融合聚类分析的故障检测和分类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过程安全、产品质量以及环境保护是现代流程工业的核心目标,因此过程监测作为过程自动化系统的重要组成部分和关键技术之一,具有重大的现实意义和价值。随着集散控制系统在工业过程中的广泛应用以及计算机存储技术的飞速发展,海量过程数据得以收集和存储。由于缺少充足的过程经验和应用工具,工业过程往往数据丰富但知识缺乏。因此,基于多元统计分析和模式识别等数据驱动过程监测成为研究热点,在这十多年来产生了许多研究成果和工业应用。
     但是,传统的多元统计分析和模式识别方法没有考虑实际工业过程中存在的样本类标签未知、各故障数据不平衡、非线性、多工况、瞬态等诸多问题。本文在已有方法基础上,通过融入聚类分析思想,分析数据预处理、特征提取和模式分类等诸多环节,针对不同问题,提出了一套融合聚类分析的故障检测和分类新方法和新框架:
     (1)针对工业过程所提取的训练样本不纯时核主元分析(KPCA)失效问题,提出了一种有效融合Fisher判别式分析-可能性c-均值聚类(FDA-PCMC)的KPCA新方法。首先应用FDA来提取特征并实现训练样本的初分类,然后应用PCMC来有效聚类训练样本。即首先通过分类聚类混杂学习实现训练样本纯化,然后使用KPCA实现非线性故障检测。
     (2)工业过程中存在正常样本多,故障样本少,而且不同故障类别的样本量各不相同的问题。分类器倾向于大类数据,而过程监测的小类数据是关注焦点,由此产生了当数据集存在不平衡问题时核Fisher判别式分析(KFDA)性能不佳的问题。本文提出了一种基于非平衡校正的KFDA故障分类新方法--诱导偏移KFDA,该方法通过在基于最小欧氏距离的模式判别准则上融入一个新的权重调整矩阵,实现了非平衡校正的目的。
     (3)多步和单步模式下的过程监测研究。首先具体阐述了基于模式识别的故障检测和分类系统下的多步和单步模式,然后在多步模式下,提出了基于主元分析(PCA)-支持向量数据描述(SVDD)的故障检测和分类新方法。在此基础上,分析和讨论了PCA和KPCA的相互关联和性能差异,提出了在多步和单步模式下的基于KPCA-SVDD故障检测和分类方法。最后为实现最优模式选取,构建了一个新的基于过程监测系统全局损失的评价准则。评价准则除了考虑分类器的故障检测和故障分类性能外,还考虑了故障检测和故障分类的误分类代价。
     (4)基于特征判别子空间的故障分类研究。基于FDA和KFDA的特征提取,可将原始数据空间投影到特征判别线性和非线性子空间上。本文首先讨论了监督学习在特征提取上的重要性。然后提出了FDA特征提取、Fisher线性分类和SVDD非线性分类相结合的算法,给出了串级和混联两个融合方式,实现了故障模式的有效分类。最后在KFDA特征子空间上提出了基于混合高斯模型(GMM)和к最近邻(kNN)分类器的故障分类方法,并讨论了参数和非参数分类器的性能差异。
     (5)为实现过程多工况的辨识和故障检测,首先提出了一种融合移动窗技术的集成聚类新方法,该方法在基于独立元分析-主元分析(ICA-PCA)方法两步提取特征后,基于k-ICA-PCA模型的两层集成聚类可实现多工况建模。在此基础上,建立了一个基于多独立元分析-主元分析邻接模型,实现了多工况过程的辨识和故障检测。
     (6)针对多工况间的瞬态过程监测问题,提出了一种融合动态集成聚类的瞬态过程监测方法。为了获取瞬态过程数据的动态、非高斯特性并类标签化瞬态过程,提出了一种面向瞬态过程模式分析的集成聚类方法,建立了一个新型的动态k-ICA-PCA模型。然后使用基于主元分析的特征提取和基于多类SVDD的模式分类来实现瞬态过程的监测。
     最后,总结了本文的主要研究成果,并阐述了未来的研究工作。
Process safety, product quality and environmental protection are the core objectives of the modern industrial processes. As the important part and one of the key technologies in process automation systems, process monitoring has an important and realistic role in meeting these objectives. With the wide application of the distributed control systems in the industrial processes and the rapid development of computer storage technologies, a large number of process data can be well collected and stored. While rich in data, process knowledge is often lacking due to insufficient expertise and lack of practice tools. Multivariate statistical analysis and pattern recognition based data-driven process monitoring has become a research hotspot, and many research results and industrial applications have been obtained in the past decade, to address this challenge.
