基于高非线性器件的全光逻辑信号处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密集波分复用、光时分复用技术与高级调制格式相结合,使得光通信系统的容量一再提升。与此相对应,现有的光网络的交换能力与传输能力严重失衡。全光分组交换网络的实现是解决上述问题的一个有效方案,然而由于全光缓存和全光逻辑等信号处理器件的不成熟,全光网络技术还未能达到实用的阶段。为了实现全光网络,迫切需要发展全光信号处理技术,设计和制作低功耗,高速率的全光信号处理器件,解决数据交换过程中的信号处理问题。
     全光逻辑门是全光信号处理中的关键部件之一,在很多具有交换功能的单元中都起着至关重要的作用。本论文基于高非线性光纤、半导体光放大器等高非线性器件,研究了数据选择器、数据分配器等全光组合逻辑器件的实现以及基于相位编码数据的逻辑信号处理技术。主要内容和成果包括:
     1.研究分析了高非线性光纤中交叉相位调制对输入信号时域和频谱的影响,在此基础上提出了基于高非线性光纤中交叉相位调制的数据选择器方案。利用双向光纤非线性脉冲传输模型对40Gbit/s数据速率的RZ-OOK格式信号进行了仿真验证,实现了2选1数据选择器的功能。为提高所提出方案输出信号的传输性能和级联能力,进一步优化结构。通过合理的选择输入信号的波长和功率,提出并论证了单波长输出的双向光纤传输和单向传输配置方案。分析了输入信号波长、功率、滤波器中心波长以及输入信号信噪比和啁啾等参数对系统性能的影响,给出了方案设计时参数的选择原则。
     2.基于光纤克尔效应的高速响应,提出了基于高非线性光纤交义相位调制的1路-2路160Gbit/s数据分配器方案。通过数值仿真验证了所提出方案的可行性,仿真结果表明在合理设置系统参数的情况下,可以获得满足无误码率操作要求的输出信号。输入信号波长、峰值功率、光纤长度等参数与输出性能的相关性被分析。分析表明,为获得优化性能,系统中光纤长度,滤波器中心波长和输入信号功率等参数需要协同考虑。讨论了40Gbit/s、80Gbit/s处理速率下系统的实现,并与160Gbit/s时的性能和参数的选择进行了对比分析。
     3.研究了基于载流子速率方程的半导体光放大器分段数值模型和SOA的非简并四波混频效应,在此基础上提出了三输入的RZ/NZR-DPSK格式数据逻辑异或门和RZ-OOK格式逻辑与门方案。数值分析了所提出系统的性能与输入信号参数的相关性。该方案无需重新配置系统的参数,仅改变输入信号即可实现两输入或三输入的RZ/NRZ-DPSK格式逻辑异或门和RZ-OOK格式逻辑与门。
     4.基于SOA-MZI波长转换器,研究了OOK-DPSK格式变换方案和OOK数据中“0”和“1”数据的分离方法,结合SOA中的简并四波混频首次提出了相位编码逻辑与门和或门的方案。该方案输入为OOK格式数据,输出为OOK数据对应的相位编码数据的逻辑与和或操作。结合DPSK信号的延时解调制,可以实现DPSK信号的相位逻辑操作。仿真结果验证了该方案的可行性。
The capacity of optical communication system has been increasing due to using dense wavelength division multiplexing (DWDM) and optical time division multiplexing (OTDM) technology, as well as advanced modulation formats. Meanwhile, further development of the optical communication system is limited by the bottleneck between high transporting speed in the fiber link and low switching speed in the network node. The realization of all-optical packet switching network is an effective solution for this problem. However, all-optical network technology has yet to achieve practical stage due to all-optical signal processing devices, such as the optical buffer and all-optical logic, are not mature. In order to achieve the transparent all-optical network, development of all-optical signal processing technology, design and production of low power consumption, and high speed all-optical signal processing device are urgent need to solve the problem of signal processing in the process of data exchange.
     All-optical logic gate is one of the key components of all-optical signal processing and plays an important role in the all optical network switching node. Based on the highly nonlinear optical fiber and semiconductor optical amplifier, all-optical combinational logic devices, such as the data selector and distributor, as well as logic signal processing technologies based on phase encoding data have been proposed and researched. Main contents and achievements of this thesis as follows:
     1. A2-to-1data selector based on the cross phase modulation in highly nonlinear fiber has been proposed and investigated through the study of the time domain and spectrum changes induced by XPM in the highly nonlinear optical fiber. Using the bidirectional optical fiber transmission model, the2-to-1data selector is demonstrated in40Gbit/s data rate when the input signal is RZ-OOK format. To improve transmission performance and scalability of the output signal, the presented scheme is further optimized. Through the reasonable choice of the wavelength and power of the input signal, two schemes based on the bidirectional and single directional transmitting of optical fiber are achieved. The dependences of performance on the signal wavelength, the peak power of input signal, center wavelength of filter, as well as the SNR and chirp parameters of input signal are calculated and discussed in detail.
     2. Using high-speed response of optical fiber Kerr effect, A160Gbit/s1-to-2photonic data distributor scheme based on cross phase modulation in the high nonlinear optical fiber is numerical investigated. The feasibility of proposed scheme is verified by numerical simulation and the results show that the requirement of no bit error rate operating can be obtain by reasonable setting the system parameters. The dependences of output performance on the parameters of input signal, such as wavelength, peak power, fiber length and the wavelength of filter are analyzed. Moreover, the selection about the key parameters of system in the40Gbit/s and80Gbit/s is also researched, and the optimal results are obtained. It is manifested that the length of fiber and the center wavelength of filter should be reasonable choice due to the influence of high order nonlinear of fiber.
     3. The numerical model of semiconductor optical amplifier based on the carrier rate equation and non-degenerate four-wave mixing effect of SOA are studied, and the multi-input RZ/NRZ-DPSK format data logic XOR gate and RZ-OOK format logic AND gate are put forward. In the proposed scheme, it does not need to reconfigure the parameters of the system, only change the input signal, two or three input DPSK format logic XOR gate and RZ-OOK format logic AND gate can be realized. The dependence the proposed system performance on the input signal parameters are simulation analysis.
     4. The phase coding logic AND gate and OR gate is proposed based on the SOA-MZI wavelength converter, OOK-BPSK format converter and the degenerate four wave mixing of SOA. In the scheme, the input signal are OOK format data and the output data are phase coded data corresponding to logic AND and OR operation of input signals. It can also realize the phase AND and OR logic operation of DPSK signal by Combining with delay demodulation of DPSK signal.
引文
[1]M. Nakazawa, T. Yamamoto, K. Tamura.1.28 Tbit/s-70 km OTDM transmission using third-and fourth-order simultaneous dispersion compensation with a phase modulator[J]. Electronics Letters,2000,36(24):2027-2029.
    [2]A. Bogoni, L. Poti, P. Ghelfi, et al. OTDM-based optical communications networks at 160 Gbit/s and beyond[J]. Optical Fiber Technology,2007,13(1):1-12.
    [3]I. B. Djordjevic, B. Vasic, M. Ivkovic, et al. Achievable information rates for high-speed long-haul optical transmission[J]. Journal of Lightwave Technology,2005,23(11):3755-3763.
    [4]H. C. H. Mulvad, M. Galili, L. K. Oxenl(?)we, et al. Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel[J]. Optics Express,2010,18(2):1438-1443.
    [5]Y. Ma, Q. Yang, Y. Tang, et al.1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access[J]. Journal of Lightwave Technology:2010,28(4),308-315.
    [6]K. Fukuchi, T. Kasamatsu, M. Morie, et al.10.92-Tb/s (273 x 40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment[C]. Optical Fiber Communication Conference, 2001,PD24:1-3.
    [7]S. Bigo, Y. Frignac, G Charlet, et al.10.2 Tbit/s (256x42.7Gbit/s PDM/WDM) transmission over 100km TeraLightTM fiber with 1.28 bit/s/Hz spectral efficiency[C]. Optical Fiber Communication Conference,2001, PD25:1-3.
    [8]A. Goel. Design of Tb/s capacity quadruply cladded optical fiber for WDM systems[C]. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,2007,6675:1-6.
    [9]X. Zhou, J. Yu, M.-F. Huang, et al. Transmission of 32-Tb/s capacity over 580 km using RZ-shaped PDM-8QAM modulation format and cascaded multimodulus blind equalization algorithm[J]. Journal of Lightwave Technology,2010,28(4):456-465.
    [10]A. Gnauck, G. Charlet, P. Tran, et al.25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals[J]. Journal of Lightwave Technology,2008,26(1):79-84.
