面向新型调制格式的全光信号处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对光通信传输容量需求的不断提高,新型调制格式以其较强的非线性抗性,更高的频谱效率,在近些年得到了国内外广泛的关注。新型调制格式的出现带来了一个全新的研究课题:如何进行新型调制格式的全光信号处理。
     论文在国家863计划、国家重点基础研究发展计划、国家自然科学基金和华为专项基金项目的支持下,系统研究了基于非线性器件和滤波器件实现新型调制格式的全光信号处理,包括全光2R再生、全光再定时和全光码型转换等,主要研究成果和学术贡献有如下几个方面:
     (1)本论文首先通过时域特性与频域特性的对比分析,介绍了传统调制格式和新型调制格式的区别。然后介绍了高速波分复用系统(WDM)中普遍存在的传输损伤,引出了本文需要研究的内容。
     (2)提出了一种基于量子阱半导体光放大器(QW-SOA)的相位调制格式强度再生方案。选择合适的工作条件,基于QW-SOA较小的线宽增强因子,差分相移键控(DPSK)的强度噪声能被极大的抑制,同时不会引入过多的相位噪声。简要研究了线宽增强因子较大的体材料SOA的再生性能,并分析了多信道的强度再生特性。
     (3)提出了基于非线性光纤环镜(NOLM)的相位调制信号相位和强度同时再生的方案。在插入SOA后,首次实现了强度噪声过大以及相位噪声和强度噪声同时过大两种情况下的DPSK信号再生。同时展示了此方案对正交差分相移键控信号(DQPSK)和多信道DPSK信号再生的可行性。模拟结果表明,使用再生装置后,信号的质量得到了极大的改善,传输距离得到了扩展。
     (4)提出了基于半比特延时干涉仪(DI)和窄带滤波器的归零差分相移键控(RZ-DPSK)到非归零差分相移监控(NRZ-DPSK)的码型转换。同时通过采用半比特DI和一个100GHz的DI,或者用阵列波导光栅(AWG)代替100GHz DI,分别实现了6信道的20Gbit/s RZ-DPSK到NRZ-DPSK以及6信道40Gbit/s的载波抑制差分相移键控(CSRZ-DPSK)到NRZ-DPSK的码型转换。
     (5)提出了一种基于相位调制器(PM)和失谐滤波器的全光NRZ-D(Q)PSK到RZ-D(Q)PSK信号的码型转换方案,通过模拟分析了信号的波形图,频谱图和眼图,证明了转换的有效性。同时当输入的信号为带有时间抖动的RZ-D(Q)PSK信号时,还能对失真的信号做再定时处理。此方案可适用于多信道同时处理,在使用较为成熟的电信号时钟恢复的同时,避免了光电光的转换。
With increasing demand of transmission capacity, advanced modulated formats, which offer better nonlinearity tolerance and high spectral efficiency, have been receiving increasing attention in recent years. The use of these phase modulated formats brings new research fields:how to do all optical processing on advanced modulated formats.
     Sponsored by National Natural Science Foundation of China, National High Technology Research and Development Program of China, the National Basic Research Program of China and Project of Huawei Technology, all optical processing of phase modulated formats, such as all optical 2R, all optical retiming, all optical format conversion between diferential phase shift keying (DPSK) are fully-and systemically investigated, using optical nonlinear device and passive optical filter. The main research achievements and contributions are summarized as followings:
     (1) The generation and characteristics of various modulation formats used in optical communications are investigated and compared, in time and frequency domain. The impairments of wavelength division multiplexing (WDM) networks are analyzed and discussed, which shows the main problem of the phase modulated formats.
     (2) A simple amplitude regeneration scheme for phase modulated signals, such as return-to-zero differential-phase-shift keying (RZ-DPSK) signal, based on quantum-well (QW)-semiconductor optical amplifier (SOA) is investigated systematically. By choosing the proper parameters, due to the low linewidth enhancement factor (a-factor), the amplitude fluctuations are suppressed while the phase information is preserved. The regeneration property of the bulk SOA with large linwidth enhancement factor and the potiential use in WDM system are also investigated.
     (3) All optical phase and amplitude regeneration scheme for phase modulated signal based on nonlinear fiber loop mirror configuration is investigated systematically. By using additional SOAs, for the first time, the regeneration processes for the situation with large amplitude noise and situation with large amplitude noise plus large phase noise have been investigated and the regeneration have achieved. And it is versatile to multichannel DPSK and Differential Quadrature Reference Phase Shift Keying (DQPSK) signals. The performance of regenerated signal is greatly improved. A significant improvement of eye opening and transmission length expansion can be observed for DPSK signal, multichannel DPSK signals and DQPSK signal, respectively.
     (4) The conversions from return-to-zero differential phase shift keying (RZ-DPSK) to non-return-to-zero DPSK (NRZ-DPSK) are investigated. By using a 0.5 bit time delay DI and lnm bandpass filter. Single channel format conversion scheme at 40Gbit/s is demonstrated. By using a 0.5 bit time delay DI and a 100GHz DI, or an array waveguide grating (AWG), multi-channel format conversion at both 20Gbit/s and 40Gbit/s are demonstrated.
     (5) A new kind of all optical format conversion from NRZ-D(Q)PSK to RZ-D(Q)PSK signal is proposed by using phase modulators and detuning filters. The optical spectra, temporal waveforms and eye diagrams are studied in detail to confirm the successful realization of NRZ-D(Q)PSK to RZ-D(Q)PSK format conversion. Furthermore, the same scheme may also be robust in RZ-D(Q)PSK retiming with WDM practice. The use of mature electrical clock recovery module while.avoiding optical-electrical-optical (O-E-O) operation may be potential in practical use.
引文
[1]Winzer P.J., Raybon G., Song H., et al.100-Gb/s DQPSK Transmission: From Laboratory Experiments to Field Trials. J. Lightwave Technol.,2008,26(20): 3388-3402
    [2]Buchali F., Dischler R., Liu X.A. Optical OFDM:A Promising High-Speed Optical Transport Technology. Bell Labs Technical Journal,2009,14(1):125-146
    [3]Li G. Focus issue:Coherent optical communication. Optics Express,2008,16(2): 752-752
    [4]Rouskas G.N., Perros H.G. A tutorial on optical networks. Advanced Lectures on Networking,2002,2497:155-193
    [5]Schwelb O. Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-A tutorial overview. Journal of Lightwave Technology,2004,22(5):1380-1394
    [6]Sabella R. Tutorial:Key elements for WDM transport networks. Photonic Network Communications,2000,2(1):7-14
    [7]Essiambre R.J., Foschini G.J., Kramer G., et al. Capacity Limits of Information Transport in Fiber-Optic Networks. Physical Review Letters,2008,101(16):77-81
    [8]Gnauck A.H., Winzer P.J. Optical phase-shift-keyed transmission. Journal of Lightwave Technology,2005,23(1):115-130
    [9]Xu C., Liu X., Wei X. Differential phase-shift keying for high spectral efficiency optical transmissions. Ieee Journal of Selected Topics in Quantum Electronics,2004, 10(2):281-293
    [10]Taga H. A theoretical investigation of the long-haul RZDPSKsystem performance using DFF andNZDSF. Opt. Express,2009,17(8):6032-6037
    [11]Charlet G.Progress in optical modulation formats for high-bit rate WDM transmissions. IEEE Journal of Selected Topics in Quantum Electronics,2006,12(4): 101-105
    [12]Yu C., Zhang S., Kam P.Y., et al. Bit-Error Rate Performance of Coherent Optical M-ary PSK/QAM using Decision-Aided Maximum Likelihood Phase Estimation. Opt. Express,2010,18(12):12088-12103
    [13]Bhuiyan M.N.-A.-S., Matsuura M., Nguyen Tan H., et al. Polarization-insensitive and widely tunable wavelength conversion for polarization shift keying signal based on four wave mixing in highly non-linear fiber. Opt. Express,2010,18(3): 2467-2476
    [14]Zhang L., Hu X., Cao P., et al. A bidirectional radio over fiber system with multiband-signal generation using one single-drive MZM. Opt. Express,2011,19(6): 5196-5201
    [15]Winzer P.J., Essiambre R.J. Advanced modulation formats for high-capacity optical transport networks. Journal of Lightwave Technology,2006,24(12):4711-4728
    [16]Abbou F.M., Chuah H.T., Hiew C.C., et al. Comparisons of RZ-OOK and RZ-DPSK in dense OTDM-WDM systems using Q factor models. Journal of Russian Laser Research,2008,29(2):133-141
    [17]Chen Y., Qiao C.M., Yu X. Optical burst switching: A new area in optical networking research. Ieee Network,2004,18(3):16-23
    [18]Geldenhuys R., Liu Y., Calabretta N., et al. All-optical signal processing for optical packet switching. Journal of Optical Networking,2004,3(12):37-41
    [19]Armstrong I., Andonovic I., Kelly A. Semiconductor optical amplifiers:performance and applications in optical packet switching.in:Optical Fiber Communication incudes post deadline papers, OFC 2004. Conference on,2004.15-17
    [20]Eggleton B. The all-photonic chip. Lasers and Electro-Optics,2007,14(5):5-6
    [21]Boyogueno A., Sawan M., Slamani M. Design for stability of high-speed integrated photo receivers:A tutorial. Analog Integrated Circuits and Signal Processing,2005, 45(1):79-98
    [22]Devgan P., Tang R.Y., Grigoryan V.S., et al. Highly efficient multichannel wavelength conversion of DPSK signals. Journal of Lightwave Technology,2006, 24(10):3677-3682
    [23]Huang C.B., Park S.G., Leaird D.E., et al. Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding. Optics Express,2008,16(4):2520-2527
    [24]Yu Y., Rosas-Fernandez J.B., Zhang X.L., et al. Novel and flexible WDM NRZ-DPSK system with demultiplexing and demodulation using a single standard AWG. in: Optical Fiber Communication - incudes post deadline papers, OFC 2009. Conference on,2009.1-3
    [25]Yu Y, Zhang X.L., Rosas-Fernandez J.B., et al. Single SOA based 16 DWDM channels all-optical NRZ-to-RZ format conversions with different duty cycles. Optics Express,2008,16(20):16166-16171
    [26]Yan N., Teixeira A., Silveira T., et al. Theoretical and experimental performance evaluation of all-optical multiwavelength conversion by four-wave mixing in fiber at 10/20/40 Gb/s for optical layer multicast. Microwave and Optical Technology Letters,2007,49(5):1067-1071
    [27]Chow C.W. Wavelength remodulation using DPSK down-and-upstream with high extinction ratio for 10-Gb/s DWDM-passive optical networks. Ieee Photonics Technology Letters,2008,20(1-4):12-14
    [28]Leclerc O., Lavigne B., Balmefrezol E., et al. Optical regeneration at 40 Gb/s and beyond. Journal of Lightwave Technology,2003,21(11):2779-2790
    [29]Miyamoto Y., Hirano A., Kuwahara S., et al. Novel modulation and detection for bandwidth-reduced RZ formats using duobinary-mode splitting in wideband PSK/ASK conversion. Journal of Lightwave Technology,2002,20(12):2067-2081
    [30]Yu Y., Zhang X.L., Wang F., et al. Simple and flexible generation of vestigial side band modified duobinary return-to-zero signals at 10,20 and 40 Gb/s. Optics Communications,2010,283(10):2074-2078
    [31]Yu W.K., Lou C.Y., Zhao X.F., et al. Simultaneous multichannel NRZ-to-RZ format conversion of 4-ASK signal based on phase-intensity hybrid modulation and dispersion compensation fiber. Chinese Optics Letters,2010,8(9):859-862
    [32]Wu B.B., Fu S.N., Wu J., et al. Simultaneous implementation of all-optical OR and AND logic gates for NRZ/RZ/CSRZ ON-OFF-keying signals. Optics Communications, 2010,283(3):349-354
    [33]Shao Y.F., Chi N., Hou C.N., et al. A Novel Return-to-Zero FSK Format for 40-Gb/s Transmission System Applications. Journal of Lightwave Technology,2010,28(12): 1770-1782
    [34]Gao Y, Shu C., He S. Cascaded SOA configuration for NRZ-OOK to RZ-QPSK format conversion. Optics Communications,2010,283(23):4609-4613
    [35]Wang D.W., Cheng T.H., Yeo Y.K., et al. All-optical modulation-transparent wavelength multicasting in a highly nonlinear fiber Sagnac loop mirror. Optics Express,2010,18(10):10343-10353
    [36]Matsumoto M., Morioka Y. Fiber-based all-optical regeneration of DPSK signals degraded by transmission in a fiber. Opt. Express,2009,17(8):6913-6919
    [37]Wang Z., Xie C. Automatic optical polarization demultiplexingfor polarization division multiplexed signals. Opt. Express,2009,17(5):3183-3189
    [38]Liu X., Chandrasekhar S. Direct detection of 107-Gb/s polarization-multiplexed DQPSK with electronic polarization demultiplexing,2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, Vols 1-8,2008. 2346-2348
    [39]Mishina K., Maruta A., Mitani S., et al. NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter. Journal of Lightwave Technology,2006,24(10):3751-3758
    [40]Mishina K., Nissanka S.M., Maruta A., et al. All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters. Optics Express,2007,15(12):7774-7785
    [41]Mishina K., Kitagawa S., Maruta A. All-optical modulation format conversion from on-off-keying to multiple-level phase-shift-keying based on nonlinearity in optical fiber. Optics Express,2007,15(13):8444-8453
    [42]Yan C.H., Su Y.K., Yi L.L., et al. All-optical format conversion from NRZ to BPSK using a single saturated SOA. Ieee Photonics Technology Letters,2006,18(21-24): 2368-2370
    [43]Lu Y.Y., Liu F.F., Qiu M., et al. All-optical format conversions from NRZ to BPSK and QPSK based on nonlinear responses in silicon microring resonators. Optics Express,2007,15(21):14275-14282
    [44]Nissanka S.M., Mishina K., Maruta A., et al. Wavelength conversion characteristics of SOA-MZI based all-optical NRZ-OOK/RZ-BPSK modulation format converter. Ieice Transactions on Communications,2008, E91b(7):2160-2164
    [45]Astar W., Wei C.-C., Chen Y.-J., et al. Polarization-insensitive,40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF. Optics Express,2008,16(16):12039-12049
    [46]Astar W., Carter G.M.10 Gbit/s RZ-OOK to RZ-BPSK format conversion using SOA and synchronous pulse carver. Electronics Letters,2008,44(5):369-370
    [47]Bogris A., Syvridis D. RZ-DPSK signal regeneration based on dual-pump phase-sensitive amplification in fibers. Ieee Photonics Technology Letters,2006, 18(17-20):2144-2146
    [48]Wang J., Sun J.Q., Sun Q.Z., et al. Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum-and difference-frequency generation. Optics Express,2007,15(2):583-588
    [49]Wang J., Sun J.Q., Sun Q.Z., et-al. Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking. Optics Letters,2007, 32(16):2462-2464
    [50]Wang J., Sun L.Q., Sun Q.Z. Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror. Optics Letters,2007,32(11): 1477-1479
    [51]Wang J., Sun J.Q., Zhang X.L., et al. Proposal for PPLN-based all-optical NRZ-to-CSRZ, RZ-to-CSRZ, NRZ-DPSK-to-CSRZ-DPSK, and RZ-DPSK-to-CSRZ-DPSK format Conversions. Ieee Photonics Technology Letters,2008, 20(9-12):1039-1041
    [52]Yu Y. NRZ-DPSK to RZ-BPSK All-Optical Format Conversion Using Optical Filter and SOA-MZI. Bellingham, WA, ETATS-UNIS:Society of Photo-Optical Instrumentation Engineers,2008.79-84
    [53]Mecozzi A., Shtaif M. On the capacity of intensity modulated systems using optical amplifiers. Ieee Photonics Technology Letters,2001,13(9):1029-1031
    [54]Boscolo S., Turitsyn S.K., Mezentsev V.K. Performance comparison of 2R and 3R optical regeneration schemes at 40 Gb/s for application to all-optical networks. Journal of Lightwave Technology,2005,23(1):304-309
    [55]Striegler A., Schmauss B. All-optical DPSK signal regeneration based on cross-phase modulation. Ieee Photonics Technology Letters,2004,16(4):1083-1085
    [56]Striegler A.G., Meissner M., Cvecek K., et al. NOLM-based RZ-DPSK signal regeneration. Ieee Photonics Technology Letters,2005,17(3):639-641
    [57]Striegler A.G., Schmauss B. Combination of all-optical 2R signal regeneration with fiber-based retiming. Ieee Photonics Technology Letters,2005,17(6):1310-1312
    [58]Striegler A.G., Schmauss B. Extinction ratio improvement by an advanced NOLM setup. Ieee Photonics Technology Letters,2006,18(9-12):1058-1060
