic and ab initio theoretical study[J]. J. Phys. Chem. A,2005,109(50):11560-11567.
    [59] ZHAI H-J, WANG L-M, LI S-D, WANG L-S. Vibrationally resolvedphotoelectron spectroscopy of BO and BO2: A joint experimental andtheoretical study[J]. J. Phys. Chem. A,2007,111(6):1030-1035.
    [60] GUTSEV G, BOLDYREV A. The way to systems with the highest possibleelectron affinity[J]. Chem. Phys. Lett.,1984,108(3):250-254.
    [61] GUTSEV G, BOLDYREV A. Theoretical estimation of the maximal value of thefirst, second and higher electron affinity of chemical compounds[J]. J. Phys.Chem.,1990,94(6):2256-2259.
    [62] SMUCZYNSKA S, SKURSKI P. Halogenoids as Ligands in SuperhalogenAnions[J]. Inorg. Chem.,2009,48(21):10231-10238.
    [63] ZHAI H-J, LI J, WANG L-S. Icosahedral gold cage clusters: M@Au12(M=V,Nb, and Ta)[J]. J. Chem. Phys.,2004,121(17):8369-8374.
    [64] PATHAK B, SAMANTA D, AHUJA R, JENA P. Borane Derivatives: A NewClass of Super-and Hyperhalogens[J]. Chem. Phys. Chem.,2011,12(13):2423-2428.
    [65] WILLIS M, G TZ M, KANDALAM A K, GANTEF R G F, JENA P.Hyperhalogens: Discovery of a New Class of Highly Electronegative Species[J].Angew. Chem. Int. Ed.,2010,49(47):8966-8970.
    [66] FENG Y, CHENG M, KONG X Y, XU H G, ZHENG W J. Microscopic solvationof NaBO2in water: anion photoelectron spectroscopy and ab initiocalculations[J]. Phys. Chem. Chem. Phys.,2011,13(35):15865-15872.
    [67] GUTSEV G L, WEATHERFORD C A, JOHNSON L E, JENA P. Structure andproperties of the aluminum borates Al(BO2)nand Al(BO2)n (n=1–4)[J]. J.Comput. Chem.,2012,33(4):416-424.
    [68] REBER A C, KHANNA S N, CASTLEMAN A W. Superatom Compounds,Clusters, and Assemblies: Ultra Alkali Motifs and Architectures[J]. J. Am. Chem.Soc.,2007,129:10189-10194.
    [69] YANG H, LI Y, WU D, LI Z-R. Structural properties and nonlinear opticalresponses of superatom compounds BF4M (M=Li, FLi2, OLi3, NLi4)[J]. Int. J.Quantum Chem2012,112(3):770-778.
    [70] LI Y, WU D, LI Z-R. Compounds of Superatom Clusters: Preferred Structuresand Significant Nonlinear Optical Properties of the BLi6X (X=F, LiF2, BeF3,BF4) Motifs[J]. Inorg. Chem.,2008,47(21):9773-9778.
    [71] SUN W-M, WU D, LI Y, LI Z-R. Theoretical study on superalkali (Li3) inammonia: novel alkalides with considerably large first hyperpolarizabilities[J].Dalton Trans.,2014,43(2):486-494.
    [72] FRANKEN P, HILL A, PETERS C, WEINREICH G. Generation of opticalharmonics[J]. Phys. Rev. Lett.,1961,7(4):118-119.
    [73] ARMSTRONG J, BLOEMBERGEN N, DUCUING J, PERSHAN P. Interactionsbetween Light Waves in a Nonlinear Dielectric[J]. Phys. Rev.,1962,127(6):1918-1939.
    [74] FRAZIER C C, HARVEY M A, COCKERHAM M P, HAND H M,CHAUCHARD E A, LEE C H. Second-harmonic generation intransition-metal-organic compounds[J]. J. Phys. Chem.,1986,90(22):5703-5706.
    [75] SEN R, MAJUMDAR D, BHATTACHARYYA S, BHATTACHARYYA S.Modeling Hyperpolarizabilities of Some TICT Molecules and Their Analogues[J]. J. Phys. Chem.,1993,97(29):7491-7498.
    [76] CHENG L T, TAM W, MARDER S R, STIEGMAN A E, RIKKEN G,SPANGLER C W. Experimental Investigations of Organic Molecular NonlinearOptical Polarlzabllities.2. A Study of Conjugation Dependences [J]. J. Pkys.Ckem.,1991,95(26):10643-10652.
    [77] ZHAO C-Y, ZHANG Y, FANG W-H, YOU X-Z. A theoretical study on thehyperpolarizabilities of dicyanovinyl and tricyanovinyl substituted benzenes,stilbenes, styrenes and azobenzenes[J]. J. Mol. Struct.(Theochem),1996,367:73-82
    [78] MATSUZAWA N, DIXON D A. Theoretical Study of the Conformation andSecond-Order Hyperpolarizability of Substituted Phenylpolyacetylenes[J]. J.Phys. Chem.,1994,98(45):11669-11676.