    [11]H. Weber, S. Ferber, M. Kroh, et al. Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission[C].31st European Conference on Optical Communication,2005,6:3-4.
    [12]A. H. Gnauck, G. Charlet, P. Tran, et al.25.6-Tb/s C+ L-band transmission of polarization-multiplexed RZ-DQPSK signals[C]. Optical Fiber Communication Conference, 2007,PDP19:1-3.
    [13]吴重庆.半导体光放大器的光-光互作用及在全光信号处理中的应用[J].激光与光电子 学进展,2008,44(11):12-17.
    [14]R. H. Derksen, G.Lehmann, C.-J. Weiske, et al. Integrated 100 Gbit/s ETDM Receiver in a Transmission Experiment over 480 km DMF[C]. Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference,2006, PDP37:l-3.
    [15]S. Yao, S. B. Yoo, B. Mukherjee, et al. All-optical packet switching for metropolitan area networks:Opportunities and challenges[J]. IEEE Communications Magazine,2001, 39(3):142-148.
    [16]C. Guillemot, M. Renaud, P. Gambini, et al. Transparent optical packet switching:The European ACTS KEOPS project approach[J]. Journal of Lightwave Technology,1998, 16(12):2117.
    [17]D. Blementhal, T. Ikegami, P. Prucnal, et al. Guest editorial photonic packet switching technologies, techniques, and systems[J]. Journal of Lightwave Technology,1998, 16(12):2065-2067.
    [18]D. K. Hunter,I. Andonovic. Approaches to optical Internet packet switching[J]. IEEE Communications Magazine,2000,38(9):116-122.
    [19]任海兰,刘德明.光通信信号处理[M].北京:电子工业出版社,2006.
    [20]A. E. Willner, O. F. Yilmaz, J. Wang, et al. Optically efficient nonlinear signal processing[J]. IEEE Journal of Selected Topics in Quantum Electronics:2011,17(2),320-332.
    [21]T. Fjelde, A. Kloch, D. Wolfson, et al. Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter[J]. Photonics Technology Letters, IEEE,2001,13(7):750-752.
    [22]J. Martinez, F. Ramos,J. Marti. All-optical packet header processor based on cascaded SOA-MZIs[J]. Electronics Letters,2004,40(14):894-895.
    [23]H. Teimoori, J. D. Topomondzo, C. Ware, et al. Optical packet header processing using time-to-wavelength mapping in semiconductor optical amplifiers[J]. Journal of Lightwave Technology,2007,25(8):2149-2158.
    [24]C. Bintjas, N. Pleros, K. Yiannopoulos, et al. All-optical packet address and payload separation[J]. IEEE Photonics Technology Letters,2002,14(12):1728-1730.
    [25]A. Poustie, K. Blow, A. Kelly, et al. All-optical parity checker with bit-differential delayfJ]. Optics Communications,1999,162(1):37-43.
    [26]A. Poustie, K. Blow, R. Manning, et al. All-optical pseudorandom number generator[J]. Optics Communications,1999,159(4):208-214.
    [27]M. Leiria,A. Cartaxo. Impact of the Switching Window Shape on the Performance of a Chain of Reamplification, Reshaping, and Retiming All-Optical Regenerators Based on a Non-Linear Gate[J]. Fiber and Intergrated Optics,2010,29(1):21-43.
    [28]E. Tangdiongga, Y. Liu, H. De Waardt, et al. All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier[J]. Optics Letters,2007,32(7):835-837.
    [29]王文睿,于晋龙,罗俊,等.基于非线性光纤环镜的40Gb/s可重构光逻辑门[J].光学学报,2012,32(5):45-50.
    [30]J. Dong, X. Zhang, Y. Wang, et al.40 Gbit/s reconfigurable photonic logic gates based on various nonlinearities in single SOA[J]. Electronics Letters,2007,43(16):884-886.
    [31]M. Jinno,T. Matsumoto. Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams[J]. Optics Letters,1991,16(4):220-222.
    [32]A. Huang, N. Whitaker, H. Avramopoulos, et al. Sagnac fiber logic gates and their possible applications:a system perspective[J]. Applied Optics,1994,33(26):6254-6267.
    [33]A. Bogris, P.Velanas,D. Syvridis. Numerical Investigation of a 160-Gb/s reconfigurable photonic logic gate based on cross-phase modulation in fibers[J]. IEEE Photonics Technology Letters,2007,19(6):402-404
    [34]P. Velanas, A. Bogris,D. Syvridis. Operation properties of a reconfigurable photonic logic gate based on cross phase modulation in highly nonlinear fibers[J]. Optical Fiber Technology,2009, 15(1):65-73.
    [35]J. F. Qiu, K. Sun, M. Rochette, et al. Reconfigurable All-Optical Multilogic Gate (XOR, AND, and OR) Based on Cross-Phase Modulation in a Highly Nonlinear Fiber [J]. IEEE Photonics Technology Letters,2010,22(16):1199-1201.
    [36]S. N. Fu, W. D. Zhong, P. Shum, et al. Simultaneous Implementation of Photonic Logic OR and AND Gates for CSRZ-OOK Signals A-5096-2011[J]. IEEE Photonics Technology Letters,2010, 22(13):960-962.
    [37]D. M. Lai, C. H. Kwok,K. K. Wong. All-optical picoseconds logic gates based on a fiber optical parametric amplifier[J]. Optics Express,2008,16(22):18362-18370.
    [38]王文睿,于晋龙,韩丙辰,等.基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究[J].物理学报,2012,61(8):84214-084214.
    [39]X. Zhang, Y. Wang, J. Sun, et al. All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs[J]. Optics Express,2004,12(3):361-366.
    [40]Q. Wang, H. Dong, G Zhu, et al. All-optical logic OR gate using SOA and delayed interometer[J]. Optics Communications,2006,260(l):81-86.
    [41]G. Berrettini, A. Simi, A. Malacarne, et al. Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate[J]. IEEE Photonics Technology Letters:2006,18(8):917-919.
    [42]S. H. Kim, J. H. Kim, B. G. Yu, et al. All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers[J]. Electronics Letters,2005,41(18):1027-1028.
    [43]J. Y. Kim, J. M. Kang, T. Y. Kim, et al. All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures:Theory and experiment[J]. Journal of Lightwave Technology,2006,24(9):3392-3399.
    [44]J. H. Kim, Y. M. Jhon, Y. T. Byun, et al. All-optical XOR gate using semiconductor optical amplifiers without additional input beam[J]. IEEE Photonics Technology Letters,2002, 14(10):1436-1438.
    [45]赵婵,张新亮,董建绩,等.基于同一结构实现全光逻辑“与门”和“或非门”的研究[J].物理学报,2006,55(8):4150-4155.
    [46]A. Hamie, A. Sharaiha, M. Guegan, et al. All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers[J]. IEEE Photonics Technology Letters,2002, 14(10):1439-1441.
    [47]Q. Wang, G.Zhu, H. Chen, et al. Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme[J]. IEEE Journal of Quantum Electronics,2004,40(6):703-710.
    [48]J. Y. Kim, J. M. Kang, T. Y. Kim, et al.10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures[J]. Electronics Letters,2006, 42(5):303-304.
    [49]R. Webb, R. Manning, G. Maxwell, et al.40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer[J]. Electronics Letters,2003,39(1):79-81.
    [50]T. Fjelde, D. Wolfson, A. Kloch, et al.10 Gbit/s all-optical logic OR in monolithically integrated interferometric wavelength converter[J]. Electronics Letters,2000,36(9):813-815.
    [51]C. Bintjas, M. Kalyvas, G.Theophilopoulos, et al.20 Gb/s all-optical XOR with UNI gate[J]. IEEE Photonics Technology Letters,2000,12(7):834-836.
    [52]T. Houbavlis, K. Zoiros, A. Hatziefremidis, et al.10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate[J]. Electronics Letters,1999,35(19):1650-1652.
    [53]D. Nesset, M. Tatham,D. Cotter. All-optical AND gate operating on 10 Gbit/s signals at the same wavelength using four-wave mixing in a semiconductor laser amplifier[J]. Electronics Letters, 1995,31(11):896-897.
    [54]B. Wu, S. Fu, J. Wu, et al. Simultaneous implementation of all-optical OR and AND logic gates for NRZ/RZ/CSRZ ON-OFF-keying signals[J]. Optics Communications,2010,283(3):349-354.
