地下滴灌土壤水分运动特性与系统设计参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为完善地下滴灌系统设计理论、提高系统运行管理水平,针对地下滴灌条件下土壤水分运动和系统水力性能交互影响的特点,以地下滴灌管网、土壤和作物这一连续的水流系统作为研究对象,采用田间定位观测、室内试验、理论分析和数学模拟相结合的方法,研究了地下滴灌条件下土壤水分的运动特征,探讨了地下滴灌系统灌水器流量、毛管间距与埋深等工程设计问题,提出了地下滴灌系统主要设计参数的计算方法,分析了地下滴灌系统管网的水力特性,并探索了田间监测和评价地下滴灌系统运行状况的新方法。取得的主要研究结论如下:
     (1)地下滴灌湿润峰随时间变化过程可概化为2个相对独立的线性过程。灌水过程中,在滴头附近形成了水分过饱和区,湿润峰的运移速度向下最大,水平次之,向上最小;土壤水再分布过程中,湿润峰的水平和向下运移速度趋于相同。不同方向上湿润峰运移距离存在一定的比例关系,该比例与土壤质地和灌水器流量有关。
     (2)地下滴灌条件下,灌水器额定流量和土壤的导水性直接影响灌水器出口处的土壤水能态。同一土壤条件下,灌水器出口稳定正压随灌水器额定流量的增大而增加,随土壤初始含水率的增大而降低。地下滴灌土壤水能态为非线性分布,以灌水器出口处的土壤水势为参数,给出了求解点源或线源入渗条件下土壤水势分布的数学方程。
     (3)地下滴灌土壤水运动是以水分运动为主、包含土壤中细小颗粒运动的两相流,不能直接用理查得方程进行描述。将地下滴灌土壤水分运动分为饱和渗透区和非饱和扩散区,分别用达西定律和理查得方程对其进行描述,建立了分区耦合模型;采用非线性函数对地下滴灌饱和区外边界进行描述,作为地下滴灌耦合模型的区界。
     (4)地下滴灌灌水过程中,灌水器的流量呈由大变小、最终趋于稳定的动态变化过程,其稳定流量与额定流量相比,减少5%~30%。灌水器额定流量越小,埋入地下后的稳定流量与其额定流量越接近,达到稳定流量的时间越长;土壤初始含水率越小,灌水器的稳定流量也越接近其额定流量。在选择地下滴灌灌水器流量时,可以参考灌水器的额定流量,并考虑一定的折减系数。对于砂壤土而言,折减系数的取值范围在0.70~ 0.95之间。
     (5)砂壤土条件下,地下滴灌适宜毛管铺设间距为90 cm。结合地下滴灌条件下土壤水势的分布,将地下滴灌的灌水影响区分为压力传导区、土壤水分扩散区和作物吸水影响区3个部分,以土水势为变量,给出了对应区域的计算公式,地下滴灌毛管间距等于3部分距离之和的2倍,并以作物与水关系为函数,建立了地下滴灌毛管间距计算公式。
     (6)地下滴灌毛管埋深受土壤质地、作物和犁底层的影响。与壤土和粉砂壤土相比,砂壤土毛管埋深可相对浅一些;考虑作物影响时,设计毛管埋深可适当加深。设计时,应考虑毛管铺设位置与犁底层相对位置间的关系,结合作物根系主要吸水区、农事作业等因素,选择适宜的毛管埋深。
     (7)冲洗管的加设,提高了地下滴灌系统工作稳定性。田间实测地下滴灌毛管的工作压力在额定工作压力的±30%之间,灌水器的流量偏差小于20%。毛管水头损失与距小区进口处的距离呈正相关;系统工作压力变化时,主要影响小区进口附近毛管的工况。将地下滴灌田间管网的支、毛管概化为多孔出流管道,采用尾端有出流的多孔管段计算公式,将环状管网化为树状管网,组成非线性方程组,对地下滴灌系统田间环状管网的水力要素进行了求解。
     (8)提出了2 L计时法对地下滴灌系统的工况进行监测。地下滴灌系统毛管流量降低率与使用年限有关,对应于1年、2年、3年、4年的地下滴灌系统,大于10%毛管流量降低率分别达到测试毛管条数的0、1/3、2/3、2/3。同一使用年限内,毛管性能变化与其所在的位置及滴灌带类型有关,靠近小区进口的毛管流量降低率较小,小流量、厚壁滴灌带的流量较稳定。
     (9)采用25点取样法,对大田地下滴灌灌水后土壤水分分布均匀度进行了评价。地下滴灌条件下,土壤水消耗以毛管为中心,其土壤水变幅最大;与上、下土层相比,灌水前毛管位置处的土壤水分均匀度较低,灌水后均匀度大幅提高,明显阻止了由于水分消耗而引起的土壤水分分布不均匀性。
There is an interaction characteristic between system hydraulic properties and soil water movement under Subsurface Drip Irrigation system (SDI). To improve the design theory and management method of SDI, field positioned observations, laboratory experiments, theoretical analysis and mathematical models were conducted for studying the continuous system from pipe network of SDI, soil to crops. Characteristics of soil water movement under SDI were studied. Emitter flow, drip line spacing and depth were discussed, and such main designning parameters of SDI system were proposed. Hydraulic of pipe networks were analyzed. A new method was explored for the monitoring and evaluation of SDI system in the field. The main conclusions obtained as follows:
     (1) Process of the Soil Water Front (SWF) can be summarized into two independent linear. Process under SDI. There is a saturated zone near the emitter during irrigation. Migration rates of SWF vary with directions. Form downward, level to upward, migration rates of SWF decrease. Different directions of SWF distance trend to a same value during the redistribution process. There is a certain ratio among the migration distance at different directions, and this ratio related to the emitter flow and the soil texture.
     (2) The potential energy near the outlet of emitter were directly affected by the emitter’s flow and soil water conductivity under SDI. The stability pressure near the emitter’s outlet increases with the nominal emitter flow rate’s increasing, and decreased with the increasing of initial soil moisture for a same soil. The distribution of soil water potential was nonlinear. Using the soil water potential as parameters, equations were given to solute the soil water potential distribution under the infiltration from point and line source
     (3) For the soil water movement under SDI contains fine soil particles’movement,it couldn’t be described directly with Richard equation. Soil water movement under SDI were divided into saturated and unsaturated infiltration diffusion zone, and described by Darcy Law and Richard equations, respectively. A coupled regional model was established. A nonlinear function was used to describe the outside boundary of saturation range, and it was used as the boundary of the coupled ranges of SDI.
     (4) the emitter flow was a dynamic decreasing process and tended to a stable rate during the process of SDI. The steady flow rate reduced by 5% to 30% compared with the nominal emitter flow. Lesser of the nominal emitter flow, the flow rate of buried emitter closer to its nominal value and longer time to its stable status. So as to smaller initial soil water content. It is suggested that the designed emitter discharge could be discounted on it’s nominal discharge. The reduction coefficient is from 0.70 to 95 for the sandy loam.
     (5) The suitable Drip Line Spacing (DLS)for sandy loam soil is 90 cm. The affected zone of SDI was divided into pressure conduction, soil moisture diffusion zone and crop water uptake zone, based on soil water potential distribution. The formulas were given to calculate the length of corresponding regions, with soil water potential as the variable. DLS equals to 2 times of above 3 parts sum. And formula of drip line spacing, as the function of crops and water relations, was given under SDI, too.
     (6) The drip line buried depth of SDI were affected by soil texture, crop, and plow pan. The drip line buried depth could be shallower for sandy loam compared with the loam and silt loam, and be deeper with crops. It should be considered that relative position of drip line and plow pan, combined with the main root water uptake areas, agricultural operations and other factors, for selecting of drip line depth.
     (7) The stability of SDI system was improved with flushing pipes. Field observions show that the drip line working pressure were±30% of nominal pressure. and the difference of emitter flow is less than 20%. Drip line head loss has a positive correlation to the distance from the plot entrance. The drip line working status near the entrance of plot varies with the system working pressure. Field pipes can be analyzied as multi-outlet with outflow at its end, ring pipe networks could be changed into the tree pipe networks. Composed of nonlinear equations to calculate hydraulic of pipe network in SDI.
     (8) 2 L timing method was proposed to monitor the status of SDI. Reducing drip line flow rate varied with using years. Corresponding to 1, 2, 3 and 4 years, more than 10% of drip line flow decreased rates are 0, 1/3, 2/3, 2/3, respectively. For a same service year, drip line properties changes with their location and their types. Near to inlet of plot, the decreased drip line flow rate is smaller. It is stable for lower flow and thicker drip wall.
     (9) 25-point sampling method was used to evaluate soil water distribution uniformity under SDI. Results show that soil water consume is as the drip line of center in the space under SDI. Compared with the upper and lower layers, uniformity of the soil moisture vicinity of drip line lower before irrigation; it increase obviously after irrigation.
引文
白丹,宋立勋,王晓愚. 2008.地下滴灌灌水器流量和压力关系的试验.农业机械学报, 39(8):189-191.
    美国农业部.美国国家灌溉工程手册.水利部国际合作司,水利部农村水利司,中国灌排技术开发公司,水利部农田灌溉研究所译. 1998.北京:中国水利水电出版社.
    蔡焕杰,邵光成,张振华. 2002.棉花膜下滴灌毛管布置方式的试验研究.农业工程学报, 18(1):45-48.
    柴福军. 1998.渗灌技术及其在新疆的应用前景.新疆农业科学, (2):78-80.
    陈雷. 1998.集思广益把我国节水灌溉推向新阶段.见:水利部农村水利司.节水灌溉.北京:中国农业出版社, 1-2.
    陈新明,蔡焕杰,王占兵,刘立库. 2004.无压根区地下灌溉技术试验研究.农业工程学报, 20(1): 76-79.
    程冬玲,李富先,林性粹. 2004.苜蓿田间地下滴灌效应试验研究.中国农村水利水电, (5):1-3.
    程先军,许迪,张昊. 1999.地下滴灌技术发展及应用现状.节水灌溉, (4):13-15.
    程先军,许迪. 2001.地下滴灌专用滴头的研制及初步应用.农业工程学报, 17(2):51-54.
    丛佩娟. 2004.地下滴灌管网水力特性研究.北京:中国农业科学院研究生院, 06.
    Dullien F A L. 1990.多孔介质—流体渗流与孔隙结构.范玉平,赵东伟,等译. 2001.北京:石油工业出版社.
    杜林博斯J,卡萨姆A H. 1979.产量与水的关系.罗马:联合国粮食与农业组织.
    段守明,仵峰,李富强. 2007.浅谈对新疆棉花地下滴灌的认识.节水灌溉, (1):12-14.
    付琳,董文楚,郑耀泉,等. 1988.微灌工程技术指南.北京:水利出版社.
    戈德堡D. 1984.滴灌原理与应用.北京:中国农业机械出版社.
    葛家理. 2003.现代油藏渗流力学原理(上册).北京:石油工业出版社.
    郭文聪,樊贵盛. 2004.土壤地下点源入渗的基本特性研究.太原理工大学学报, 35(3):267-271.
    国家节水灌溉北京工程技术研究中心.地下滴灌技术. http://www.watsave.com.
    何华,康绍忠. 2000.地下滴灌的经济与环境效益研究综述.西北农业大学学报, 28(3):79-83.
    何华,康绍忠,曹红霞. 2001.地下滴灌埋管深度对冬小麦根冠生长及水分利用效率的影响.农业工程学报, 17(6):31-34.
    何华. 2001.地下滴灌条件下作物水氮吸收利用与最佳灌水技术参数的研究.陕西杨凌:西北农林科技大学.
    胡笑涛,康绍忠,马孝义,李志军,李家振. 2005.地下滴灌条件下沙质土壤入渗特性试验研究.灌溉排水学报, 23(5):75-77.
    胡笑涛. 2001.地下滴灌灌水均匀度试验研究.陕西杨凌:西北农林科技大学.
    黄兴法,李光永. 2002.地下滴灌技术的研究现状与发展.农业工程学报, 18(2):176-181.
    康跃虎. 1999.微灌系统水力学解析和设计.西安:陕西科学技术出版社.
    孔繁宇,胡同军. 2005.棉田地下滴灌土壤水分变化及需水规律初探.中国农学通报, 21(1):323-325.
    孔繁宇,胡同军. 2004.不同滴灌带和不同铺设间距的地下滴灌效果试验.中国农学通报, 20(6):331-333.
    雷廷武,江培福, Vincent F Bralts,肖娟. 2005.负压自动补给灌溉原理及可行性试验研究.水利学报, 36 (3):298-302.
    雷英杰,张善文,李续武,等. 2005. MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社.
    雷志栋,杨诗秀,谢森传. 1988.土壤水动力学.北京:清华大学出版社.
    李道西,彭世彰. 2004.地下滴灌灌水设计参数对土壤水分分布影响的计算机模拟.沈阳农业大学学报, 35(5-6):507-509.
    李道西. 2003.地下滴灌土壤水分运动数值模拟研究.武汉:武汉大学.
    李恩羊. 1982.渗灌条件下土壤水分运动的数学模拟.水利学报, (4):1-10.
    李光永. 2001.世界微灌发展势态——第六次国际微灌大会综述与体会.节水灌溉, (2):24-27.
    李光永. 1995.微灌土壤水分分布规律及旱地果园蓄雨微灌的研究.北京:中国农业大学.
    李红. 2005.地下滴灌条件下土壤水分运动试验及数值模拟.武汉大学.
    李旌胜,李光永,张琼. 2005.澳大利亚棉花地下滴灌技术.中国农村水利水电, (1):62-64.
    李久生,陈磊,栗岩峰. 2008.地下滴灌灌水器堵塞特性田间评估.水利学报, 39(10):1272-1278.
    李坤. 1999.我省果树地下滴灌的应用与应注意的几个问题.陕西水利, (12 B):62-63.
    李遥路,覃生群. 1999.具有推广前景的农业节水技术--渗灌.柳州科技, (2):20-21.
    李英能. 2001.作物与水资源利用.重庆:重庆出版社.
    李援农,张捐社. 1999.低压微孔地理管灌溉技术要素试验研究.西北农业大学学报, 27(5):39-43.
    李援农. 2007.不同灌溉方式入渗条件下的土壤空气阻渗特性试验研究.西安:西安理工大学.
    刘昌明,何希吾. 1996.中国21世纪水问题方略.北京:科学出版社.
    刘晓英,杨振刚,王天俊. 1990.滴灌条件下土壤水分运动规律的研究.水利学报, (1):11-21.
    吕谋超,仵峰,彭贵芳,熊明洁. 1996.地下和地表滴灌土壤水分运动的室内试验研究.灌溉排水, (1):28-34.
    马孝义,康绍忠,王凤翔,李援农,胡笑涛,韩光. 2000.果树地下滴灌灌水技术的田间试验研究.西北农业大学学报, 28(1):57-61.
    马孝义,王凤翔. 1999.陕西省果树地下滴灌的应用前景、存在问题与建议.干旱地区农业研究, (2): 门旗. 2002.地下滴灌研究及进展.全国微灌工作组会议交流论文.石家庄.
    钱家欢. 1988.土力学.南京:河海大学出版社.
    钱蕴璧,李英能,杨刚,等. 2002.节水农业新技术研究.郑州:黄河水利出版社.
    钱正英,张光斗. 2001.中国可持续发展水资源战略研究综合报告及各专题报告.北京:中国水利水电出版社.
    邱为铎. 1981.河北省遵化县达志沟板栗地下滴灌系统设计报告.水电部水利水电科学研究院水利所.
    任杰. 2008.地下滴灌灌水设计参数对土壤水分运动规律的影响研究.石河子大学.
    山仑,康绍忠,吴普特. 2004.中国节水农业.北京:中国农业出版社.
    沈振荣,苏人琼. 1998.中国农业水危机与对策研究.北京:中国农业科技出版社.
    水利部农村水利司. 2009. GB/T50485-2009微灌工程技术规范.北京:中国计划出版社
    王金如. 1997.等比降法和平均水头法及其在微灌水力设计中的应用研究.石家庄:河水省水利科学研究所.
    王荣莲,龚时宏,李光永,王建东. 2005a.地下滴灌防根系入侵的方法和措施.节水灌溉, (2):
    王荣莲,龚时宏,王建东,李光永,赵永来. 2005b.地下滴灌抗负压堵塞的试验研究.灌溉排水学报, (5):
    王伟,李光永,段中锁,孙新忠. 2000.利用工程措施改变地下滴灌土壤湿润模式的试验研究.节水灌溉, (3):22-24.
    王晓愚,白丹,李占斌,李刚. 2009.粉壤土条件下影响地下滴灌灌水器流量的因素分析.干旱地区农业研究, (1).
    王晓愚,白丹,李占斌,李刚. 2008.地下滴灌灌水器水力要素试验研究.农业工程学报, 24(10):6-10.
    王新坤,程冬玲,林性粹. 2001.单井滴灌干管管网的优化设计.农业工程学报, 17(3): 41-44.
    吴景社. 1992.低压渗灌原理与基础试验研究.灌溉排水, 11(2):35-38.
    吴普特. 2004.中国节水农业科技战略与区域发展模式.中国节水农业科技论坛,太原, 11: 4-8.
    仵峰,宰松梅,彭贵芳. 2004a.地下滴灌研究与发展现状.中国节水农业科技论坛,太原, 11:401-405.
    仵峰,宰松梅,从佩娟. 2004b.国内外地下滴灌研究及应用现状.节水灌溉, (1):25-28.
    仵峰,彭贵芳,宰松梅,刘杨. 2008.灌溉的趋势——微续灌.节水灌溉, (6):1-3.
    仵峰,范永申,李辉,郭志新,李金山,李王成. 2004.地下滴灌灌水器堵塞研究.农业工程学报, 20(1):80-83.
    仵峰,李王成,李金山,范永申,冯俊杰. 2003a.地下滴灌灌水器水力性能试验研究.农业工程学报, 19(2):85-88.
    仵峰,李王成,范永申,李金山. 2003b.地下滴灌灌水器出口正压试验研究.灌溉排水学报, 22(2):48-50, 54.
    仵峰,吕谋超,彭贵芳,熊明洁. 1996.地下滴灌条件下土壤水分运动模型.灌溉排水, 15(3):24-29.
    仵峰,彭贵芳,熊明洁. 1995.沟灌地表滴灌和地下滴灌的试验报告.节水产品研制和微灌技术研究与应用,新乡.
    仵峰. 2002a.地下滴灌研究及应用现状.全国微灌工作组会议交流论文,兰州, -12.
    仵峰. 2002b.地下滴灌条件下灌水器水力性能研究.北京:中国农业科学院研究生院.
    肖娟,何春梅(译). 2001:玉米地下滴灌—十年的研究总结.第六届国际微灌大会论文译文集,北京: 中国水利学会农田水利专业委员会微灌学组, 102-106.
    熊文真,张耀武,李文梅. 2005.果树地下滴灌技术.山西果树, (1):51-52.
    许迪,李益农. 2002.田间节水灌溉新技术研究与应用.北京:中国农业出版社.
    杨保德. 1996.塑料细管地下滴灌(渗灌)基本技术要点.山西省万荣县水利局.
    叶和才,华孟,张君常. 1983.土壤物理学.北京:农业出版社.
    岳兵. 1997.渗灌技术存在问题与建议.灌溉排水, 16(2):40-44.
    岳兵. 1996.渗灌由来现状与技术问题解决途径浅析.第四次全国微灌学术研讨会.
    宰松梅,仵峰,范永申,等. 2004.淹没出流条件下灌水器水力性能试验研究.灌溉排水学报, 23(5):59-61.
    翟云芳. 2003.渗流力学.北京:石油工业出版社.
    张国祥. 1995.对运城地区地下滴灌工程建设中若干技术问题的参考意见.微灌信息, (3).
    张国祥. 1989.微灌水力设计计算方法研究.太原:山西省水利所.
    张昊,许迪,程先军. 1999.几种地下滴管(渗灌)灌水器性能的室内外试验研究.灌溉排水, 18(3):
    张江辉. 1998.美国渗灌技术考察.新疆水利, (3):19-23.
    张树森,雷勤明. 1994.日光温室蔬菜渗灌技术研究.灌溉排水, 13(2):30-32.
    张思聪,惠士博,雷志栋,杨诗秀. 1985.渗灌的非饱和土壤水二维流动的探讨.土壤学报, (3):209-222
    张也影. 1998.流体力学.北京:高等教育出版社.
    张永茂. 1997.一种旱地果园新型节水渗灌器.甘肃农村科技, (1):38-39.
    张志新. 2007.滴灌工程规划设计原理与应用.北京:中国水利水电出版社.
    章力建,侯向阳,杨正礼. 2005a.当前我国农业立体污染防治研究的若干重要问题[J].中国农业科技导报, 7(1):3-5.
    章力建,朱立志. 2005,我国“农业立体污染”防治对策研究.农业经济问题, (2):4-7.
    章力建,侯向阳. 2005a.我国农业立体污染防治研究进展.作物杂志, (5):1-4.
    章力建. 2005b-09-06.运用循环经济规律防治农业立体污染.科学时报.
    中国水利年鉴编纂委员会.中国水利年鉴2004.北京:中国水利水电出版社, 2004-11.
    朱德兰,汪志农,王得祥,朱首军,俞发军.不同土壤中滴灌水分分布与设计参数的确定.西北农业大学学报, 2000, 28(2):45-49.
    朱连勇,崔春亮. 2005.谈地下滴灌的堵塞问题及处理方法.水土保持研究, 12(2):111-112.
    Adamsen F J. 1989. Irrigation method and water quality effect on peanut yield and grade. Agron J, 81(4):589-593.
    Alam M, Trooien T P, Dumler T J, et al. 2002. Using subsurface drip irrigation for alfalfa. Journal of the American Water Resources Assoc, 38(6):1715-1721.
    Alon Ben-Gal, Naftali Lazorovitch, Shani Uri. 2004. Subsurface drip irrigation in gravel-filled cavities. Vadose Zone Journal, 3:1407-1413.
    Amoozegar Fard A, Warrick A W, Lomen D O. 1984. Design nomographs for trickle irrigation systems. Journal of Irrigation and Drainage Engineering, 110(2): 107-120.
    Ayars J E, Phene C J, Hutmacher R B, et al. 1999. Subsurface drip irrigation of row crops: a reviewof 15 years of research at the Water Management Research Laboratory. Agriculturalater Management, 42:1-27.
    Bajracharya R M, Sharma S. 2005. Influence of drip-irrigation method on performance and yields of cucumber and tomato. Kathmandu university journal of science, engineering and technology, 1(1):1-7.
    Bar-Yosef B, Phene C J, Hutmacher R B. 1991. Plants Response to subsurface tricklefer tigation. BARD Project No I-1116-86 Final Report, Bet Dagan, Israel.
    Ben-Asher J, Phene C J. 1993. Analysis of Surface and subsurface drip irrigation Using A Numerical Model. Subsurface drip irrigation-theory, practice and application, St Joseph, Mich: Irrigation & Drainage Press, 185-202.
    Berkowitz S J. 2001. Hydraulic performance of subsurface wastewater Drip Systems. In: K Mancl, St Joseph, Mich. On-Site wastewater treatment, Proc Ninth Natl Symp On Individual and Small Community Sewage Systems, Fort Worth, Texas, USA: 583-592.
    Blaine Hanson, Don May. 2003. Drip irrigation increases tomato yields in salt-affected soil of san joaquin valley. California Agriculture, 57(4):132-137.
    Bosch D J, Powell N L, Wright F S. 1992. An economic comparison of subsurface microirrigation with center pivot sprinkler irrigation. J of Prod Agric, 5(4): 431-437.
    Bracy R P, Edling R J, Moser E B. 1995. Drip irrigation management and fertilization of bell pepper in a humid area. Proc 5th Int Microirrigation Congress, 181-186.
    Brown K W, Thomas J C, Friedman S, etc. 1996. Wetting patterns associated with directed subsurface irrigation Proc Int Conf on Evapotranspiration and Irrigation Scheduling, 806-811.
    Bucks D A, Erie L J, French O F, et al. 1981. Subsurface trickle irrigation management with multiple cropping. Trans of ASAE, 24(6):1482-1489.
    Burt C E. 1995. Is Buried Drip the future with permanent crop? Irrigaiton Bus Technology, 3(1):20-22. Caldwell D S, Spurgeon W E, Manges H L. 1994. Frequency of irrigation for subsurface drip irrigated corn. Trans of the ASAE, 37(6):1099-1103.
    Camp C R, Bauer P J, Hunt P G. 1997. Subsurface drip irrigation lateral spacing and management for cotton in the southeastern coastal plain. Trans of the ASAE, 40(4): 993-999.
    Camp C R. 1998. Subsurface drip irrigation: a review. Transactions of the ASAE, 41(5):1353-1367
    Camp C R, Bauer P J, Busscher W J. 1999. Evaluation of no-tillage crop production with subsurface drip irrigation on soils with compacted layers. Transactions of the ASAE, 42(4):911-918.
    Camp C R, Lamm F R, Evans R G, etc. 2000. Subsurface drip irrigation past, present, and future. In: National Irrigation Symposium. Proceedings of the 4th Decennial Symposium, Phoenix, Arizona, USA, 363-372.
    Camp J R, Lamm F R. 2003. Irrigation systems, subsurface drip. New York: Ny Encyclopedia of Water Science, 560-564.
    Cetin O, Bilgel L. 2002. Effects of different irrigation methods on shedding and yield of cotton. Agricultural Water Management, 54:1-15.
    Chase R G. 1985. Subsurface trickle irrigation in a continuous cropping system. Proc 3rd Int Drip/Tricklr Irrigation Congress, II:909-914.
    Clark G A, Stanley C D, Maynard D N. 1993. Surface vs subsurface drip irrigation of tomatoes on a sandy soil. Proc Fla State Hort Soc, 106:210-212.
    Cote C M, Bristow K L, Philip B C, et al. 2003. Analysis of soil wetting and solute transport in subsurface trickle irrigation. Irrig Sci, 22: 143-156.
    Darusman, Khan A H, Stone L R. 1997. Water flux below the root zone vs drip line spacing in drip irrigated corn. Agron J, 89(3):375-379.
    DeTar W R, Brown G T, Phene C J, etc. 1996. Real-time irrigation scheduling of potatoes with sprinkler and subfurface drip systems. Proc Int Confon Evapotran-spiration and Irrigation Scheduling, 812-824.
    Devitt, Milter W W. 1988. Subsurface drip irrigation of bermudagress with saline water. Applied Agricultural Resources, 3(3):133-143.
    Dhuyvetter K C, Lamm F R, Rogers D H. 1978. Subsurface drip irrigation(SDI) for field corn– an economic analysis. Proc 5th int’l Microirrigation Congress, 395-401.
    Dirksen C. 1978. Transient and steady flow from subsurface line sources at constant hydraulic head in an isotropic soil. Trans of the ASAE, 21(5):913-919.
    El-Gindy A M, El-Araby A M. 1996. Vegetable crop responses to surface and subsurface drip under calcareous soil. Proc Int Conf on Evapotranspiration and Irrigation Scheduling, 1021-1028.
    Fangmeier D D, Garrot Jr D J, Husman S H, etc. 1989. Cotton water stress under trickle irrigation. Trans of the ASAE, 32(6):1955-1959.
    Freddie R Lamm, Todd P Trooien. 2003. Subsurface drip irrigation for corn production: a review of 10 years of research in Kansas. Irrig Sci, 22: 195-200.
    Ghali G S, Svehik Z J. 1987. Soil-water dynamics and optimum operating regime in trickle-irrigation fields. Agricultural Water Management, 13:127-143.
    Gil M, Rodriguez-Sinobas L, L Juana, et al. Emitter discharge variability of subsurface drip irrigation in uniform soils: effect on water-application uniformity . Irrig Sci, 2008, 26:451-458.
    Henggeler J C. 1995. A history of drip-irrigated cotton in texas. Proc 5th Int Microirrigation Congress, 669-674.
    Henggler J, Kinnibrugh J, Multer W, etc. 1996. Economic impact resulting from the adoption of drip irrigation cotton . Result Demonstration Report, College Station, Tex, Texas Agric Ext Serv, Texas A & M University.
    Hickey M, Robert H, Hulme j, etc. 2001. Benchmarks and best management practices for irrigated vegetable crops in the southern murray darling basin. New South Wales Agriculture, Australia Project report, http://www.wcainfonet. org/id/17559.
    Hills David J, Gu Yuping. 1989. Hydraullic considerations for compressed subsurface drip-tape. ASAE, 32(4):1197-1201.
    Howell T A, Schneider A D, Evett S R. 1997. Subsurface and surface microirrigation of corn - southern high plain. Trans of ASAE, 40(3):635-641.
    http://www.irrigation ca/Subsurface/rootguardadvantage.htm. ROOTGUARD? Advantage. Hutmacher R B, Phene C J, Davis K D, et al. 1995. Evapotranspiration, fertility management for subsurface drip acala and pimacotton. Proc 5th Int Microirrigation Congress, 147-154.
    Khumoetsile Mmolawa, Or Dani. 2003. Experimental and numerical evaluation of analytical volume balance model for soil water dynamics under drip irrigation. Soil Sci Soc Am J, 67(11-12):1657-1671
    Kladivko E J, Willoughby G L, Santini J B. 2005. Corn growth and yield response to subsurface drain spacing on clermont silt loam soil. Agron J 97:1419-1428.
    Lamm F R, Hmanges L, Stone L R, et al. 1995. Water requirement of subsurface drip-irrigated corn in northwest kansas. Trans of the ASAE, 38(2):441-448.
    Lamm F R, Stone L R. 1997. Optimum lateral spacing for subsurface drip irrigation corn. Trans of the ASAE, 89(3):375-379.
    Lamm F R. 2002. Advantages and disadvantages of subsurface drip irrigation. International meeting on Advances in drip/micro irrigation, Puerto de La Cruz, Tenerife, Canary Islands, December 2-5.
    Lesikar B J, Weynand V L, Persynl R A. 2004. Evaluation of the application uniformity of subsurface drip distribution systems. On-Site Wastewater Treatment X, Conference Proceedings, Sacramento, California USA, 21-24 March.
    Louis Chirnside, Kerang V I C. 2006. Permanent subsurface drip irrigation (SDI). http://www.grdc.com au/growers/res_upd/irrigation/
    Mahbub Alam, Todd P Trooien, Troy J Dumler, et al. Using subsurface drip irrigation for alfalfa . Journal of the American Water Resources Association, 2002, 38(6):1715-1721.
    Martin E C, Slack D C, Pegelow E J. 1996. Crop coefficients for vegetables in central arizona. Int Conf on Evapotranspiration and Irrigation Scheduling, 381-386.
    McHugh A D. 2003. Sub-Surface drip irrigation on a vertosol under cotton: increased water use efficiency and reduced off-farm environmental impacts. Final Report.
    Mikkelsen R L. 1989. Phosphorous fertilization through drip irrigation. J Prod Agric, 2(3):279-286
    Mitchell A Battam, Bruce G Sutton, David G Boughton. 2003. Soil pits as a simple design aid for subsurface drip irrigation systems. Irrig Sci, 22: 135-141.
    Mitchell W H, Tilmon H D. 1982. Underground trickle irrigation: the best system for small farms? Crops Soils, 34:9-13.
    Mitchell W H. 1981. Subsurface irrigation and fertilization of field corn. Agron J, 73(6):913-916.
    Molz F J, Remson I. 1971. Application of an extraction-term model to the study of moisture flow to plant root. Agron J, 63:72-77.
    Ndlovu L S, Ellis R D, Street W H. 2001. Conversion from sprinkler to subsurface drip irrigation in Swaziland. International Society of Sugar Cane Technologists XXIV Congress, Brisbane, Australia, September.
    Neibling H, Brooks R. 1995. Potato production using subsurface dripirrigation– Water and Nitrogen Management. Proc 5th Int Microirrigation Congress, 656-663.
    Or D. 1995. Soil water sensor placement and interpretation for drip irrigation management in heterogeneous soil. Proc 5th Int Microirrigation Congress, 214-221.
    Oron G, DeMalach Y, Hoffman Z, et al. 1991. Wastewater disposal by subsurface drip irrigation. Water Sci Tech, 23:2149-2158.
    Phene C J, Bar-Yosef B, Hutmacher R B, et al. 1986. Fertilization of high-yielding subsurface trickle irrigated tomatoes. Proc 34th Ann Calif Fertilizer Conf, 33-43.
    Phene C J, Beale O W. 1976. High-frequency irrigation for water nutrient management in humid regions . Soil Sco Soc Am J, 40(3):430-436.
    Phene C J, Beale O W. 1992b. Maximizing water use efficiency with subsurface drip irrigation. ASAE Paper 922090, Charlotte, NC, 21-24 June.
    Phene C J, Carl P Canp. 1999. Subsurface drip irrigation. Irrigation Journal, 49(3): Phene C J, Davis K R, Hutmacher R B, et al. 1992c. Maximizing water use efficiency with subsurface drip irrigation. ASAE Paper, June:8-9.
    Phene C J, Fouss J L, Sanders D C. 1979. Water-nutrient-herbicide management of potatoes with trickle irrigation. Am Potato J, 56:51-59.
    Phene C J, Yue R, Wu I P, et al. 1992a. Distribution uniformity of subsurface drip irrigation system . St Joseph, Mich: ASAE Paper No 92-2569.
    Philip J R. 1984. Travel times from buried and surface infiltration point sources. Water Resources Research, 20(7):990-994.
    Philip J R. 1986. Steady infiltration from line source buried discs and other sources. Water Resources Research, 28(1):46-52.
    Philip J R. 1995. What happens near a quasi-linear point source?. Water Resources Research, l28(1): 47-52
    Plaut Z, Carmi A, Grava A. 1996. Cotton root and shoot reponses to subsurface drip irrigation and partial wetting of the upper soil profile. Irrig Sci, 16:107-113.
    Plaut Z, Rom M, Meiri A. 1985. Cotton response to subsurface trickle irrigation. Proc 3rd Int Drip/Trickle Irrigation Congress, II:916-920.
    Powell N L, Wright F S. 1993. Grain yield of subsurface microirrigated corn as affected by irrigation line spacing. Agron J, 86(6):1164-1169.
    Ruskin R, van Voris P, Cataldo D A. 1990. Root intrusion protection of buried drip irrigati on devices with slow-release herbicides. Proc 3rd Nat Irrigation Symp, 211-216.
    Sadler E J, Camp C R, Busscher W J. 1995. Emitter Flow rate changes caused by excavating subsurface microirrigation Tubing. Proc 5th Int Microirrigation Congress, 763-768.
    Sakellariou makrantonaki M, Kalfountzos D, Vyrlas P. 2001. Irrigation water saving and yield increase with subsurface drip irrigation. 7th international conference on environmental science and technology, 466-473.
    Schwankl L J, Grattan S R, Miyao E M. 1990. Drip irrigation burial depth and seed planting depth effects on tomato germination. Proceedings of the Third National Irrigation Symposium, Phoenix, Arizona , ASAE, 682-687.
    Segal Eran, Alon Ben Gal, Uri Shani. 2006. Root water uptake effiiciency under ultra-high irrigation frequency. Plant and Soil, 282:333-341.
    Sezen S Metin, Attila Yazar, Salim Eker. 2006. Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agricultural Water Management, 81:115-131.
    Shani U, Xue S, Gordin-Katz R, et al. 1996. Soil limiting flow from subsurface emitters I: pressure measurements. Irrig Drain Eng ASCE, 122(5):291-295.
    ?im?nek J, van Genuchten M Th, ?ejna M. 2005.The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media(Version 3.0). Department of environmental sciences university of california riverside riverside, California,April.
    Solomon K H, Jorgensen G. 1992. Subsurface drip irrigation. Grounds Maintenance, 27(10):24-26.
    Soulas N Kat, Kittas C, Dimokas G, Lykas C. 2006. Effect of irrigation frequency on rose flower Production and Quality. Biosystems Engineering, 93(2):237-244.
    Suarez-Rey E, Choi C Y, Waller P M, et al. 2000. Comparison of subsurface drip irrigation and sprinkler irrigation for bermuda grass turf in Arizona. Transactions of the ASAE, 43(3): 631-640.
    Suat Sensoy, Ahmet Ertek, Ibrahim Gedik, et al. 2007. Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melol). Agricultural Water Management, 88:269-274.
    Thomas A W. 1974. Steady Infiltration from line source buried in soil. Transactions of the ASAE, 17(1):125-128, 133.
    Thomas A W. 1975. Comparisons of calculated and measured drip line potentials from line source.
    Thompson T L, Doerge T A, Godin R E. 2002. Subsurface drip irrigation and fertigation of broccoli. I. yield quality, and nitrogen uptake . Soil Science Society of America Journal, 66(1):186-192.
    Valiantzas J D. 1998. Analytical approach for direct drip lateral hydraulic calculation. Journal of Irrigation and Drainage Engineering, 124(6):300-305.
    Vaughn E Hansen. 1980. Irrigation principles and practices. 4th edition, John Wiley & Sons.
    Warrick A W, Lomen D O, Amoozegar-Fard A. 1980. Linearized moisture flow with root extraction for 3 dimensional, steady conditions. Soil Sci Soc Am J, 44(5):911-914.
    Warrick A W. 1974. Time dependent linearized infiltration: I. point source. Soil Sci Soc Am Proc, 38: 383-386.
    Warrick A W. 1985. Point and line infiltration– calculation of wetted soil surface. Soil Sci Soc Am J, 49:1581-1583.
    Whitney L O. 1969. Plastic orifice inserts for subsurface irrigation. Transaction of ASAE, 12(5):602-60
    Wu I P. 1992. Energy gradient line approach for direct hydraulic calculation in drip irrigation design. Irrigation Science, 13(1):21-29.
    Zachmann D W, Thomas A W. 1973. A mathematical investigation of steady infiltration from line sources. Soil Sci Soc Am Proc, 37(4):495-500.
    Zoldoske D F, S Genito G, S Jorgensen. 1985. Subsurface drip irrigation (SDI) on turf grass: a university experience. Proc 5th int’l Microirrigation congress, St Joseph, Mich ASAE:300-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700