     Traditional multivariate statistical analysis and pattern recognition methods do not fully address the complex problems in the industrial process, such as labeling training samples, data imbalance of different faults, nonlinear, multiple operating modes, transition process, and so on. After studying existing methods, integrating clustering analysis and analyzing data preprocessing, feature extraction and pattern classification methods, by integrating clustering analysis, several efficient and effective fault detection and classification methods are proposed to address these problems.
     (1) To solve the problem of fault detection when training samples of the industrial process is impure, a new kernel principal component analysis (KPCA) algorithm integrating Fisher discriminant analysis-possibilistic c-means clustering-(FDA-PCMC) is presented. FDA is first applied to extract feature and pre-classify the training samples, and then PCMC is applied to cluster the training samples effectively. This means that a hybrid learning including classification and clustering is firstly presented to purify the training samples, and then, KPCA is applied for nonlinear fault detection.
     (2) Normal process is the majority pattern in an industrial process, while faulty patterns are the minority ones. Moreover, there will be different number of samples periods for each fault. Classifiers generally pay more attention to the majority pattern, while the learning concern should be the minority ones, which makes kernel Fisher discriminant analysis (KFDA) perform poorly when the data sets have an imbalance problem. In the thesis, a novel imbalance modified kernel Fisher discriminant analysis (IM-KFDA) approach named inductive bias KFDA is proposed. To handle the imbalance problem, a novel regular weighted matrix is incorporated into the minimum Euclid distance based pattern classification rule.
     (3) Research on simultaneous form and serial form based process monitoring. First of all, serial form and simultaneous form of pattern recognition based fault detection and classification are discussed. And then, under the serial form, a novel fault detection and classification method based on principal component analysis-support vector data description (PCA-SVDD) is proposed. Moreover, after discussing the relationship and difference between PCA and KPCA, under serial form and simultaneous form, two novel fault detection and classification approaches integrating KPCA and SVDD are proposed subsequently. At last, a performance assessment rule based on the monitoring system overall loss is presented. Beside of considering the fault detection and classification performance of the classifiers, the mis-classification costs in both of the fault detection and classification stages have also been considered.
     (4)Research on fault classification based on feature discrimination subspace. FDA and KFDA based feature extraction can project the original data space into the feature discrimination linear and nonlinear subspace, respectively. In this thesis, first of all, the importance of supervised learning for feature extraction is discussed. And then, FDA based feature extraction, Fisher linear classification and SVDD based nonlinear classification are proposed for faulty mode isolation. The cascade and series parallel combination forms are also proposed when incorporating FDA and SVDD. Finally, Gaussian mixture model (GMM) and k-nearest neighbor (kNN) classifiers based fault classification on KFDA feature subspace are proposed, and performance discussions of parameter and non-parameter classifiers are subsequently presented.
     (5) To accomplish multimode process identification and fault detection, a new bilayer ensemble clustering approach incorporating moving window is proposed. After two-step independent component analysis-principal component analysis (ICA-PCA) based feature extraction, k-ICA-PCA models based bilayer ensemble clustering are proposed for multimode process mode construction, and then, adjoined multiple ICA-PCA models are presented for multimode process identification and fault detection.