    [55]N. Deng, K. Chan, C.-K. Chan, et al. An All-Optical XOR Logic Gate for High-Speed RZ-DPSK Signals by FWM in Semiconductor Optical Amplifier[J]. IEEE Journal of Selected Topics In Quantum Electronics,2006,12(4):702-707.
    [56]S. Kumar,A. E. Willner. Simultaneous four-wave mixing and cross-gain modulation for implementing an all-optical XNOR logic gate using a single SOA[J]. Optics Express,2006, 14(12):5092-5097.
    [57]L. L. Yi, W. S. Hu, H. He, et al. All-optical reconfigurable multi-logic gates based on nonlinear polarization rotation effect in a single SOA[J]. Chinese Optics Letters,2011, 9(3):0306031-0306034.
    [58]J. J. Dong, X. L. Zhang, S, N. Fu, et al. Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering[J]. IEEE Journal of Selected Topics in Quantum Electronics,2008,14(3):770-778.
    [59]董建绩,张新亮,王阳,等.基于单个半导体光放大器的高速多功能逻辑门[J].物理学报,2008,57(4):2222-2228.
    [60]刘彬,田慧平,李长红,等.基于一维光子晶体的全光逻辑门研究[J].光子学报,2009,38(1):50-53.
    [61]M. D. Pelusi, F. Luan, E. Magi, et al. High bit rate all-optical signal processing in a fiber photonic wire[J]. Optics Express,2008,16(15):11506-11512.
    [62]F. Li, M. Pelusi, D. X. Xu, et al. Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire[J]. Optics Express,2010,18(4):3905-3910.
    [63]T. D. Vo, R. Pant, M. D. Pelusi, et al. Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals[J]. Optics Letters,2011,36(5):710-712.
    [64]Q. Xu,M. Lipson. All-optical logic based on silicon micro-ring resonators[J]. Optics Express, 2007,15(3):924-929.
    [65]M. Khorasaninejad,S. S. Saini. All-optical logic gate in silicon nanowire optical waveguides[J]. IET Circuits Devices & Systems,2011,5(2):115-122.
    [66]Y. Q. Xie, Y. Gao, S. M. Gao, et al. All-optical multiple-channel logic XOR gate for NRZ-DPSK signals based on nondegenerate four-wave mixing in a silicon waveguide [J]. Optics Letters, 2011,36(21):4260-4262.
    [67]王平,陈抱雪,王关德,等.基于掺锡As2S8条波导的全光逻辑门研究田.光学与光电技术:2011,9(3):48-50.
    [68]翟耀,孙阳,徐学俊,等.基于半导体材料微纳波导全光逻辑门的研究进展[J].物理,2010,39(2):130-135.
    [69]M. Galili, J. Xu, H. C. Mulvad, et al. Breakthrough switching speed with an all-optical chalcogenide glass chip:640 Gbit/s demultiplexing[J]. Optics Express,2009,17(4):2182-2187.
    [70]闫连山,陈智宇.超高速全光信息处理[J].ZTE Technology Journal,2011,17(6):32-37.
    [71]K. Hinton, G Raskutti, P. M. Farrell, et al. Switching energy and device size limits on digital photonic signal processing technologies[J]. IEEE Journal of Selected Topics in Quantum Electronics,2008,14(3):938-945.
    [72]S. Kumar, A. E. Willner, D. Gurkan, et al. All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks[J]. Optics Express,2006, 14(22):10255-10260.
    [73]D. Tsiokos, E. Kehayas, K. Vyrsokinos, et al.10-Gb/s all-optical half-adder with interferometric SOA gates[J]. IEEE Photonics Technology Letters,2004,16(1):284-286.
    [74]J. H. Kim, S. H. Kim, C. W. Son, et al. Realization of all-optical full adder using cross-gain modulation[C]. Proc. SPIE, Semiconductor Lasers and Applications Ⅱ,2005,5628(1):333-340.
    [75]J. Hun Kim, Y. Tae Byun, Y. Min Jhon, et al. All-optical half adder using semiconductor optical amplifier based devices[J]. Optics Communications,2003,218(4):345-349.
    [76]J. Wang, J. Sun,Q. Sun. Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate:proposal and simulation[J]. Optics Express,2007,15(4):1690-1699.
    [77]Y. Ben Ezra, B. Lembrikov,M. Haridim. Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers[J]. IEEE Journal of Quantum Electronics,2009,45(1):34-41.
    [78]A. Rostami, H. Nejad, R. M. Qartavol, et al. Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers[J]. IEEE Journal of Quantum Electronics,2010,46(3):354-360.
    [79]D. Gayen, A. Bhattacharyya,J. Roy. Ultrafast All-Optical Half Adder using Quantum-Dot Semiconductor Optical Amplifier-based Mach-Zehnder Interferometer[J]. Journal of Lightwave Technology,2011,30(21):3387-3393
    [80]A. Poustie, K. Blow, A. Kelly, et al. All-optical full adder with bit-differential delay[J]. Optics Communications,1999,168(1):89-93.
    [81]J. J. Dong, S. N. Fu, X. L. Zhang, et al. Single SOA based all-optical adder assisted by optical bandpass filter:Theoretical analysis and performance optimization[J]. Optics Communications, 2007,270(2):238-246.
    [82]M. Scaffardi, P. Ghelfi, E. Lazzeri, et al. Photonic processing for digital comparison and full addition based on semiconductor optical amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics,2008,14(3):826-833.
    [83]J. Shen, S. Yu, P. Liao, et al. All-Optical Full-Adder Based on Cascaded PPLN Waveguides[J]. IEEE Journal of Quantum Electronics,2011,47(9):1195-1200.
    [84]张丽梅,王智,陈颖川,等.基于半导体光放大器马赫曾德尔干涉仪级联结构的全光3位比较器的仿真[J].中国激光,2012,39(s1):105009.
    [85]Y. Wang, X. L. Zhang, J. J. Dong, et al. Simultaneous demonstration on all-optical digital encoder and comparator at 40 Gb/s with semiconductor optical amplifiers [J]. Optics Express, 2007,15(23):15080-15085.
    [86]H. Soto,A. GutiUrrez. All-optical 2-to-4 level encoder based on cross polarization modulation in a semiconductor optical amplifier utilized to develop an all-optical 2 input digital multiplexer[J]. Optics Express,2006,14(20):9000-9005.
    [87]G Cincotti, N. Wada,K.-i. Kitayama. Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers-part Ⅰ:modeling and design[J]. Journal of Lightwave Technology,2006,24(l):103.
    [88]N. Wada, G. Cincotti, S. Yoshima, et al. Characterization of a full encoder/decoder in the AWG configuration for code-based photonic Routers-part Ⅱ:experiments and applications[J]. Journal of Lightwave Technology,2006,24(1):113-121.
    [89]C. Xu, X. Liu,X. Wei. Differential Phase-Shift Keying for High Spectral Efficiency Optical Transmissions[J]. IEEE Journal of Selected Topics in Quantum Electronics,2004, 10(2):281-293.
    [90]A. H. Gnauck,P. J. Winzer. Optical Phase-Shift-Keyed Transmission[J]. Journal of Lightwave Technology,2005,23(1):115-130.
    [91]P. J. Winzer,R.-J. Essiambre. Advanced Modulation Formats for High-Capacity Optical Transport Networks[J]. Journal of Lightwave Technology,2006,24(12):4711-4728.
    [92]I. Kang, C. Dorrer,J. Leuthold. All-optical XOR operation of 40Gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier[J]. Electronics Letters,2004,40(8)
    [93]J. Wang, J. Sun, X. Zhang, et al. PPLN-based all-optical 40 Gbit/s three-input logic AND gate for both NRZ and RZ signals[J]. Electronics letters,2008,44(6):413-414.
    [94]J. Xu, X. Zhang, Y. Zhang, et al. Reconfigurable All-Optical Logic Gates for Multi-Input Differential Phase-Shift Keying Signals:Design and Experiments[J]. Journal of lightwave Technology,2009,27(23):5268-5275.
    [95]C. Husko, T. D. Vo, B. Corcoran, et al. Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide[J]. Optics Express,2011,19(21):20681-20690.
    [96]Z. H. Li,G. F. Li. Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier[J]. IEEE Photonics Technology Letters,2006, 18(12):1341-1343.
    [97]P.-L. Li, D.-X. Huang,X.-L. Zhang. SOA-Based Ultrafast Multifunctional All-Optical Logic Gates With PolSK Modulated Signals[J]. IEEE Journal Of quantum Electronics,2009, 45(12):1542-1550.