    [79] GROENENDAAL L, BRUINING M J, HENDRICKX E H, PERSOONS A,VEKEMANS J A, HAVINGA E E, MEIJER E. Synthesis and (Non)linearOptical Properties of a Series of Donor-Oligopyrrole-Acceptor Molecules[J].Chem. Mater.,1998,10(1):226-234.
    [80] WU X, WU J, LIU Y, JEN A K. Highly Efficient, Thermally and ChemicallyStable Second Order Nonlinear Optical Chromophores Containing a2-Phenyl-tetracyanobutadienyl Acceptor[J]. J. Am. Chem. Soc.,1999,121(2):472-473.
    [81] ALBERT I D, MARKS T J, RATNER M A. Rational Design of Molecules withLarge Hyperpolarizabilities. Electric Field, Solvent Polarity, and Bond LengthAlternation Effects on Merocyanine Dye Linear and Nonlinear OpticalProperties[J]. J. Phys. Chem.,1996,100(23):9714-9725.
    [82] DIRK C, KATZ H, SCHILLING M, KING L. Use of thiazole rings to enhancemolecular second-order nonlinear optical susceptibilities[J]. Chem. Mater.,1990,2(6):700-705.
    [83] ALBERT I D L, MARKS T J, RATNER M A. Large MolecularHyperpolarizabilities. Quantitative Analysis of Aromaticity and AuxiliaryDonor Acceptor Effects[J]. J.Am. Chem. Soc.,1997,119(28):6575-6582.
    [84] COE B J, FOXON S P, HARPER E C, RAFTERY J, SHAW R, SWANSON C A,ASSELBERGHS I, CLAYS K, BRUNSCHWIG B S, FITCH A G. Nonlinearoptical and related properties of iron (II) pentacyanide complexes withquaternary nitrogen electron acceptor units[J]. Inorg. Chem.,2009,48(4):1370-1379.
    [85] LECOURS S M, GUAN H-W, DIMAGNO S G, WANG C, THERIEN M J.Push-pull arylethynyl porphyrins: new chromophores that exhibit largemolecular first-order hyperpolarizabilities[J]. J. Am. Chem. Soc.,1996,118(6):1497-1503.
    [86] TSUBOYA N, HAMASAKI R, ITO M, MITSUISHI M, MIYASHITA T,YAMAMOTO Y. Nonlinear optical properties of novel fullerene-ferrocenehybrid Molecules[J]. J. Mater. Chem.,2003,13(3):511-513.
    [87] FANTI M, ORLANDI G, ZERBETTO F. Polarization Effects in Push-PullBuckminsterfullerenes: A Semiempirical Study[J]. J. Phys. Chem. A,1997,101(16):3015-3020.
    [88] WU I-Y, LIN J T, LUO J, SUN S-S, LI C-S, LIN K J, TSAI C, HSU C-C, LINJ-L. Syntheses and Reactivity of Ruthenium σ-Pyridylacetylides[J].Organometallics,1997,16(10):2038-2048.
    [89] CHENG L, TAM W, EATON D. Quadratic hyperpolarizabilities of Group6Ametal carbonyl complexes[J]. Organometallics,1990,9(11):2856-2857.
    [90] WENSELEERS W, GERBRANDIJ A W, GOOVAERTS E, GARCIA M H,ROBALO M P, MENDES P J, RODRIGUES J C, DIAS A R. Hyper-Rayleighscattering study of η5-monocyclopentadienyl-metal complexes for second ordernon-linear optical materials[J]. J. Mater. Chem.,1998,8(4):925-930.
    [91] DI BELLA S, MARKS T J, RATNER M A. Environmental effects on nonlinearoptical chromophore performance. calculation of molecular quadratichyperpolarizabilities in solvating media[J]. J. Am. Chem. Soc.,1994,116(10):4440-4445.
    [92] DYE J L, WAGNER M J, OVERNEY G, HUANG R H, NAGY T F, TOMANEKD. Cavities and channels in electrides[J]. J. Am. Chem. Soc.,1996,118(31):7329-7336.
    [93] DYE J L. Electrons as Anions[J]. Science,2003,301(5633):607-608.
    [94] CHEN W, LI Z R, WU D, LI Y, SUN C C, GU F L. The Structure and the LargeNonlinear Optical Properties of Li@Calix[4]pyrrole[J]. J. Am. Chem. Soc.,2005,127(31):10977-10981.
    [95] CHEN W, LI Z-R, WU D, LI R-Y, SUN C-C. Theoretical Investigation of theLarge Nonlinear Optical Properties of (HCN)nClusters with Li Atom[J]. J. Phys.Chem. B,2004,109(1):601-608.
    [96] LI Z-J, LI Z-R, WANG F-F, LUO C, MA F, XU H-L, HUANG X-R. Cis–transisomerization and spin multiplicity dependences on the static firsthyperpolarizability for the two-alkali-metal-doped saddle [4] pyrrolecompounds[J]. Theor. Chem. Accounts,2009,122(5-6):305-311.
    [97] MA F, LI Z-R, XU H-L, LI Z-J, LI Z-S, AOKI Y, GU F L. Lithium Salt Electridewith an Excess Electron PairsA Class of Nonlinear Optical Molecules forExtraordinary First Hyperpolarizability[J]. J. Phys. Chem. A,2008,112(45):11462-11467.
    [98] XU H-L, LI Z-R, WU D, WANG B-Q, LI Y, GU F L, AOKI Y. Structures andLarge NLO Responses of New Electrides: Li-Doped Fluorocarbon Chain[J]. J.Am. Chem. Soc,2007,129(10):2967-2970.
    [99] MUHAMMAD S, XU H L, LIAO Y, KAN Y H, SU Z M. Quantum MechanicalDesign and Structure of the Li@B10H14Basket with a Remarkably EnhancedElectro-Optical Response[J]. J. Am. Chem. Soc.,2009,131(33):11833-11840.
    [100] GARCIA-BORRàS M, SOLà M, LUIS J M, KIRTMAN B. Electronic andVibrational Nonlinear Optical Properties of Five Representative Electrides[J].Journal of Chemical Theory and Computation,2012,8(8):2688-2697.
    [101] WANG J-J, ZHOU Z-J, BAI Y, LIU Z-B, LI Y, WU D, CHEN W, LI Z-R, SUNC-C. The interaction between superalkalis (M3O, M=Na, K) and a C20F20cageforming superalkali electride salt molecules with excess electrons inside theC20F20cage: dramatic superalkali effect on the nonlinear optical property[J]. J.Mater. Chem.,2012,22(19):9652-9657.
    [102] DYE J L, CERASO J M, LOK M, BARNETT B, TEHAN F J. Crystalline saltof the sodium anion (Na)[J]. J. Am. Chem. Soc.,1974,96(2):608-609.
    [103] TEHAN F J, BARNETT B, DYE J L. Alkali anions. Preparation and crystalstructure of a compound which contains the cryptated sodium cation and thesodium anion[J]. J. Am. Chem. Soc.,1974,96(23):7203-7208.
    [104] COOLEN R B, PAPADAKIS N, AVERY J, ENKE C, DYE J L.Computer-interactive system for stopped-flour kinetics with rapid scanningmolecular absorption spectrometry[J]. Anal. Chem.,1975,47(9):1649-1655.
    [105] DYE J L. Compounds of Alkali Metal Anions[J]. Angew. Chem Int. Ed. Engl.,1979,18(8):587-598.
    [106] WAGNER M J, DYE J L. Alkalides, Electrides, and Expanded Metals[J]. Annu.Rev. Mater. Sci.,1993,23(1):223-253.
    [107] DYE J L, DEBACKER M G. Physical and chemical properties of alkalides andelectrides[J]. Ann. Rev. Phys. Chern.,1987,38(1):271-299.
    [108] KIM J, ICHIMURA A S, HUANG R H, REDKO M, PHILLIPS R C,JACKSON J E, DYE J L. Crystalline salts of Na and K (alkalides) that arestable at room temperature[J]. J. Am. Chem. Soc.,1999,121(45):10666-10667.
    [109] JING Y Q, LI Z R, WU D, LI Y, WANG B Q, GU F L, AOKI Y. Effect of theComplexant Shape on the Large First Hyperpolarizability of Alkalides Li+(NH3)4M [J]. Chem. Phys. Chem.,2006,7(8):1759-1763.
    [110] CHEN W, LI Z R, WU D, LI Y, SUN C C, GU F L, AOKI Y. Nonlinear opticalproperties of alkalides Li+(calix [4] pyrrole)M (M=Li, Na, and K): Alkalianion atomic number dependence[J]. J. Am. Chem. Soc.,2006,128(4):1072-1073.
    [111] ZHOU Z J, LI H, HUANG X R, WU Z J, MA F, LI Z R. The structure and largenonlinear optical properties of a novel octupolar electride Li@36Adz[J]. Comp.Theo. Chem.,2013,1023(0):99-103.
    [112] WANG F-F, LI Z-R, WU D, WANG B-Q, LI Y, LI Z-J, CHEN W, YU G-T, GUF L, AOKI Y. Structures and Considerable Static First Hyperpolarizabilities:New Organic Alkalides (M+@n6adz)M'(M, M'=Li, Na, K; n=2,3) withCation Inside and Anion Outside of the Cage Complexants[J]. J. Phys. Chem. B2,2008,112(4):1090-1094.
    [113] REDKO M Y, HUANG R H, JACKSON J E, HARRISON J F, DYE J L.Barium Azacryptand Sodide, the First Alkalide with an Alkaline Earth Cation,Also Contains a Novel Dimer,(Na2)2[J]. J. Am. Chem. Soc.,2003,125(8):2259-2263.
    [114] FAN L T, LI Y, WU D, LI Z R, SUN C C. Structural Characteristics and LargeNon-Linear Optical Responses of New Alkaline Earth-Based Alkalides[J]. Aust.J. Chem.,2012,65(2):138-144.
    [115] WANG Y F, HUANG J G, ZHOU G P. Coordination number effect of nitrogenatom on the structures and NLO responses: alkaline earth-based alkalides[J].Struct.Chem.,2013,24:1545-1553.
    [116]徐光宪,黎乐民,王德顺.量子化学基本原理和从头计算法[M].北京:科学出版社,1985.
    [117]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.
    [118] JANKOWSKI K, SOKOLOWSKI A. Ab initio studies of electron correlation inrare-earth ions. I. Intrashell correlation for4f2in Pr3+[J]. J. Phys. B: At. Mol.Phys,1981,14(18):3345.
    [119] POPLE J, SEEGER R, KRISHNAN R. Variational configuration interactionmethods and comparison with perturbation theory[J]. Intern. J. Quantum Chem.,1977,12(S11):149-163.
    [120] CASIDA M E, JAMORSKI C, CASIDA K C, SALAHUB D R. Molecularexcitation energies to high-lying bound states from time-dependentdensity-functional response theory: Characterization and correction of thetime-dependent local density approximation ionization threshold[J]. J. Chem.Phys.,1998,108(11):4439-4449.
    [121] KRISHNAN R, SCHLEGEL H, POPLE J. Derivative studies inconfiguration-interaction theory[J]. J. Chem. Phys.,1980,72:4654-4655.
    [122] SALTER E, TRUCKS G W, BARTLETT R J. Analytic energy derivatives inmany-body methods. I. First derivatives[J]. J. Chem. Phys.,1989,90(3):1752-1766.
    [123] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadraticconfiguration interaction. A general technique for determining electroncorrelation energies[J]. J. Chem. Phys.,1987,87(10):5968-5975.
    [124] CIOSLOWSKI J, NANAYAKKARA A. A new robust algorithm for fullyautomated determination of attractor interaction lines in molecules[J]. Chem.Phys. Lett.,1994,219(1):151-154.
    [125] EADE R H, ROBB M A. Direct minimization in mc scf theory. Thequasi-newton method[J]. Chem. Phys. Lett.,1981,83(2):362-368.
    [126] Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev.,1964,136(3B): B864-B871.
    [127] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange andCorrelation Effects[J]. Phys. Rev.,1965,140(4A): A1133-A1138.
    [128] ADAMO C, BARONE V. Toward reliable density functional methods withoutadjustable parameters: The PBE0model[J]. J. Chem. Phys.,1999,110(13):6158-6170.
    [129] FUKUI K. Variational principles in a chemical reaction[J]. Intern. J. QuantumChem.,1981,20(S15):633-642.
    [130] SALAHUB D R, ZERNER M C. The Challenge of d and f Electrons[M]. ACS:Washington, D.C.,1989.
    [131] PARR R G, YANG W. Density-functional theory of atoms and molecules[M].Oxford Univ. Press: Oxford,1989.
    [132] LABANOWSKI J K, ANDZELM J W. Density functional methods inchemistry[M]. New York: Springer-Verlag,2011.
    [133] LEE C, YANG W, PARR R G. Development of the Colle-Salvetticorrelation-energy formula into a functional of the electron density[J]. Phys.ReV. B,1988,37(2):785-789.
    [134] BECKE A D. Density-functional thermochemistry. III. The role of exactexchange[J]. J. Chem. Phys.,1993,98(7):5648–5652.
    [135] BECKE A D. Density-functional exchange-energy approximation with correctasymptotic behavior[J]. Phys. Rev. A,1988,38(6):3098-3100.
    [136] BOYS S F, BERNARDI F D. The calculation of small molecular interactions bythe differences of separate total energies. Some procedures with reducederrors[J]. Mol. Phys.,1970,19(4):553-566.
    [137] HAY P J, WADT W R. Ab initio effective core potentials for molecularcalculations. Potentials for the transition metal atoms Sc to Hg[J]. J. Chem.Phys.,1985,82(1):270-283.
    [138] JOHNSTON H S. Gas phase reaction rate theory[M]. Ronald Press Company,New York,1966.
    [139] BILLING G D, MIKKELSEN K V. Introduction to Molecular Dynamics andChemical Kenetics[M]. J. Wiley,1996.
    [140] GLASSTONE S, LAIDLER K J, EYRING H. The theory of rate processes[M].Mc Graw-Hill, New York,1941.
    [141] LIAS S G, BARTMESS J E, LIEBMAN J, HOLMES J, LEVIN R D,MALLARD W G. Gas-phase ion and neutral thermochemistry[J]. J. Phys.Chem. Ref. Data Supp.,1988,1:17.
    [142] SCHLEYER P V R, WUERTHWEIN E U, KAUFMANN E, CLARK T,POPLE J A. Effectively hypervalent molecules.2. Lithium carbide (CLi5),lithium carbide (CLi6), and the related effectively hypervalent first rowmolecules, CLi5-nHnand CLi6-nHn[J]. J. Am. Chem. Soc.,1983,105(18):5930-5932.
    [143] TONG J, LI Y, WU D, WU Z J. Theoretical Study on Polynuclear SuperalkaliCations with Various Functional Groups as the Central Core[J]. Inorg. Chem.,2012,51(11):6081-6088.
    [144] SMUCZYNSKA S, SKURSKI P. Is hydrogen capable of playing a central atomrole in superhalogen anions?[J]. Chem. Phys. Lett.,2007,443:190–193.
    [145] DIERCKSEN G H F, NIESSEN W, KRAEMER W P. SCF LCGO MO studieson the fluoronium ion FH2+and its hydrogen bonding interaction with hydrogenfluoride FH[J]. Theoret. chim. Acta (Berl.),1973,31(3):205-214.
    [146] KRAEMER W P, DIERCKSEN G H F. SCF MO LCGO studies on hydrogenbonding: The system (H2OHOH2)+[J]. Chem. Phys. Lett.,1970,5(8):463.
    [147] HIRAO K, FUJIKAWA T, KONISHI H, YAMABE S. A Theoretical study ofammonia polymers and cluster ions[J]. Chem. Phys. Lett.,1984,104(2):184-190.
    [148] JURSIC B S. Double water and double ammonia proton complexations studiedwith ab initio and density functional theory methods[J]. J. Mol. Struct.(THEOCHEM),1997,393(1):1.
    [149] VALEEV E F, SCHAEFER III H F. The protonated water dimer: Bruecknermethods remove the spurious C symmetry minimum[J]. J. Chem. Phys.,1998,108:7197-7201.
    [150] KALEDIN M, KALEDIN A L, BOWMAN J M. Vibrational analysis of theH5O2+infrared spectrum using molecular and driven molecular dynamics[J]. J.Phys. Chem. A,2006,110(9):2933-2939.
    [151] TERMATH V, SAUER J. Ab initio molecular dynamics simulation of H5O2+and H7O3+gas phase clusters based on density functional theory[J]. Mol. Phys.,1997,91(5):963-975.
    [152] PEYERIMHOFF S D M P, BUENKER R J. Ab initio study of the hydrogenbond in [H3N-H…NH3]+[J]. J. Am. Chem. Soc.,1972,94(24):8301-8308.
    [153] DELPUECH J J, SERRATRICE G, STRICH A, VEILLARD A. An ab initioLCAO-MO-SCF study of reaction paths for proton transfer in ammoniumaqueous solution[J]. Molec. Phys.,1975,29(3):849.
    [154] PLATTS J A, LAIDIG K E. A theoretical study of the proton-bound ammoniadimer[J]. J. Phys. Chem.,1995,99(17):6487-6492.
    [155] XIE Y, REMINGTON R B, SCHAEFER H F. The protonated water dimer:Extensive theoretical studies of H5O2+[J]. J. Chem. Phys.,1994,101(6):4878-4884.
    [156] SCHEINER S. Proton transfers in hydrogen-bonded systems. VI. Electronicredistributions in (N2H7)+and (O2H5)+[J]. J. Chem. Phys.,1981,75:5791-5801.
    [157] ASADA T, HARAGUCHI H, KITAURA K. Simulation studies of protontransfer in N2H7+cluster by classical ab initio Monte Carlo and quantum wavepacket dynamics[J]. J. Phys. Chem. A,2001,105(31):7423-7428.
    [158] ASMIS K R, YANG Y, SANTAMBROGIO G, BRüMMER M, ROSCIOLI J R,MCCUNN L R, JOHNSON M A, KüHN O. Gas-Phase Infrared Spectroscopyand Multidimensional Quantum Calculations of the Protonated AmmoniaDimer N2H7+[J]. Ange. Chem. Inter. Ed.,2007,46(45):8691-8694.
    [159] SAUNDERS M. Stochastic search for isomers on a quantum mechanicalsurface[J]. J. Comp. Chem.,2004,25(5):621-626.
    [160] BERA P P, SATTELMEYER K W, SAUNDERS M, SCHAEFER III H F,SCHLEYER P V R. Mindless chemistry[J]. J. Phys. Chem. A,2006,110(13):4287.
    [161] FRISCH M J, TRUCKS G W, SCHLEGEL H B. et al. Gaussian09[CP],Revision A02, Gaussian, Inc., Wallingford CT,2009.
    [162] DENNINGTON R, KEITH T, MILLAM J. GaussView[CP], version5,Semichem Inc., Shawnee Mission, KS,2009.
    [163] DESIRAJU G R. The C-H-O Hydrogen Bond in Crystals: What Is It?[J]. Acc.Chem. Res.,1991,24(10):290-296.
    [164] AUER A A, HELGAKER T, KLOPPER W. Accurate molecular geometries ofthe protonated water dimer[J]. Phys. Chem. Chem. Phys.,2000,2(10):2235-2238.
    [165] BADER R F W. Atoms in Molecules: A Quantum Theory[M]. Clarendon Press,Oxford,1990.
    [166] DALLESKA N F, HONMA K, ARMENTROUT P B. Stepwise solvationenthalpies of protonated water clusters: collision-induced dissociation as analternative to equilibrium studies[J]. J. Am. Chem. Soc.,1993,115(25):12125-12131.
    [167] HUANG X, BRAAMS B J, BOWMAN J M. Ab initio potential energy anddipole moment surfaces for HO[J]. J. Chem. Phys.,2005,122:044308.
    [168] KHANNA S N, JENA P. Atomic clusters: Building blocks for a class ofsolids[J]. Phys. Rev. B,1995,51(19):13705-13716.
    [169] HOTOP H, LINEBERGER W C. Binding energies in atomic negative ions: II[J].J. Phys. Chem. Ref. Data,1985,14:731-750.
    [170] KERR J. CRC handbook of chemistry and physics1999–2000: aready-reference book of chemical and physical data[J]. CRC Handbook ofChemistry and Physics,81st ed., CRC Press, Boca Raton, FL, USA,2000.
    [171] ELLIOTT B M, KOYLE E, BOLDYREV A I, WANG XUE-BIN, WANGLAI-SHENG. MX3Superhalogens (M=Be, Mg, Ca; X=Cl, Br): APhotoelectron Spectroscopic and ab Initio Theoretical Study[J]. J. Phys. Chem. A,2005,109:11560-11567.
    [172] WANG D, GRAHAM J D, BUYTENDYK A M, BOWEN K H. Photoelectronspectroscopy of the molecular anions, Li3O and Na3O [J]. J. Chem. Phys.,2011,135(16):164308.
    [173] ALEXANDROVA A N, BOLDYREV A I, FU Y-J, YANG X, WANG X-B,WANG L-S. Structure of the NaxClx+1(x=1–4) clusters via ab initio geneticalgorithm and photoelectron spectroscopy[J]. J. Chem. Phys.,2004,121(12):5709-5719.
    [174] ANUSIEWICZ I, SOBCZYK M, D BKOWSKA I, SKURSKI P. An ab initiostudy on MgX3and CaX3superhalogen anions (X=F, Cl, Br)[J]. J. Chem.Phys.,2003,291(2):171-180.
    [175] ANUSIEWICZ I. Superhalogen Anions Utilizing Acidic Functional Groups AsLigands[J]. J. Phys. Chem. A,2009,113(42):11429-11434.
    [176] GUTSEV G, BOLDYREV A. The theoretical investigation of the electronaffinity of chemical compounds[J]. Adv. Chem. Phys.,1985,61:169-221
    [177] SIKORSKA C, SMUCZYNSKA S, SKURSKI P, ANUSIEWICZ I. BX4andAlX4Superhalogen Anions (X=F, Cl, Br): An ab Initio Study[J]. Inorg.Chem.,2008,47(16):7348-7354.
    [178] LI X, WU H, WANG X-B, WANG L-S. s-p Hybridization and Electron ShellStructures in Aluminum Clusters: A Photoelectron Spectroscopy Study[J]. Phys.Rev. Lett.,1998,81(9):1909-1912.
    [179] RAO B, JENA P. Evolution of the electronic structure and properties of neutraland charged aluminum clusters: A comprehensive analysis[J]. J. Chem. Phys.,1999,111(5):1890-1904.
    [180] REVELES J U, KHANNA S N, ROACH P J, CASTLEMAN A W. Multiplevalence superatoms[J]. Proc. Natl. Acad. Sci. USA,2006,103(49):18405-18410.
    [181] BERGERON D E, ROACH P J, CASTLEMAN A W, JONES N O, KHANNAS N. At Cluster Superatoms as Hatogens in Polyhalides and as Alkaline Earths inlodide Salts At Cluster Superatoms as Hatogens in Polyhalides and as AlkalineEarths in lodide Salts [J]. Science,2005,307(5707):231-235.
    [182] WANG S J, LI Y, WANG Y F, WU D, LI Z R. Structures and Nonlinear OpticalProperties of the Endohedral Metallofullerene-Superhalogen CompoundsLi@C60-BX4(X=F, Cl, Br)[J]. Phys. Chem. Chem. Phys.,2013,15:12903-12910.
    [183] IWASA T, NAKAJIMA A. Geometric, Electronic, and Optical Properties of aSuperatomic Heterodimer and Trimer: Sc@Si16–V@Si16andSc@Si16–Ti@Si16–V@Si16[J]. J. Phys. Chem. C,2012,116(26):14071-14077.
    [184] KUDO H. Observation of hypervalent CLi6by Knudsen-effusion massspectrometry[J]. Nature,1992,355(6359):432-434.
    [185] CARPENTER J E, WEINHOLD F. Analysis of the geometry of thehydroxymethyl radical by the “different hybrids for different spins” naturalbond orbital procedure[J]. J. Mol. Str.(THEOCHEM),1988,169:41-62.
    [186] REED A E, WEINSTOCK R B, WEINHOLD F. Natural population analysis[J].J. Chem. Phys.,1985,83(2):735-746.
    [187] ZAKRZEWSKI V G, ORTIZ J V. Semidirect algorithms for third-order electronpropagator calculations[J]. Int. J. Quantum Chem1995,53(6):583-590.
    [188] ORTIZ J V. Electron binding energies of anionic alkali metal atoms from partialfourth order electron propagator theory calculations[J]. J. Chem. Phys.,1988,89(10):6348-6352.
    [189] CEDERBAUM L S. One-body Green's function for atoms and molecules:theory and application[J]. J. Phys. B: Atom. Molec. Phys,1975,8(2):290-303.
    [190] BOYS S F, BERNARDI F. The calculation of small molecular interactions bythe differences of separate total energies. Some procedures with reducederrors[J]. Mol. Phys.,1970,19(4):553-566.
    [191] ALKORTA I, ELGUERO J. Theoretical Study of Strong Hydrogen Bondsbetween Neutral Molecules: The Case of Amine Oxides and Phosphine Oxidesas Hydrogen Bond Acceptors[J]. J. Phys. Chem. A,1999,103(2):272-279.
    [192] Tong J, Li Y, Wu D, Wu Z-J. Theoretical study of substitution effect insuperalkali OM3(M=Li, Na, K)[J]. Chem. Phys. Lett.,2013,575(0):27-31.
    [193] FURUYA A, MISAIZU F, OHNO K. Photodissociation of Mg–XCH (X=F, Cl,Br, and I) complexes. I. Electronic spectra and dissociation pathways[J]. J.Chem. Phys.,2006,125:094309.
    [194] HAN Y-K, JUNG J. Structure and stability of the Al14halides Al14In (n=1–11): Can we regard the Al14core as an alkaline earthlike superatom?[J]. J. Chem.Phys.,2006,125(8):084101.
    [195] SIKORSKA C, SKURSKI P. The IP vs. VDE competition as a key factordetermining the stability of the MgBX5(X=F, Cl) compounds[J]. Chem. Phys.Lett.,2010,500(4-6):211-216.
    [196] SINGER K D, SOHN J E, KING L, GORDON H, KATZ H, DIRK C.Second-order nonlinear-optical properties of donor-and acceptor-substitutedaromatic compounds[J]. J. Opt. Soc. Am. B,1989,6(7):1339-1350.
    [197] KATZ H, SINGER K, SOHN J, DIRK C, KING L, GORDON H. GreatlyEnhanced Second-Order Nonlinear Optical Susceptibilities in Donor-AcceptorOrganic Molecules[J]. J. Am. Chem. Soc.,1987,109(21):6561-6563.
    [198] VARANASI P R, JEN A K-Y, CHANDRASEKHAR J, NAMBOOTHIRI I,RATHNA A. The important role of heteroaromatics in the design of efficientsecond-order nonlinear optical molecules: theoretical investigation on push-pullheteroaromatic stilbenes[J]. J. Am. Chem. Soc.,1996,118(49):12443-12448.
    [199] KARAMANIS P, POUCHAN C. Fullerene–C60in Contact with Alkali MetalClusters: Prototype Nano-Objects of Enhanced First Hyperpolarizabilities[J]. J.Phys. Chem. C,2012,116(21):11808-11819.
    [200] MU OZ B M, SANTILLAN R, RODRíGUEZ M, MéNDEZ J M, ROMEROM, FARFáN N, LACROIX P G, NAKATANI K, RAMOS-ORTíZ G,MALDONADO J L. Synthesis, crystal structure and non-linear opticalproperties of boronates derivatives of salicylideniminophenols[J]. J.Organomet.Chem.,2008,693(7):1321-1334.
    [201] ZHAO X, YU G, HUANG X, CHEN W, NIU M.(Super) alkali atomsinteracting with the σ electron cloud: a novel interaction mode triggers largenonlinear optical response of M@P4and M@C3H6(M=Li, Na, K and Li3O)[J].J. Mol. Model.,2013,19(12):5601-5610.
    [202] ZHANG C-C, XU H-L, HU Y-Y, SUN S-L, SU Z-M. Quantum ChemicalResearch on Structures, Linear and Nonlinear Optical Properties of theLi@n-Acenes Salt (n=1,2,3, and4)[J]. J. Phys. Chem. A2011,115(10):2035-2040.
    [203] XU H-L, ZHANG C-C, SUN S-L, SU Z-M. Assembly of Sandwich-LikeSupermolecules Li Salts CpLi-C60: Structures, Stabilities, and NonlinearOptical Properties[J]. Organometallics,2012,31(12):4409-4414.
    [204] CHEN W, LI Z-R, WU D, LI Y, LI R-Y, SUN C-C. Inverse SodiumHydride: Density Functional Theory Study of the Large Nonlinear OpticalProperties[J]. J. Phys. Chem. A,2005,109(12):2920-2924.
    [205] DYE J L. Electrides: from1D Heisenberg chains to2D pseudo-metals[J]. Inorg.Chem.,1997,36(18):3816-3826.
    [206] MATSUISHI S, TODA Y, MIYAKAWA M, HAYASHI K, KAMIYA T,HIRANO M, TANAKA I, HOSONO H. High-Density Electron Anions in aNanoporous Single Crystal:[Ca24Al28O64]4+(4e-)[J]. Science,2003,301(5633):626-629.
    [207] HENDRICKSON J E, PRATT W P, KUO C-T, XIE Q, DYE J L. OpticalAbsorption and Reflection Spectra of Na+(C222)Na [J]. J. Phys. Chem.,1996,100(9):3395-3401.