     (6) To solve the fault detection problem of transition process, a dynamic ensemble clustering integrated transition process monitoring approach is presented. To obtain the dynamic and non-Gaussian feature of the transition process data and to label the transition process, an ensemble clustering approach is proposed for transition process analysis, and a new dynamic k-ICA-PCA model is also accomplished. And then, PCA based feature extraction and SVDD based pattern classification are used for transition process monitoring.
     Finally, research results in this thesis are concluded, and then the future work is discussed.
引文
[1]Nimmo I. Adequately address abnormal operations [J]. Chemical Engineering Progress,1995,91(9):36-45.
    [2]Laser M. Recent safety and environmental legislation [J]. Process Safety and Environmental Protection,2000,78(5):419-422.
    [3]Venkatasubramanian V, Rengaswamy R, Kavuri S N, Yin K. A review of process fault detection and diagnosis Part Ⅰ:Quantitative model-based methods [J]. Computers & Chemical Engineering,2003,27:293-311.
    [4]Venkatasubramanian V, Rengaswamy R, Kavuri S N, Yin K. A review of process fault detection and diagnosis Part Ⅱ:Qualitative models and search strategies [J]. Computers & Chemical Engineering,2003,27:313-326;
    [5]Venkatasubramanian V, Rengaswamy R, Kavuri S N, Yin K. A review of process fault detection and diagnosis Part Ⅲ:Process history based methods [J]. Computers & Chemical Engineering,2003,27:327-346.
    [6]邵纪东.非线性过程监测中的数据降维及相关问题研究[D].杭州:浙江大学博士论文,2010.
    [7]张沐光.基于局部-全局结构分析的统计过程监测方法研究[D].杭州:浙江大学博士论文,2011.
    [8]庄进发.基于模式识别的流程工业生产在线故障诊断若干问题研究[D].厦门:厦门大学博士论文,2009.
    [9]柴天佑.生产制造全流程优化控制对控制与优化理论方法的挑战[J].自动化学报,2009,35(6):641-649.
    [10]葛志强.复杂工况过程统计监测方法研究[D].杭州:浙江大学博士论文,2009.
    [11]Isermann R, Balle P. Trends in the application of model-based fault detection and diagnosis of technical processes [J]. Control Engineering Practice,1997,5(5): 709-719.
    [12]Kesavan P, Lee J H. Diagnostic tools for multivariable model-based control systems [J]. Industrial and Engineering Chemistry Research,1997,36(7): 2725-2738.
    [13]Frank P M. Fault Diagnosis in the dynamic systems using analytical and knowledge-based fault redundancy-a survey and some new results [J]. Automatica, 1990,26,459-474.
    [14]Shiozaki J, Matsuyama H, Tano K, O'Shima E. Fault diagnosis of chemical processes by the use of signed, directed graphs. Extension to five-range patterns of abnormality [J]. International Chemical Engineering,1985,25 (4):651-659.
    [15]Oyeleye O O, Kramer M A. Qualitative simulation of chemical process systems: steady state analysis [J]. AIChE Journal,1988,34 (9):1441-1454.
    [16]Duraisamy V, Devarajan N, Somasundareswari D, Vasanth A, Sivanandam S N. Neuro fuzzy schemes for fault detection in power transformer [J]. Applied Soft Computing,2007,7(2):534-539.
    [17]Bennetts R G. Comment on the evaluation of fault trees [J]. IEEE Transactions on Reliability,1974,23(1):54-55.
    [18]Lapp S A. Powers G A. Computer-aided synthesis of fault trees [J]. IEEE Transactions on Reliability,1977,26(1):2-13.
    [19]Angeli C, Chatzinikolaou A. Fault prediction and compensation functions in a diagnostic knowledge-based system for hydraulic systems [J]. Journal of Intelligent and Robotic Systems,1999,25(2):153-165.
    [20]Beard R V. Failure accommodation in linear Systems though self-reorganization [D]. MIT, