数据降维算法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,高维数据经常出现在科学界和产业界相关的领域,如计算机视觉、模式识别、生物信息以及航空航天等。当我们处理这些数据时,它们的高维属性往往会成为处理和应用这些数据的障碍,这表现在与之相关的计算复杂度较高并且结果并不是最优。降维是将数据由高维约减到低维的过程而用来揭示数据的本质低维结构。它作为克服“维数灾难”的途径在这些相关领域中扮演着重要的角色。
     在过去的几十年里,有大量的降维方法被不断地提出并被深入研究,其中常用的包括传统的降维算法如PCA和LDA;流形学习算法如LLE、ISOMAP、LE以及LTSA。
     但是,大多数现存的方法仍然受制于各种各样的问题,比如,小样本问题、out of sample problem问题、样本的非线性分布问题以及分类问题等等。为了解决这些问题,在本文中,作者提出了一系列的新算法、改进算法、新的降维框架以及在该框架的基础上开发的新算法。本文的主要贡献在于:
     1.本文提出了一个新的线性降维算法,线性局部切空间排列(LLTSA)。该算法运用切信息作为数据的局部表达,然后将这些局部信息在可以用线性映射得到的低维空间中排列。LLTSA可以看作是LTSA的线性逼近。
     2.受流形学习算法中的局部保存思想的启发,我们提出了一种新的降维算法,最大方差映射(MVP),用于人脸识别。该算法通过对流形上局部几何的捕捉来实现局部信息的表达和保存;除了流形学习的特性以外,基于对类别信息的利用,该算法还具备判别能力。
     3.本文提出了一种新的多模型生物特征识别系统。在该系统中,我们提出了一种专门应用于多模型问题的降维算法,几何保存映射(GPP)。GPP是一个判别的算法,同时它能够通过捕捉模型内部的几何结构来有效地保存几何信息。
     4.受LTSA算法的启发,本文提出了一种新的流形学习算法,局部坐标排列(LCA)。LCA通过保存片上的邻域关系从而得到局部坐标作为局部邻域的表达,然后将这些提取的局部坐标运用排列技术在全局中排列从而得到最终的嵌入坐标。另外,为了解决out of sample问题,我们将线性逼近方法应用于LCA,即线性LCA(LLCA)。
     5.本文提出一个能够统一各种基于谱分析的降维算法的框架,其命名为“片排列”。该框架的内容包括两个阶段:部分优化和整体排列。对于部分优化,每一个算法在构建的片上具有不同的优化目标,所构建的片是由某一个给定的点和一些相联系的点构成。对于整体排列,所有的片上部分优化通过运用排列技术被集成化到一起而构建最终的全局坐标。作为该框架的一个应用,我们通过在部分优化过程中施加判别信息,从而开发了一个新的降维算法,判别局部排列(DLA)。本文对统一框架下各种算法进行了讨论并验证了DLA算法。
     6.为了提高正交邻域保存映射(ONPP)的分类性能,在基于片排列框架下,本文提出了一种改进的降维算法,命名为判别正交邻域保存映射(DONPP)。另外,本文通过并入额外的无类标标号的样本点,将DONPP延伸到半监督的情况,也就是半监督判别正交邻域保存映射(SDONPP)。图像分类及人脸识别的实验分别验证了DONPP和SDONPP的有效性。
Recently, datasets of high dimensionality have been emerging in many domains of science and industry, such as computer vision, pattern recognition, bioinformatics, and astronomy. When dealing with these types of datasets, the high dimensionality is often an obstacle for any efficient processing of the data. The operations on them are computationally expensive and the results may be not optimal. Dimensionality reduction is the process of transforming data from a high dimensional space to a low dimensional space to reveal the intrinsic structure of the distribution of data. It plays a crucial role as a way of dealing with the“curse of dimensionality”.
     In past decades, a large number of dimensionality reduction algorithms have been proposed and studied. These popular algorithms including the conventional algorithms e.g., PCA and LDA; the recent proposed manifold learning algorithms, e.g., LLE, ISOMAP, LE, and LTSA.
     However, most of existing dimensionality reduction algorithms still suffer from various open problems e.g., small sample size problem, out of sample problem, nonlinearity of the distribution of samples, and classification problem. To overcome these problems, in this paper, we propose a collection of new algorithms, enhanced algorithms, and the unifying framework for existing algorithms along with the new algorithms based on the proposed framework, for dimensionality reduction. The main contributions including:
     1. We propose a new algorithm, called linear local tangent space alignment (LLTSA). It uses the tangent space in the neighborhood of a data point to represent the local geometry, and then aligns those local tangent spaces in the low dimensional space which is linearly mapped from the raw high dimensional space. LLTSA can be viewed as a linear approximation of LTSA.