    [59]Striegler A.G., Schmauss B. Analysis and optimization of SPM-based 2R signal regeneration at 40 Gb/s. Journal of Lightwave.Technology,2006,24(7):2835-2843
    [60]Boscolo S., Bhamber R., Turitsyn S.K. Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission. Ieee Journal of Quantum Electronics,2006,42(7-8):619-624
    [61]Boscolo S., Turitsyn S.K., Blow K.J. All-optical passive 2R regeneration for N x 40 Gbit/s WDM transmission using NOLM and novel filtering technique. Optics Communications,2003,217(1-6):227-232
    [62]Cvecek K., Onishchukov G., Sponsel K., et al. Experimental investigation of a modified NOLM for phase-encoded signal regeneration. Ieee Photonics Technology Letters,2006,18(17-20):1801-1803
    [63]Cvecek K., Sponsel K., Onishchukov G., et al,2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror. Ieee Photonics Technology Letters, 2007,19(2-4):146-148
    [64]Cvecek K., Sponsel K., Stephan C., et al. Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror. Optics Express,2008,16(3):1923-1928
    [65]Cvecek K., Sponsel K., Ludwig R., et al.2R-Regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror. Ieee Photonics Technology Letters,2007,19(17-20):1475-1477
    [66]Matsumoto M. Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators. Ieee Photonics Technology Letters,2005,17(5):1055-1057
    [67]Matsumoto M. Performance improvement of phase-shift-keying signal transmission by means of optical limiters using four-wave mixing in fibers. Journal of Lightwave Technology,2005,23(9):2696-2701
    [68]Matsumoto M. Simultaneous reshaping of OOK and DPSK signals by a fiber-based all-optical regenerator. Optics Express,2006,14(4):1430-1438
    [69]Matsumoto M., Kamio T. Nonlinear phase noise reduction of DQPSK signals by a phase-preserving amplitude limiter using four-wave mixing in fiber. Ieee Journal of Selected Topics in Quantum Electronics,2008,14(3):610-615
    [70]Matsumoto M., Leclerc O. Analysis of 2R optical regenerator utilising self-phase modulation in highly nonlinear fibre. Electronics Letters,2002,38(12):576-577
    [71]Matsumoto M., Sanuki K. Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter. Optics Express,2007,15(13):8094-8103
    [72]Contestabile G, Maruta A., Sekiguchi S., et al. Regenerative Amplification by Using Self-Phase Modulation in a Quantum-Dot SOA. Ieee Photonics Technology Letters,2010,22(7):492-494
    [73]Li Y.J., Wu C.Q., Fu S.N., et al. Power equalization for SOA-based dual-loop optical buffer by optical control pulse optimization. Ieee Journal of Quantum Electronics,2007,43(5-6):508-516
    [74]Li X.L., Zhang F., Chen Z.Y., et al. Suppression of XPM and XPM-induced nonlinear phase noise for RZ-DPSK signals in 40 Gbit/s WDM transmission systems with optimum dispersion mapping. Optics Express,2007,15(26):18247-18252
    [75]Awad E.S. A technique for rephasing+2R regeneration of 40-Gb/s NRZ-DPSK data. Ieee Photonics Technology Letters,2008,20(9-12):848-850
    [76]Awad E.S., Cho P.S., Goldhar J. All-optical phase and amplitude regeneration of return-to-zero differential phase shift keying data. Optics Letters,2007,32(4): 352-354
    [77]Matsumoto M. All-optical DQPSK signal regeneration using 2R amplitude regenerators. Opt. Express,2010,18(1):10-24
    [78]Shin M., Devgan P.S., Grigoryan V.S., et al. SNR improvement of DPSK signals in a semiconductor optical regenerative amplifier. Ieee Photonics Technology Letters, 2006,18(1-4):49-51
    [79]Ehab S. Awad P.S.C., and Julius Goldhar. All-optical Re-phasing, Re-shaping, and Re-amplification of RZ-DPSK data Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2007. Conference on,2007. 1200-1204
    [80]Elschner R., de Melo A.M., Bunge C.A., et al. Noise suppression properties of an interferometer-based regenerator for differential phase-shift keying data. Optics Letters,2007,32(2):112-114