    [208] BAI Y, ZHOU Z-J, WANG J-J, LI Y, WU D, CHEN W, LI Z-R, SUN C-C. NewAcceptor–Bridge–Donor Strategy for Enhancing NLO Response withLong-Range Excess Electron Transfer from the NH2…M/M3O Donor (M=Li,Na, K) to Inside the Electron Hole Cage C20F19Acceptor through the Unusual σChain Bridge (CH2)4[J]. J. Phys. Chem. A,2013,117(13):2835-2843.
    [209]周中军,李晓平,黄旭日,武志坚,李志儒.锂化硼氮纳米管的二阶非线性光学理论研究[J].高等学校化学学报,2013,34(9):2152-2157.
    [210] SUN W-M, WU D, LI Y, LI Z-R. Substituent Effects on the Structural Featuresand Nonlinear Optical Properties of the Organic AlkalideLi+(calix[4]pyrrole)Li [J]. ChemPhysChem,2013,14(2):408-416.
    [211] PARR R G, SZENTPáLY L V, LIU S. Electrophilicity Index[J]. J. Am. Chem.Soc.,1999,121(9):1922-1924.
    [212] DUGOURD P, RAYANE D, LABASTIE P, VEZIN B, CHEVALEYRE J,BROYER M. Measurements of lithium cluster ionization potentials[J]. Chem.Phys. Lett.,1992,197(4):433-437.
    [213] HAN K, HUANG J, CHAI S, WEN S, DENG W. Anisotropic mobilities inorganic semiconductors[J]. Protocol Exchange. doi,2013,10.
    [214] COTTON F A. Transition-metal compounds containing clusters of metalatom[J]. Quart. Rev. Chem.Soc.,1966,20:389.
    [215] P. M T. Alkali halide clusters sand microerystals[J]. Phys. Rep,1983,95:167.
    [216]王广厚.团簇物理的新进展[J].物理学进展,1994,12:121.
    [217]王广厚.团簇物理学[J].物理,1995,24:13.
    [218] JARROLD M F, BOWER J E, KRAUS J. Collision induced dissociation ofmetal cluster ions: Bare aluminum clusters, Aln+(n=3–26)[J]. J. Chem. Phys.,1987,86:3876.
    [219] Kumar V. Structure and electronic properties of Al14and Al13Na clusters[J].Phys. Rev. B1998,57(15):8827-8829.
    [220] AKOLA J, H KKINEN H, MANNINEN M. Ionization potential of aluminumclusters[J]. Phys. Rev. B1998,58(7):3601-3604.
    [221] SCHRIVER K E, PERSSON J L, HONEA E C, WHETTEN R L. Electronicshell structure of group-IIIA metal atomic clusters[J]. Phys. Rev. Lett.,1990,64(21):2539-2542.
    [222] HAN Y-K, JUNG J. Does the “Superatom” Exist in Halogenated AluminumClusters?[J]. J. Am. Chem. Soc.,2008,103:2-3.
    [223] RISHA G, SON S, YETTER R, YANG V, TAPPAN B. Combustion ofnano-aluminum and liquid water[J]. Proc. Combust. Inst.,2007,31(2):2029-2036.
    [224] ROACH P J, WOODWARD W H, CASTLEMAN A, REBER A C, KHANNA SN. Complementary Active Sites Cause Size-Selective Reactivity of AluminumCluster Anions with Water[J]. Science,2009,323(5913):492-495.
    [225] ARTHUR C R, KHANNA S N. Reactivity of Aluminum Cluster Anions withWater: Origins of Reactivity and Mechanisms for H2Release[J]. J. Phys. Chem.A,2010,114(20):6071-6081.
    [226] SHIMOJO F, OHMURA S, KALIA R K, NAKANO A, VASHISHTA P.Molecular dynamics simulations of rapid hydrogen production from waterusing aluminum clusters as catalyzers[J]. Phys. Rev. Lett.,2010,104(12):126102.
    [227] RUSSO JR M F, LI R, MENCH M, VAN DUIN A C. Molecular dynamicsimulation of aluminum-water reactions using the ReaxFF reactive forcefield[J]. Int. J. Hydrogen Energy,2011,36(10):5828-5835.
    [228] ZHAO J Y, ZHAO F Q, GAO H X, JU X H. DFT studies of the adsorption anddissociation of H2O on the Al13cluster: origins of this reactivity and themechanism for H2release[J]. J. Mol. Model.,2013,19(4):1789-1799.
    [229] GONZALEZ C, SCHLEGEL H B. An improved algorithm for reaction pathfollowing[J]. J. Chem. Phys.,1989,90(4):2154-2161.
    [230] GONZALEZ C, SCHLEGEL H B. Reaction Path Following in Mass-WeightedInternal Coordinates [J]. J. Phys. Chem.,1990,94(14):5523-5527.
    [231] SUN Q, WANG Q, YU J, BRIERE T, KAWAZOE Y. Structure and InteractionMechanism in the Magic Al13+H2O [J]. Phys. Rev. A2001,64(5):053203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700