     2. Inspired by the idea of locality preserving, we propose a novel subspace learning algorithm, termed Maximum Variance Projections (MVP), for face recognition. It is a linear discriminant algorithm which preserves local information by capturing the local geometry of the manifold. Two abilities of manifold learning and classification have been combined into the properties of our algorithm.
     3. We propose a new system for multimodal biometric recognition. In the developed system, Geometry Preserving Projections (GPP), as a new subspace selection approach (especially for the multimodal problem), is developed. GPP is a linear discriminant algorithm, and it effectively preserves local information by capturing the intra-modal geometry.
     4. Inspired by LTSA, we propose a new manifold learning algorithm, i.e., Local Coordinates Alignment (LCA). LCA obtains the local coordinates as representations of a local neighborhood by preserving the proximity relations on the patch. The extracted local coordinates are then aligned by the alignment trick to yield the global embeddings. In LCA, the local representation and the global alignment are explicitly implemented as two steps for intrinsic structure discovery. In addition, to solve the out of sample problem, the linearization approximation is applied to LCA, called Linear LCA or LLCA.
     5. We propose such a framework termed“patch alignment”to unify spectral analysis based dimensionality reduction algorithms. It consists of two stages: part optimization and whole alignment. For part optimization, different algorithms have different optimization criteria over patches, each of which is built by one measurement associated with its related ones. For whole alignment, all part optimizations are integrated into together to form the final global coordinate for all independent patches based on the alignment trick. As an application of this framework, we develop a new dimensionality reduction algorithm, Discriminative Locality Alignment (DLA), by imposing discriminative information in the part optimization stage.
     6. To improve the classification performance of ONPP, we propose a new algorithm termed Discriminative Orthogonal Neighborhood Preserving Projections (DONPP) is based on the framework of patch alignment. Moreover, this work extends DONPP as SDONPP, (semi-supervised DONPP), which is more powerful since it can make use of unlabeled as well as labeled samples.
引文
[1] J.J. Amador,“Random Projection and Orthonormality for Lossy Image Compression,”Image and Vision Computing, vol. 25, no. 5, pp. 754-766, 2007.
    [2] Y. Aslandogan, and C. Yu,“Techniques and Systems for Image and Video Retrieval,”IEEE Trans. Knowledge and Data Engineering, vol. 11, no. 1, pp. 56- 63, 1999.
    [3] P. Belhumeour, J. Hespanha, and D. Kriegman,“Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection,”IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711-720, 1997.
    [4] M. Belkin and P. Niyogi,“Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering,”Advances in Neural Information Processing System, vol. 14, pp. 585-591, 2002.
    [5] M. Belkin, P. Niyogi, and V. Sindhwani,“Manifold Regularization: A Geometric Framework for Learning from Examples,”Journal of Machine Learning Research, vol. 7, 2399-2434, 2006.
    [6] R. Bellman, Adaptive Control Processes: A Guided Tour. Princeton University Press, 1961.
    [7] Y. Bengio, J. Paiement, P. Vincent, O. Dellallaeu, L. Roux , and M. Quimet,“Out-of sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering,”Proc. NIPS, 16, 2004.
    [8] M. Betke, J. Gips, P. Fleming, The camera mouse: visual tracking of body features to provide computer access for people with severe disabilities. IEEE Trans. Neural Syst. Rehab. Eng. 10(1) (2002) 1-10.
    [9] M. Brand,“Charting a Manifold,”Advances in Neural Information Processing System, vol. 15, 2002.
    [10] D. Cai, X. He and J, Han,“Document Clustering Using Locality Preserving Indexing,”IEEE Trans. Knowledge and Data Engineering, vol. 17, no. 12, pp. 1624-1637, 2005.
    [11] D. Cai, X. He and J, Han,“SRDA: an Efficient Algorithm for Large Scale Discriminant Analysis,”IEEE Trans. Knowledge and Data Engineering, vol. 20, no. 1, pp. 1-12, 2008.
    [12] D. Cai, X. He and J, Han,“Using Graph Model for Face Analysis,”Department of Computer Science Technical Report No. 2636, University of Illinois at Urbana-Champaign, Sept. 2005.
    [13] D. Cai, X. He, and J. Han,“Semi-supervised Discriminant Analysis”, Proc. IEEE Int’l Conf. Computer Vision, 2007.
    [14] R. Chellappa, C. Wilson, and S. Sirohey,“Human and machine recognition of faces: a survey,”Proc. IEEE 83(5), 705-740 (1995).
    [15]陈省身,陈维桓.微分几何讲义.北京大学出版社,1983
    [16] H. Chen, H. Chang, and T. Liu. Local discriminant embedding and its variants. Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2005.
    [17] Chung, F. R. K. Spectral Graph Theory. Providence, RI: Amer. Math. Soc., 1997.
    [18] P. Comon, Independent component analysis. A new concept?, Signal Process. 36 (3) (1994) 287–314.
    [19] J.G. Daugman, High confidence visual recognition of persons by a test of statistical independence, IEEE Trans. Pattern Analysis and Machine Intelligence, 15 (11) (1993) 1148-1161.
    [20] D.L. Donoho and C. Grimes,“Hessian Eigenmaps: New Locally Linear Embedding Techniques for High-dimensional Data,”Proc. National Academy of Sciences, vol. 100, no. 10, pp. 5591-5596, 2003.
    [21] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed., Wiley, 2000.
    [22] R.A. Fisher,“The Use of Multiple Measurements in Taxonomic Problems,”Annals of Eugenics, vol. 7, pp. 179-188, 1936.
    [23] I. K. Fodor, A Survey of Dimension Reduction Techniques, Lawrence Livermore National Laboratory (LLNL) Technical Report, UCRL-ID-148494, University of California, Livermore, CA, 2002.
    [24] Y. Fu and T.S. Huang,“Image Classification Using Correlation Tensor Analysis”, IEEE Trans. Image Processing, vol. 17, no. 2, pp. 226-234, 2008.
    [25] B. Gao, T. Liu, G. Feng, T. Qin, Q. Cheng, and W. Ma,“Hierarchical Taxonomy Preparation for Text Categorization Using Consistent Bipartite Spectral GraphCopartitioning,”IEEE Trans. Knowledge and Data Engineering, vol. 17, no. 9, pp. 1263-1273, 2005.
    [26] Y. Gao, M. Maggs, Feature-level fusion in personal identification, Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, pp. 468-473.
    [27] D.B. Graham and N.M. Allinson, "Characterizing Virtual Eigensignatures for General Purpose Face Recognition," in Face Recognition: From Theory to Applications, NATO ASI Series F, Computer and Systems Science, vol.163, H. Wechsler, P.J. Pillips, V. Bruce, F. Fogelman-Soulie and T.S. Huang, eds. Springer, 1998, pp.446-456.
    [28] L.D. Harmon, M.K. Khan, R. Lasch, P. F. Raming, Machine identification of human faces, Pattern Recognition, 13 (2) (1981) 97-110.
    [29] T. Hastie.“Principal Curves and Surfaces,”PhD thesis, Stanford Univ.,1984.
    [30] X. He and P. Niyogi,“Locality Preserving Projections,”Advances in Neural Information Processing System, vol. 16, 2004.
    [31] X. He, D. Cai, S. Yan, and H. Zhang,“Neighborhood Preserving Embedding,”Proc. IEEE Int’l Conf. Computer Vision, pp. 1208-1213, 2005.
    [32] X. He, D. Cai, J. Han,“Learning a Maximum Margin Subspace for Image Retrieval,”IEEE Trans. Knowledge and Data Engineering, vol. 20, no. 2, pp. 189-201, 2008.
    [33] X. He, D. Cai, J. Wen, W. Ma, and H. Zhang,“Clustering and Searching WWW Images Using Link and Page Layout Analysis,”ACM Trans. Multimedia Computing, Communications, and Applications, vol. 3, no. 2, 2007.
    [34] H. Hotelling,“Analysis of A Complex of Statistical Variables into Principal Components,”Journal of Educational Psychology, vol. 24, pp. 417-441, 1933.
    [35] L. Hong, A.K. Jain, Integrating faces and fingerprints for personal identification, IEEE Trans. Pattern Analysis and Machine Intelligence, 20 (12) (1998) 1295–1307.
    [36] W. Hu, T. Tan, L. Wang, S. J. Maybank, A survey on visual surveillance of object motion and behaviors, IEEE Trans. Syst. Man Cybern., Part C, 34(3) (2004) 334–352.
    [37] S. Huang, M.O. Ward, and E.A. Rundensteiner, "Exploration of Dimensionality Reduction for Text Visualization," Proc. The Third International Conference on Coordinated & Multiple Views in Exploratory Visualization, pp 63 -74, 2005.
    [38] A.K. Jain, A. Ross, Multibiometric systems, Commun. ACM 47 (1) (2004) 34–40.
    [39] A.K. Jain and B. Chandrasekaran, Dimensionality and Sample Size Considerations in Pattern Recognition Practice, in: Handbook of Statistics, vol. 2, ed. P.R. Krishnaiah and L.N. Kanal, pp. 835 - 855, North-Holland, Amsterdam, 1987. Yoh-Han Pao, Adaptive pattern recognition and neural networks, Addison-Wesley, Reading, Massachusetts, 1989.
    [40] A.K. Jain, L. Hong, S. Pankanti, R. Bolle, An identity authentication system using fingerprints, Proc. IEEE, 85 (9), 1997, pp. 1365-1388.
    [41] A.K. Jain, A. Ross, S. Pankanti, Biometrics: a tool for information security, IEEE Trans. Information Forensics and Security, 1(2) (2006) 125–143.
    [42] A.K. Jain, K. Nandakumar, A. Ross, Score normalization in multimodal biometric systems, Pattern Recognition, 38 (12) (2005) 2270–2285.
    [43] X. Jing, Y. Yao, D. Zhang, M. Li, Face and palmprint pixel level fusion and Kernel DCV-RBF classifier for small sample biometrics recognition, Pattern Recognition, 40 (11) (2007) 3209-3224.
    [44] T. Kohonen, Self-Organizing Maps, 3rd ed., Springer-Verlag, 2001.
    [45] E. Kokiopoulou and Y. Saad,“Orthogonal Neighborhood Preserving Projections: A Projection-Based Dimensionality Reduction Technique,”IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 12, pp. 2143-2156, 2007.
    [46] E. Kokiopoulou and Y. Saad,“Orthogonal Neighborhood Preserving Projections,”Proc. IEEE Int’l Conf. Data Mining, pp. 27-30, 2005.
    [47] Y. Koren and L. Carmel,“Robust Linear Dimensionality Reduction,”IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 4, pp. 459-470, 2004.
    [48] O. Kouropteva, O. Okun, A. Hadid, M. Soriano, S. Marcos, and M. Pietik?inen,“Beyond locally linear embedding algorithm,”Technical Report MVG-01-2002, Machine Vision Group, University of Oulu, Finland, 2002.
    [49] H. Li, L. Teng, W. Chen and I. Shen, Supervised Learning on Local Tangent Space, in: Proceedings of the Second International Symposium on Neural Networks, Chongqing, China, May, 2005.
    [50]刘小明,数据降维及分类中的流形学习研究,浙江大学博士论文,2007.
    [51] A. Martínez, A. Kak,‘‘PCA versus LDA,’’IEEE Trans. Pattern Anal. Mach. Intell. 23(2): 228-233 (2001).
    [52] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Muller,“Fisher Discriminant Analysis with Kernels,”Proc. IEEE Workshop Neural Networks for Signal Processing, pp. 41-48, 1999.
    [53] S. A. Nene, S. K. Nayar, and H. Murase,“Columbia object image library (COIL-20),”Technical Report CUCS-005-96, Columbia University, 1996.
    [54] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss,“The FERET Evaluation Methodology for Face-recognition Algorithms,”IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1090-1104, 2000.
    [55] S.J. Raudys and A.K. Jain, Small sample size effects in statistical pattern recognition: recommendations for practitioners, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 3, 1991, 252-264.
    [56] S. Ribaric, I. Fratric, A biometric identification system based on eigenpalm and eigenfinger features, IEEE Trans. Pattern Anal. Mach. Intell. 27 (11) (2005) 1698-1709.
    [57] D.D. Ridder and R.P.W. Duin,“Locally linear embedding for classification,”Technical Report PH-2002-01, Pattern Recognition Group, Dept. of Imaging Science & Technology, Delft University of Technology, Delft, The Netherlands, 2002.
    [58] S. Rosenberg, The Laplacian on a Riemannian Manifold. Cambridge University Press, 1997.
    [59] A. Ross, A.K. Jain, Multimodal biometrics: an overview, Proc. 12th European Signal Processing Conference, 2004, pp. 1221-1224.
    [60] S.T. Roweis and L.K. Saul,“Nonlinear Dimensionality Reduction by Locally Linear Embedding,”Science, vol. 290, pp. 2323-2326, 2000.
    [61] S. Roweis, L. Saul and G. Hinton,“Global Coordination of Local Linear Models,”Advances in Neural Information Processing System, vol. 14, pp. 889-896, 2002.
    [62] A. Samal and P. Iyengar,“Automatic recognition and analysis of human faces and facial expressions: a survey,”Pattern Recognition. 25(1), 65-77 (1992).
    [63] J.J.W. Sammon,“A Nonlinear Mapping for Data Structure Analysis,”IEEE Trans. Computers, vol. 18, no. 5, pp. 401-409, 1969.
    [64] L.K. Saul and S.T. Roweis,“Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold,”Journal of Machine Learning Research, vol. 4, pp.119-155, 2003.
    [65] L.K. Saul, K.Q. Weinberger, J.H. Ham, F. Sha, and D.D. Lee,“Spectral Methods for Dimensionality Reduction,”To appear in Semisupervised Learning, O. Chapelle, B. Schoelkopf, and A. Zien, eds. MIT Press, 2006.
    [66] D. Schizas, G. B. Giannakis and Z.Q. Luo,“Distributed Estimation Using Reduced-Dimensionality Sensor Observations,”IEEE Trans. on Signal Processing, vol. 55, no. 8, pp. 4284-4299, 2007.
    [67] H. S. Seung and D. Lee, The manifold ways of perception, Science, 290 (2000) 2268-2269.
    [68] B. Sch?lkopf, A. Smola, K.R. Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10 (1999) 1299–1319.
    [69] A. Shashua, A. Levin, and S. Avidan,“Manifold pursuit: a new approach to appearance based recognition”, Proc. ICPR, pp. 590–594.
    [70] G. Shakhnarovich and B. Moghaddam,“Face Recognition in Subspaces,”Handbook of Face Recognition, Stan Z. Li and Anil K. Jain, Eds. Springer-Verlag, 2004.
    [71] T. Sim, S. Zhang, R. Janakiraman, S. Kumar, Continuous verification using multimodal biometrics, IEEE Trans. Pattern Anal. Mach. Intell. 29 (4) (2007) 687-700.
    [72] D. Tao, X. Li, X. Wu, and S.J. Maybank,“General Tensor Discriminant Analysis and Gabor Features for Gait Recognition,”IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 10, pp. 1700-1715, 2007.
    [73] D. Tao, X. Li, X. Wu, and S.J. Maybank,“Geometric Mean for Subspace Selection in Multiclass Classification,”IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, 2008.
    [74] D. Tao, X. Tang, X. Li, X. Wu,“Asymmetric Bagging and Random Subspace for Support Vector Machines-based Relevance Feedback in Image Retrieval,”IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no.7, pp. 1,088-1,099, July 2006.
    [75] D. Tao, X. Li, and S.J. Maybank,“Negative Samples Analysis in Relevance Feedback,”IEEE Trans. Knowledge and Data Engineering, vol. 19, no. 4, pp. 568-580, 2007.
    [76] Y.W. Teh and S. Roweis,“Automatic Alignment of Local Representations”Advances in Neural Information Processing System, vol. 15, 2002.
    [77] K.A, Toh, X.D. Jiang, W.Y. Yau, Exploiting global and local decisions for multi-modal biometrics verification, IEEE Trans. on Signal processing, 52 (10) (2004) 3059-3072.
    [78] M. Turk and A. Pentland,“Face Recognition Using Eigenfaces,”Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, pp. 586-591, 1991.
    [79] J. Tenenbaum, V. Silva, and J. Langford,“A Global Geometric Framework for Nonlinear Dimensionality Reduction,”Science, vol. 290, pp. 2319-2323, 2000.
    [80]王靖.流形学习的理论与方法研究.浙江大学博士论文,2006
    [81] V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
    [82] K.Q. Weinberger and L.K. Saul,“Unsupervised Learning of Image Manifolds by Semidefinite Programming,”Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 988-995, 2004.
    [83] D. Xu, S. Lin, S. Yan and X. Tang,“Rank-one Projections with Adaptive Margin for Face Recognition,”IEEE Trans. Systems, Man and Cybernetics, Part B, vol. 37, no. 5, pp. 1226-1236, 2007.
    [84] Y. Yao, X. Jing, H. Wong, Face and palmprint feature level fusion for single sample biometrics recognition. Neurocomputing, 70 (7-9) (2007) 1582-1586.
    [85] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin,“Graph Embedding and Extensions: A General Framework for Dimensionality Reduction,”IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 40-51, 2007.
    [86] S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, H. Zhang,“Multilinear Discriminant Analysis for Face Recognition,”IEEE Trans. Image Processing, vol. 16, no. 1, pp. 212-220, 2007.
    [87] S. Yan, H. Wang, T. Huang, X. Tang,“Learning Auto-Structured Regressor from Uncertain Labels,”Proc. IEEE Int’l Conf. Computer Vision, 2007.
    [88] W. Zhao, R. Chellappa, P.J. Phillips, and A. Rosenfeld,“Face recognition: a literature survey,”ACM Comput. Surv. 35(4), 399-458 (2003).
    [89] D. Zhang, W.K. Kong, J. You, M. Wong, On-line palmprint identification, IEEE Trans. Pattern Anal. Mach. Intell. 25 (9) (2003) 1041–1050.
    [90] Z. Zhang and H. Zha,“Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment,”SIAM J. Scientific Computing, vol. 26, no. 1, pp. 313-338, 2005.
    [91] T. Zhang, D. Tao, D. Zhao, X. Li, J. Yang,“Patch Alignment for Dimensionality Reduction”, Submitted to IEEE Trans. Knowledge and Data Engineering.
    [92] T. Zhang, D. Tao, X. Li, J. Yang,“A Unifying Framework for Spectral Analysis based Dimensionality Reduction”, Accepted, to appear in Proc. International Joint Conference on Neural Networks.
    [93] T. Zhang, K. Huang, X. Li, J. Yang, D. Tao,“Discriminative Orthogonal Neighborhood Preserving Projections for Classification”, Accepted with minor revisions in IEEE Trans. Systems, Man and Cybernetics, Part B.
    [94] T. Zhang, X. Li, D. Tao, J. Yang,“Multimodal Biometrics using Geometry Preserving Projections”, Pattern Recognition, vol. 41, no. 3, pp. 805-813, 2008.
    [95] T. Zhang, X. Li, D. Tao, J. Yang,“Local Coordinates Alignment (LCA): a Novel Method for Manifold Learning”, Accepted, to be published in International Journal of Pattern Recognition and Artificial Intelligence.
    [96] T. Zhang, J. Yang, D. Zhao, X. Ge,“Linear Local Tangent Space Alignment and Application to Face Recognition”, Neurocomputing, vol. 70, no. 7-9, pp. 1547-1553, 2007.
    [97] T. Zhang, J. Yang, H. Wang, C. Du, D. Zhao,“Maximum Variance Projections for Face Recognition”, Optical Engineering, vol. 46, no. 6, 067206, 2007.
    [98] T. Zhang, X. Li, D. Tao, J. Yang,“Local Coordinates Alignment and Its Linearization”, In Proc. 14th International Conference on Neural Information Processing.
    [99]张军平.流形学习及应用.中国科学院研究生院博士论文,2003.
    [100]郑忠龙.彩色图像监控系统的人脸检测和识别.上海交通大学博士论文,2006.
    [101]周志华,王珏.机器学习及其应用2007.清华大学出版社2007.
    [102] X. Zhu, Z. Ghahramani, and J. Lafferty,“Semi-supervised Learning using Gaussian Fields and Harmonic Functions”, Proc. Int’l Conf. Machine Learning, 2003.
    [103] A.M. Martinez, R. Benavente, The AR Face Database, CVC Technical Report #24, June 1998.
    [104] Available at http://www.uk.research.att.com/facedatabase.html.
    [105] T. Sim, S. Baker, M. Bsat,“The CMU Pose, Illumination, and Expression (PIE) Database”, Proc. IEEE International Conference on Automatic Face and Gesture Recognition, Washington, DC, USA, May 2002.
    [106] S. Sarkar, P. Phillips, Z. Liu, I. Vega, P. Grother, K. Bowyer,“The HumanID Gait Challenge Problem: Data Sets, Performance, and Analysis”, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2) (2005) 162-177.
    [107] Available at http://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html.
    [108] X. He , S. Yan, Y. Hu, P. Niyogi, and H. Zhang,“Face Recognition Using Laplacianfaces,”IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 328-340, 2005.
    [109] K. Fukunaga. Introduction to statistical pattern recognition (2nd). Academic Press, Boston 1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700