    [81]Matsumoto M. A fiber-based all-optical 3R regenerator for DPSK signals. Ieee Photonics Technology Letters,2007,19(5-8):273-275
    [82]Matsumoto M., Sakaguchi H. DPSK signal regeneration using a fiber-based amplitude regenerator. Optics Express,2008,16(15):11169-11175
    [83]Vasilyev M. Phase-sensitive amplification in optical fiber.2008 Ieee/Leos Winter Topical Meeting Series,2008.41-42
    [84]Wei C.C., Chen J. Convergence of phase noise in DPSK transmission systems by novel phase noise averagers. Optics Express,2006,14(21):9584-9593
    [85]Skold M., Yang J., Sunnerud H., et al. Constellation diagram analysis of DPSK signal regeneration in a saturated parametric amplifier. Optics Express,2008,16(9): 5974-5982
    [86]Mussot A., Durecu-Legrand A., Lantz E., et al. Impact of pump phase modulation on the gain of fiber optical parametric amplifier. Ieee Photonics Technology Letters, 2004,16(5):1289-1291
    [87]Wei C.C., Chen J. Convergence of phase fluctuation induced by intrachannel four-wave mixing in differential phase-shift keying transmission systems via phase fluctuation averaging. Optics Letters,2007,32(10):1217-1219
    [88]Wei C.C., Chen J.S., Chen Y.J. Evaluating the performance improvement of differential phase-shift keying signals by amplitude regeneration and phase-noise suppression. Optics Letters,2008,33(10):1090-1092
    [89]Wei X., Liu X., Simon S.H., et al. Intrachannel four-wave mixing in highly dispersed return-to-zero differential-phase-shift-keyed transmission with a nonsymmetric dispersion map. Optics Letters,2006,31(1):29-31
    [90]McKinstrie C.J., Radic S., Raymer M.G., et al. Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency. Optics Express,2007,15(5):2178-2189 [91] McKinstrie C.J., Moore R.O., Radic S., et al. Phase-sensitive amplification of chirped optical pulses in fibers. Optics Express,2007,15(7):3737-3758
    [92]Yaman F., Lin Q., Radic S., et al. Fiber-optic parametric amplifiers in the presence of polarization-mode dispersion and. polarization-dependent loss. Journal of Lightwave Technology,2006,24(8):3088-3096
    [93]Croussore K., Kim C., Li G.F. All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification. Optics Letters,2004,29(20): 2357-2359
    [94]Croussore K., Kim C., Li G.F. All-Optical regeneration of differential phase-shift keyed signals based on phase-sensitive amplification. SPIE,2005.657203
    [95]Croussore K., Kim I., Han Y., et al. Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification. Optics Express,2005,13(11):3945-3950
    [96]Croussore K., Kim I., Kim C., et al. Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier. Optics Express,2006,14(6):2085-2094
    [97]Croussore K., Li G. Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre. Electronics Letters,2007,43(3):177-178
    [98]Croussore K., Li G.F. Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification. Ieee Photonics Technology Letters, 2007,19(9-12):864-866
    [99]Croussore K., Li G.F. Phase-regenerative DPSK wavelength conversion.2007 Ieee Leos Annual Meeting Conference Proceedings, Vols 1 and 2,2007.147-148
    [100]Croussore K., Li G.F. Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification. Ieee Journal of Selected Topics in Quantum Electronics,2008,14(3):648-658
    [101]Croussore K.A., Li G.F. Phase-Regenerative Wavelength Conversion for BPSK and DPSK Signals. Ieee Photonics Technology Letters,2009,21(1-4):70-72
    [102]Zheng Z., An L., Li Z., et al. All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification. Optics Communications,2008,281(10): 2755-2759
    [103]Kaminow I.P., Koch T.L. Laser sources for amplified and WDM lightwave systems. Optical Fiber Telecommunications III New York:Academic,1997.115-162
    [104]A.D.Ackermann. Telecommunication lasers Optical Fiber TelecommunicationsV, I. Kaminow and T. Li, Eds., New York:Academic,2002.587-665
    [105]Hasegawa A. Theory of information transfer in optical fibers: A tutorial review. Optical Fiber Technology,2004,10(2):150-170