    [98]L. Pei-li, H. De-xiu, Z. Xin-liang, et al. Ultrahigh-Speed Multifunctional All-Optical Logic Gates Based on FWM in SOAs with PolSK Modulated Signals[C]. OFC/NFOEC 2008,2008, JWA37:1-3.
    [99]F. Ramos, E. Kehayas, J. M. Martinez, et al. IST-LASAGNE:Towards all-optical label swapping employing optical logic gates and optical flip-flops [J]. Journal of lightwave Technology,2005, 23(10):2993-3011.
    [100]J. Wang, J. Sun,Q. Sun. Experimental observation of a 1.5 um band wavelength conversion and logic NOT gate at 40Gbit/s based on sum-frequency generation[J]. Optics Letters,2006, 31(11):1711-1713
    [101]J. E. McGeehan, M. Giltrelli,A. E. Willner. All-optical digital 3-input AND gate using sum-and difference-frequency generation in PPLN waveguide[J]. IEE Electronics Letters,2007, 43(7):409-410.
    [102]L. Li, J. Wu, J. Qiu, et al. Reconfigurable all-optical logic gate using four wave mix (FWM) in HNLF for NRZ-PolSK signal[J]. Optics Communications,2010,283(3608-3612.
    [103]O. W. O. Wada. Recent Progress in Semiconductor-Based Photonic Signal-Processing Devices[J]. IEEE Journal of Selected Topics in Quantum Electronics,2011,17(2):309-319.
    [104]Y. Zhang, L. Lei, J. Dong, et al. Simultaneous all-optical digital comparator and dual-directional half-subtractor for two-input 40Gbit/s DPSK signals employing SOAs[J]. Optics Communications,2012,285(4):407-411.
    [105]Y. Zhang, J. J. Dong, L. Lei, et al. A 40-Gbit/s 1-to-2 Photonic Data Distributor Employing a Single Semiconductor Optical Amplifier[J]. Chinese Physics Letters,2011,28(064212):1-6.
    [106]Y. Zhang, L. Lei, J. Dong, et al.40 Gbit/s 2-to-1 photonic data selector via XGM and FWM in two SOAs[J]. Electronics Letters,2011,47(14):811-812.
    [107]J. Toulouse. Optical Nonlinearities in Fibers:Review, Recent Examples, and Systems Applications[J]. Journal of lightwave Technology,2005,23(11):3625-3641.
    [108]X. Sang, P. L. Chu,C. Yu. Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications[J]. Optical and Quantum Electronics,2005,37(10):965-994.
    [109]M. Khorasaninejad,S. S. Saini. All-optical logic gate in silicon nanowire optical waveguides[J]. IET Circuits, Devices Systems,2011,5(2):115-122.
    [110]邱吉芳.基于高非线性器件的全光逻辑信号处理技术[D].北京邮电大学博士学位论文, 2010.
    [111]J. Ko, S. Kim, J. Lee, et al. Estimation of performance degradation of bidirectional WDM transmission systems due to Rayleigh backscattering and ASE noises using numerical and analytical models[J]. Journal of lightwave Technology,2003,21(4):938-946.
    [112]G.P. Agrawal. Nonlinear Fiber Optics[M]. Fourth Edition. Academic press, San Diego 2009.
    [113]E. Dimitriadou,K. E. Zoiros. Proposal for all-optical NOR gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer[J]. Optics Communication, 2012,285(7):1710-1716.
    [114]R. Mehra, S. Jaiswal,H. K. Dixit. Optical computing with semiconductor optical amplifiers[J]. Optical Engineering,2012,51(8):0809011-17.
    [115]A. Bogoni, L. Poti, A. E. Willner, et al. Optical logic elementary circuits [J]. IET Circuits Devices & Systems,2011,5(2):76-83.
    [116]Y. Zhang, J. J. Dong, L. Lei, et al. Reconfigurable all-optical dual-directional half-subtractor for high-speed differential phase shift keying signal based on semiconductor optical amplifiers[J]. Chinese Physics B,2012,21(2):0242092
    [117]Y. Du, G Zhang, X. Wang, et al. Proposal and investigation of photonic data selector based on cross-phase modulation in a highly nonlinear fiber[J]. Optical Fiber Technology,2013, 19(1):40-46.
