基于微结构光纤的全光2R再生研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作是围绕以下项目展开的:以任晓敏教授为首席科学家的国家重点基础研究发展计划(973计划)项目“新一代通信光电子集成器件及光纤的重要结构工艺创新与基础研究”(项目编号:2003CB3 14906);教育部科学技术重大研究项目“基于微结构光纤的新一代光通信器件及系统”(项目编号:104046)以及北京市教委共建项目(项目编号:XK100130437)。
     微结构光纤(Micorstructured Fiber,MF)通常是沿轴向延伸着多层空气孔的新型光纤。微结构光纤具有许多不同于传统光纤的特性,如无限单模传输,可控的色散特性,高双折射等。微结构光纤在非线性光学、光纤通信等许多领域都具有广阔的应用前景。
     本文研究了微结构光纤在全光2R再生中的应用,得到了一些有意义的结论。本文的主要研究成果如下:
     一.理论研究
     1.研究了微结构光纤在全光2R再生中的应用,详细研究了基于自相位调制(SPM)效应的全光2R再生方案。仿真结果表明该方案简单,易于实现,并具有较好的全光再生效果。
     2.研究了光纤参量对基于SPM效应的全光2R再生性能的影响。
     研究结果表明色散对再生器的传输特性有重要影响,一定量的正常色散可以降低由于SPM效应引起的展宽频谱的震荡,获得较好的传输特性。
     3.针对基于SPM效应全光2R再生方案中存在的波长变化问题,进行了两阶再生研究。研究结果表明,级联再生器能够将波长进行反变换,获得较好的光再生效果。
     4.研究了滤波器参量对基于SPM效应的全光2R再生性能的影响。滤波器的参量如滤波器带宽、中心波长偏移量对再生性能有重要影响。合理调节滤波器的带宽和中心波长,可以获得良好的再生效果。
     5.研究了非线性光纤环镜(NOLM)的传输特性,分析了光纤参量对传输特性的影响。此外介绍了NOLM在脉冲整形中的应用。
     进行了基于自相位调制效应和偏移滤波的全光2R再生的实验研究。实验中采用的微结构光纤非线性系数约为11W~(-1)km~(-1)。光纤具有小的正常色散和平坦的色散特性,在1550nm波长处色散值约为-0.58ps·nm~(-1)·km~(-1),在1500nm到1650nm波长范围内光纤的色散值变化小于1.5ps·nm~(-1)·km~(-1)。通过调节入射微结构光纤的功率和可调谐滤波器的参量可以实现全光2R再生。实验结果与理论分析相吻合。
These research works of this dissertation are supportted by National Basic Research Program of China (No.2003CB314906) , the Key Grant Project of Chinese Ministry of Education (No.104046) and Co-Constructed Project of Beijing Education Committee (No.XK1001 30437) .
     Microstructured fiber (MF) commonly consists of a fused silica core surrounded by an array of air holes running along the fiber length. It has many unusual properties compared to conventional optical fiber, such as endless single mode propagation, flexible tailorability of dispersion, high birefringence etc. Therefore MF has already found important applications in nonlinear fiber optics, optical communication and many other fields.
     In this thesis, the feasibility of MF in all-optical 2R regeneration is discussed and some important results have been achieved. The main achievements are listed as follows:
     1.Theoretical study
     (1) The feasibility of MF in all-optical 2R regeneration is discussed and SPM-based all-optical 2R regeneration is studied in detail. The simulation results show that this scheme has many advantages.
     (2) The effect of fiber parameters on SPM-based all-optical 2R regeneration performace is investigated.
     All-optical 2R regeneration can be realized by using a microstructured fiber with normal dispersion or a microstructured fiber with anomalous dispersion. But fiber dispersion has great influence on the regenerator performance. A mount of normal dispersion decreases the oscillatory structure in the broadened spectra and a better regenerator transfer function is achieved.
     (3) An improved scheme of optical regeneration by using two-stage regenerator is proposed in order to solve the problem of wavelength conversion caused by the SPM-based all-optical 2R regeneration. Results show that the performance characteristics of the two-stage regenerator are even better than that of single-stage one.
     (4) The effect of filter parameters on SPM-based all-optical 2R regeneration performace is investigated.
     The filter parameters have much influence on optical regeneration. In order to achieve optical regeneration, filter center wavelength and filter bandwidth need to meet certain requirement. By optimizing those parameters, a better regeneration result can be obtained.
     (5) The transmission characteristics of Nonlinear Optical Loop Mirror (NOLM) are studied. The effect of fiber parameters on the transmission performance is discussed. And application of NOLM in all-optical 2R regeneration is discussed.
     2.Experimental study
     Experimental study of all-optical regeneration using a combination of self-phase modulation (SPM) effects and offset filtering in microstructured fiber is presented. An 80m-long microstructured fiber with dispersion of 0.6ps/nm/km and nonlinearity ofγ=11Wkm at 1550nm is used as the nonlinear medium. The dispersion is about-0.58 ps·nm·km at 1550nm, and it varies less than 1.5ps·nm·km between 1500 and 1650nm. By adjusting the input power into the microstructured fiber and the parameters of the tunable filter, all-optical 2R regeneration is achieved. The results show that transmission characteristics match well the theoretical analysis.
引文
[1] C.A.Brackett, Dense wavelength division multiplexing networks: Principles and applications, IEEE J Select. Areas Commun.,1990,8:948-964
    [2] H.Taga, Long distance transmission experiments using the WDM technology, Journal of lightwave Technology, 1996,14:1287-1308
    [3] B.Mukherjee, WDM optical communication networks: progress and challenges, IEEE Journal on Selected topics in quantum electronics ,2000,18 (10): 1810-1822
    [4] Michael, S.Borella, Jason P.Jue, Optical Components for WDM Lightwave Networks, Proceedings of the IEEE, 1998,85 (8): 1274-1307
    [5] 顾碗仪等,光纤通信系统,北京邮电大学出版社,1999
    [6] G P. Agrawal, Nonlinear fiber optics, Third edition, Academic press,2002
    [7] GKeiser, Optical fiber communication,Third edition, McGraw-Hill companies
    [8] Simon J C, Billes L, Dupas A, et al. All-optical regeneration, Madrid,Spain. Proc. ECOC'98, 1998,20: 467-469
    [9] Lavigne B, Full validation of an optical 3R regeneration at 20Gbit/s, Proc. Of OFC'2000, 2000:93-95
    [10] B. Sarterius, C. Bornholdt, O. Brox, et al.Multi-section DFB Lasers for High Speed Signal Processing/ Regeneration, Proc. OFC2002, Anheim, California, USA,2002
    [11] Kristian E S, Semiconductor optical amplifier-based all-optical gate for high speed optical processing. J. Sel.Topics in QE, 2000,6(6): 1428-1435
    [12] Knight J C, Birks T A, Russell P, Atkin D M. All-silica single-mode optical fiber with photonic crystal cladding, Opt.Lett, 1996, 21 (19): 1547-1549.
    [13] Russell P, Photonic crystal fibers, Science ,2003,299: 358-362.
    [14] LOU Shu-qing, WANG Zhi, REN Guo-bin,et al. Polarization properties of elliptical core photonic crystal fiber, Journal of Optoelectronics·Laser(光电子·激光), 2004, 15(9): 1021-1025(in Chinese)
    [15] LI Yan-feng, HU Ming-lie,WANG Qing-yu. Supercontinuum generated from photonic crystal fiber and its applications. Journal of Optoelectronics·Laser (光电子·激光), 2003, 14(11): 1240-1243(in Chinese)
    [16] Broderick N G R,Monro T M,Bennett P J, et al. Nonlinearity in holeyoptical fibers: measurement and future opportunities, Opt Lett., 1999,24(20): 1395-1397.
    [17] Knight J C ,Arriaga J ,Birks T A ,et al.Anomalous dispersion in photonic crystal fiber,IEEE Photon Technol Lett.,2000,12(7):807-809.
    [18] Andersen P A, Tokle T, Geng Y et al. Wavelength Conversion of a 40-Gb/s RZ-DPSK Signal Using Four-Wave Mixing in a Dispersion-Flattened Highly Nonlinear Photonic Crystal Fiber, IEEE Photon.Technol.Lett.,2005,17(9): 1908-1910
    [19] ZHANG Xia, YANG Guang-qiang, HUANG Yong-qing,et al.Researches on All-optical Wavelength Conversion in Highly Nonlinear Microstructured Fibers, Journal of Optoelectronics.Laser(光电子·激光), 2005, 16(10): 1211-1213(in Chinese)
    [20] Abedin K S, Nonlinear optical loop mirror with highly birefringent polarization maintaining photonic crystal fiber for walk-off free wavelength conversion over 150 nm, Lasers and Electro-Optics, 2004, 2:16-21
    [1] P. St. J. Russell, J. C. Knight, T. A. Birks, et al. Recent progress in photonic crystal fibres, Proc, OFC 2000,3: 98-100.
    [2] J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin . All-silica single-mode fiber with photonic crystal cladding, Opt. Lett.,1997, 22:484-485
    [3] G.A.Nowak,J.Kim,M.N.Islam, Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber ,Appl.Opt., 1999, 38(36):7364-7369
    [4] J C Knigh t, J B roeng, T A B irk s et al. Photonic band gap guidance inop tical fibers. S cience, 1998, 282:1476-1478
    [5] R F Cregan,B JM angan, J C Knigh t, et al. Single-mode photonic band gap guidance of ligh t in air. S cience,1999, 285:1537-1539
    [6] 池灏,曾庆济,姜淳,光子晶体光纤的原理、应用和研究进展,光电子·激光,2003,13(5):534-537
    [7] Ranka J. K. Optical properties of high-delta microstructure optical fibers, Opt. Lett., 2000, 25:796-798
    [8] Russell P St J, Knight J C, Birks T A, et al. Recent progress in photonic crystal fibers, Proc, OFC2000, 3:98-100
    [9] N.A. Mortensen,M.D. Nielsen, J.R. Folkenberg, et al. Improved large mode area single mode photonic crystal fibers. Opt. Lett., 2003, 28(6): 393-395
    [10] J. Limpert, T. Schreiber, S. Nolte, et al. High-power air-clad large-mode-area photonic crystal fiber laser, Optics Express, 2003, 11(7): 818-823
    [11] W. Jwadsworth, J.C.Knight, W.H.Reeves, et al. Yb3+-doped photonic crystal fibre laser, Electronics letters, 2000, 36(17): 1452-1454
    [12] Liu x, Xu c, Knox W H, et al. Solution self-frequence shift in a short tapered air-silica microstructure fiber, Opt. Lett., 2001, 26:358-360
    [13] 池灏,蒋铭,赵焕东等,光子晶体光纤的非线性效应及其应用研究进展,半导体光电,2003,24(5):297-300
    [14] Birks T A. Dispersion compensation using single material fibers, IEEE Photon Technol. Lett., 1999, 11(6): 674-676
    [15] Russell P St J, Knight J C, Birks T A, et al. Recent progress in photonic crystal fibers, Proc, OFC2000, 3: 98-100
    [16] 关铁梁,光子晶体光纤,激光与光电子学进展,2002,39(10):41-48
    [17] 唐仁杰,低衰减光子晶体光纤的最新进展,全国第十一次光纤通信暨第十二届集成光学学术会议论文集:481-484
    [18] T. P. White, R. C. McPhedran, C. M. de Sterke, et al. Confinement losses in microstructured optical fibers, Opt. Lett., 2002, 26(21): 1660-1662
    [19] Vittoria Finazzi, Tanya M. Monro, and David J. Richardson. The role of confinement loss in highly nonlinearsilica holey fibers, IEEE Photonics technology letters, 2003, 15(9): 1246-1248
    [20] Birks T A. Dispersion compensation using single material fibers, IEEE Photon Technol. Lett., 1999, 11(6): 674-676
    [21] Knight J C, Arriaga J, Birks T A, Ortigosa-Blanch A, Wadsworth W J, and Russell P St J. Anomalous dispersion in photonic crystal fiber. IEEE Photon Technol. Lett., 2000, 12:807-809
    [22] D. V. Skryabin, F. Luan, J. C. Knight, et al. Soliton self-frequency shift cancellation in photonic crystal fibers, Science, 2003, 301:1705-1708
    [23] Albert Ferrando, Mario Zacar'es, Spatial soliton formation in photonic crystal fibers, Optics Express., 2003, 11(5): 452-459
    [24] J. C. Knight, P. St. Russell, Soliton effects in photonic crystal fibres at 850nm. Electronics Letters., 2000, 36(1): 63-66
    [25] J. K. Ranka, R. S. Windeler , A. J. Stentz, Visible continuum generation in air2silica microstructure optical fibers with anomalous dispersion at 800nm, Opt. Lett., 2003, 25:25-27
    [26] P. Petropoulos, T. M. Monro, W. Belardi, et al, 2R-regenerative all-optical switch based on a highly nonlinear holey fiber, Opt. Lett.,2001,26:1233-1235
    [27] J. H. Lee, Z, Yusoff, W. Belardi, et al, Investigation of Brillouin effects in small-core holey optical fiber, lasing and scattering,Opt.Lett., 2002,27:927-929
    [28] K. Nakajima,J. Zhou, K.Tajima, K. Kurokawa et al, Ultrawide-band single-mode transmission performance in a low-loss photonic crystal fiber, Journal of Lightwave Technology, 2005, 23 (1): 7-12
    [29] K. Furusawa, T. M. Monro, P. Petropoulos, et al, Modelocked laser based on ytterbium doped holey fibre. Electronics Letters., 2001, 37(9): 560-561
    [30] W. J. Wadsworth, R. M. Percival, G. Bouwmans, et al. High power air-clad photonic crystal fibre laser, Optics Express., 2003, 11(1): 48-53
    [31] Se-Heon Kim, Han-Youl Ryu, Hong-Gyu Park, et al. Two-dimensional photonic crystal hexagonal waveguide ring laser, Appl Phys Lett., 2002, 81(14): 2499-2501
    [32] G. E, Town and J. T. Lizier, Tapered holey fibers for spot size and numerical aperture conversion, CLEO2001,CTuAA3:261
    [33] 辛雨,张茹,忻向军等,光通信中的光电子器件讲座第二讲,光纤光栅器件在光纤通信中的应用,物理,2001,30(9):571-574
    [34] 童治,江中澳,延凤平等,DWDM全光网络及光纤光栅在其中的应用,光通信研究,2001,103(1):16-20
    [35] 汤树成,龚岩栋,光纤光栅在全光通信网中的应用,光纤与电缆及其应用技术,2001,4:29-31
    [1] B. Sarterius, C. Bornholdt, O. Brox, et al. Multi-section DFB Lasers for High Speed Signal Processing/Regeneration.Proc.OFC2002,Anheim,Califomia, USA
    [2] Abedin K S, Nonlinear optical loop mirror with highly birefringent polarization maintaining photonic crystal fiber for walk-off free wavelength conversion over 150 nm, Lasers and Electro-Optics, 2004, 2:16-21
    [3] Kristian E S, Semiconductor optical amplifier-based all-optical gate for high-speed optical processing." J. Sel.Topics in QE,2000, 6(6): 1428-1435
    [4] J.P.Sokoloff, P.R.Prucnal, I.Glesk, and M.Kane, A teraherhz optical asymmetric dumultiplexer (TOAD), IEEE Photon. Technol. Let., 1993, 15(7):787-790
    [5] Aydin Yeniay and Renyuan Gao, "Single Stage High Power L-Band EDFA With Multiple C-Band Seeds", in Optical Fiber Conf, Paper ThJ2, 2002
    [6] Shinsuke Tanaka, Kaoru Imai, Tomonori Yazaki and Hideaki Tanaka, Ultra-Wideband L-band EDFA Using Phosphorus Co-Doped Silica-Fiber, Optical Fiber Conf., Paper ThJ3, 2002.
    [7] P.S.Cho, et al, All-Optical 2 R regeneration and wavelength conversion at 20Gb/s using an electroabsorption modulator, IEEE Photon. Technol. Lett.,1999, 11(2): 1662-1664
    [8] L.Billes, J.C.Sirnon, B.Kowalski, M. Henry, G.Michaud, P. Lamouler and F.Alard, 20Gbit/s Optical 3R regenerator using SOA Based Mach-Zehnder Interferometer Gate, ECOC 97,269-272.
    [9] fang J M. Spencer P S, Shore K A. Influence of fast gain depletion on the dynamic response of TOAD's. Uightwave Technol., 1998,16(1): 86-91
    [10] S.Bigo, O.Leclerc, E.Desurvire, All-Optical Fiber Signal Processing and Regeneration for Soliton Communications, J. Sel .Topics in QE, 1997, 3(5): 1208- 1223
    [11] Min-Yong Jeon,Dong Sung Lim,Hak Kyu Lee, et al.,All-optical wavelength conversion for 20-Gb/s RZ format data, IEEE Photonics Technology Leters, 2000, 12 (11): 1528-1530
    [12] C. Schubert, S.Diez, J. Berger, R. Ludwig, 160-Gb/s All-Optical Demultiplexing Using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GT UNI), IEEE Photonics Techonology Letters, 2001,13(5): 1566-1569
    [13] A.E.Kelly, I.D.Phillips, 80 Gbit/s all-optical regenerative wavelength conversion using optical amplifier based interferometer, Electronic Leters,1999 Online 21
    [14] Tang J M. Spencer P S, Shore K A. Influence of fast gain depletion on the dynamic response of TOAD's[J]. Lightwave Technol., 1998,16(1): 86-91
    [15] L.Billes, J.C.Simon, B.Kowalski, M. Henry, G.Michaud, P. Lamouler and F. Alard, 20Gbit/s Optical 3R regenerator using SOA Based Mach-Zehnder Inter-ferometer Gate[C], ECOC 97,269-272.
    [16] N.J.Doran and D.Wood, "Nolinear optical loop mirror,"Opt.Lett., 1988, 13(1): 56-58
    [17] N.J.Doran, D.S.Forrester, and B.K.Nayar, "Experimental invesigation of alloptical switching in fiber loop mirror device," Electron. Lett., 1989, 25(4):267
    [18] GOVind P.Agrawal著,贾东方等译,非线性光纤光学原理及应用,北京,电子工业出版社,2002
    [1] P. St. J. Russell, J. C. Knight, T. A. Birks, et al. Recent progress in photonic crystal fibres, Proc, OFC 2000,3: 98-100.
    [2] J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin . All-silica single-mode fiber with photonic crystal cladding, Opt. Lett.,1997, 22:484-485
    [3] Pontus J,Magnus K.Characterization of a Self-Phase-Modulation-Based All Optical Regeneration System[J].IEEE Photon. Technol. Lett.,2005,17(12): 2667-2669
    [4] Leclerc O. Optical 3R regeneration for 40Gbit/s line-rates and beyond, Proc. of OFC'2002, 2002, TuN: 79-81
    [5] Simon J C, Billes L, Dupas A, et al. All-optical regeneration.Madrid, Spain. Proc. ECOC'98,1998,20: 467-469
    [6] Leclerc O. Optical 3R regeneration for 40Gbit/s line-rates and beyond, Proc.of OFC'2002,2002,TuN:79-81
    [7] Mamyshev P V. All-optical data regeneration based on self-phase modulation effect. ECOC'98.1998:475-476.
    [8] M.Qiu. Analysis of guided modes in photonic crystal fibers using the finitedifference time-domain method. Microwave Opt. Technol. Lett., 2001, (30):327-330.
    [9] Govind P. Nonlinear Fiber Optics and Application of Nonlinear Fiber Optics.Third edition.Jia Dongfang,Yu Zhenhong,Tan bin et al.transl. Beijing:Publishing House of Electronics Industry(电子工业出版社), 2002,42-59(in Chinese)
    [10] Tsing-Hua Her,Gregory Raybon,Cliff Headley.Optimization of Pulse Regeneration at 40 Gb/s Based on Spectral Filtering of Self-Phase Modulation in fiber. IEEE Photon. Technol. Lett.,2004, 16 (1):200-202.
    [11] ZHANG Xia, YANG Guang-qiang, HUANG Yong-qing,et al.Researches on All-optical Wavelength Conversion in Highly Nonlinear Microstructure Fibers. Joumal of Optoelectronics.Laser,2005,16(10): 1211-1213 (in Chinese)
    [12] SONG Xue-peng, REN Xiao-min, ZHANG Xia, YANG Guang-qiang, and HUANG Yong-qing, Experimental study on an all-optical switching based on MF-NOLM, Optoelectronics Letters, 2006,2:169-172.
    [13] Humblet P A ,Crosstalk analysis and filter Optimization of single and double cavity Fabry Perot filters. IEEE J,Select. Areas Communion, 1990(8): 1095-1107
    [14] 原荣,光滤波器和波分解复用器,光通信技术,2003(4):50—54
    [15] 林洪榕,迟晓玲,李利军,光滤波器:结构、原理与特性,光电子器件与技术,200l(11):31—36
    [16] J.H.Franz等著,徐宏杰、蒋剑良译,光通信器件与系统,北京:电子工业出版社,2002,217—222
    [17] 刘增基,周洋溢,胡辽林等,光纤通信,西安电子科技大学出版社,2001,146-158
    [18] Pontus J,Magnus K.Characterization of a Self-Phase-Modulation-Based All Optical Regeneration System[J].IEEE Photon. Technol. Lett.,2005,17(12): 2667-2669
    [1] Mamyshev P V. All-optical data regeneration based on self-phase modulation effect. ECOC'98.1998:475-476.
    [2] Pontus J, Magnus K.Characterization of a Self-Phase-Modulation-Based All Optical Regeneration System.IEEE Photon. Technol. Lett.,2005,17(12): 2667-2669
    [3] Leclerc O. Optical 3R regeneration for 40Gbit/s line-rates and beyond, Proc. of OFC' 2002, 2002, TuN: 79-81
    [4] Simon J C, Billes L, Dupas A, et al. All-optical regeneration.Madrid, Spain. Proc. ECOC'98,1998,20: 467-469
    [5] Leclerc O. Optical 3R regeneration for 40Gbit/s line-rates and beyond, Proc.of OFC'2002,2002,TuN:79-81
    [6] Petropoulos P, Monro T M, Belardi, et al.2R-regenerative all-optical switch based on a highly nonlinear holey fiber,Opt. Lett.,2001,26,(8): 1233-1235
    [7] Nonlinear Photonic Crystal Fiber,www.crystal-fibre.com
    [8] 刘增基,周洋溢,胡辽林等,光纤通信,西安电子科技大学出版社,2001,146-158.
    [9] J.H.Franz等著,徐宏杰、蒋剑良译,光通信器件与系统,北京:电子工业出版社,2002,217—222
    [10] Govind P. Nonlinear Fiber Optics & Application of Nonlinear Fiber Optics.Third edition.Jia Dongfang,Yu Zhenhong,Tan bin et al.transl. Beijing: Publishing House of Electronics Industry(电子工业出版社), 2002,42-59(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700