    [106]Ho K.-P. Statistical Properties of Nonlinear Phase Noise, in ArXiv Physics e-prints, 2003.3090-3092
    [107]R. C.S., M. B.D., C. L.J. Sensitivity of optically preamplified DPSK receivers with Fabry-Perot filters. New York, NY, ETATS-UNIS:Institute of Electrical and Electronics Engineers,1996.201-204
    [108]Raybon G., Chandrasekhar S., Gnauck A.H., et al. Experimental investigation of long-haul transport at 42.7-Gb/s through concatenated optical add/drop nodes, in: Optical Fiber Communication Conference, OFC 2004,2004,2:1-3
    [109]Peter J.W., Greg R., Chandrasekhar S., et al.10 x 107-Gb/s NRZ-DQPSK Transmission at 1.0 b/s/Hz over 12 x 100 km Including 6 Optical Routing Nodes.in: Optical Society of America,2007. PDP24
    [110]Bertolini M., Serena P., Rossi N., et al. XPM reduction in hybrid 10G/40G transmission using 10-Gb/s narrow-filtered DPSK modulation. Opt. Express,2009, 17(8):5919-5924
    [111]Jiang H., Wen H., Han L.Y., et al. All-optical NRZ-OOK to BPSK format conversion in an SOA-based nonlinear polarization switch. Ieee Photonics Technology Letters,2007,19(21-24):1985-1987
    [112]Wei X., Liu X. Analysis of intrachannel four-wave mixing in differential phase-shift keying transmission with large dispersion. Optics Letters,2003,28(23):2300-2302
    [113]Su Y.K., Raybon G., Essiambre R.J., et al. All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing. Ieee Photonics Technology Letters,2003,15(2):350-352
    [114]Striegler A.G., Schmauss B. Compensation of intrachannel effects in symmetric dispersion-managed transmission systems. Journal of Lightwave Technology,2004, 22(8):1877-1882
    [115]. Mecozzi A., Clausen C.B., Shtaif M., et al. Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses. Ieee Photonics Technology Letters,2001,13(5):445-447
    [116]Ho K.P. Error probability of DPSK signals with intrachannel four-wave mixing in highly dispersive transmission systems. Ieee Photonics Technology Letters,2005, 17(4):789-791
    [117]Appathurai S., Mikhailov V., Killey R.I., et al. Investigation of the optimum alternate-phase RZ modulation format and its effectiveness in the suppression, of intrachannel nonlinear distortion in 40-Gbit/s transmission over standard single-mode fiber. Ieee Journal of Selected Topics in Quantum Electronics,2004, 10(2):239-249
    [118]Li W., Chen M.H., Dong Y., et al. All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror. Ieee Photonics Technology Letters,2004,16(1):203-205
    [119]Lee C.G., Kim Y.J., Park C.S., et al. Experimental demonstration of 10-Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror. Journal of Lightwave Technology,2005,23(2):834-841
    [120]Zhao X.F., Lou C.Y. Investigation of all-optical nonreturn-to-zero-to-return-to-zero format converter based on a semiconductor optical amplifier and a reconfigurable delayed interferometer. Applied Optics,2010,49(7):1158-1162
    [121]Dong J.J., Zhang X.L., Fu S.N., et al. Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering. Ieee Journal of Selected Topics in Quantum Electronics,2008,14(3):770-778
    [122]Yang X., Mishra A.K., Manning R.J., et al. All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA. Electronics Letters, 2007,43(16):890-892
    [123]Dong J.J., Fu S.N., Zhang X.L., et al. Analytical solution for SOA-based all-optical wavelength conversion using transient cross-phase modulation. Ieee Photonics Technology Letters,2006,18(21-24):2554-2556
    [124]Geraghty D.F., Lee R.B., Verdiell M., et al. Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers. Ieee Journal of Selected Topics in Quantum Electronics,1997,3(5): 1146-1155
    [125]Gosset C., Duan G.H. Extinction ratio improvement and wavelength conversion based on four-wave mixing in a semiconductor optical amplifier. Ieee Photonics Technology Letters,2001,13(2):139-141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700