    [118]X. Li, J. Yu, Z. Dong, et al. Wavelength conversion of 544-Gbit/s dual-carrier PDM-16QAM signal based on the co-polarized dual-pump scheme[J]. Optics Express,2012, 20(19):21324-21330.
    [119]S. Watanabe, F. Futami, R. Okabe, et al.160 Gbit/s optical 3R-regenerator in a fiber transmission experiment[C]. Optical Fiber Communications Conference,2003,3:PD16 1-3.
    [120]J. H. Lee, T. Tanemura, K. Kikuchi, et al. Use of 1-mBi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation[J]. Optics Letters,2005,30(11):1267-1269.
    [121]B. Corcoran, C. Monat, M. Pelusi, et al. Optical signal processing on a silicon chip at 640Gb/s using slow-light[J]. Optics Express,2010,18(8):7770-7781.
    [122]J. Wang, Q. Z. Sun, J. Q. Sun, et al. Experimental demonstration on 40 Gbit/s all-optical multicasting logic XOR gate for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber[J]. Optics Communications,2009,282(13):2615-2619.
    [123]J. Wang, J. Sun, X. Zhang, et al. PPLN-based All-Optical Three-Input 20/40Gb/s AND Gate for NRZ/RZ Signals and XOR Gate for NRZ-DPSK/RZ-DPSK Signals[C]. OFC/NFOEC 2008, 2008, OMV3.
    [124]J. Wang, Q. Z. Sun,J. Q. Sun. All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing[J]. Optics Express,2009,17(15):12555-12563.
    [125]J. Wang,J. Sun. All-optical logic XOR gate for high-speed CSRZ-DPSK signals based on cSFG/DFG in PPLN waveguide[J]. Electronics Letters,2010,46(4):288-289.
    [126]K. Chan, C.-K. Chan, L. K. Chen, et al. Demonstration of 20-Gb/s All-OpticalXOR Gate by Four-Wave Mixing in Semiconductor Optical Amplifier With RZ-DPSKModulated Inputs[J]. IEEE Photonic Technology Letters,2004,16(3):897-899.
    [127]G P. Agrawal,N. A. Olsson. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers[J]. IEEE Journal of Quantum Electronics,1989, 25(11):2297-2306.
    [128]A. Mecozzi,J. M(?)rk. Saturation induced by picosecond pulses in semiconductor optical amplifiers[J]. Journal of the Optical Society of America B-Optical Physics,1997,14(4):761-770.
    [129]M. Asghari, I. H. White,R. V. Penty. Wavelength conversion using semiconductor optical amplifiers[J]. Journal of Lightwave Technology,1997,15(7):1181-1190.
    [130]L. Occhi, L. Schares,G.Guekos. Phase modeling based on the a-factor in bulk semiconductor optical amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics,2003, 9(3):788-797.
    [131]A. E. Willner,W. Shieh. Optimal spectral and power parameters for all-optical wavelength shifting:Single stage, fanout, and cascadability[J]. Journal of Lightwave Technology,1995, 13(5):771-781.
    [132]C. Henry. Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers[J]. Journal of Lightwave Technology,1986,4(3):288-297.
    [133]A. Lowery. Amplified spontaneous emission in semiconductor laser amplifiers:Validity of the transmission-line laser model[C]. IEE Proceedings J Optoelectronics:1990,137(4):241-247.
    [134]N. Calabretta, H. D. Jung, E. Tangdiongga, et al. All-Optical Packet Switching and Label Rewriting for Data Packets Beyond 160 Gb/s[J]. IEEE Photonics Journal,2010,2(2):113-129.
    [135]A. Gnauck, G.Raybon, S. Chandrasekhar, et al.2.5 Tb/s (64x42.7 Gb/s) transmission over 40x100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans[C]. Optical Fiber Communication Conference,2002, FC2:1-3.
    [136]C. Rasmussen, T. Fjelde, J. Bennike, et al. DWDM 40G transmission over trans-pacific distance (10000 km) using CSRZ-DPSK, enhanced FEC, and all-raman-amplified 100-km ultrawave fiber spans[J]. Journal of Lightwave Technology,2004,22(1):203.
    [137]M. L. Wei Hong, Dexiu Huang,Xinliang Zhang, Guangxi Zhu. Numerical simulation of all-optical wavelength conversion of DPSK signal based on SOA in a Mach-Zehnder configuration[C]. Proc. Of SPIE,2008,7135(71354D):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700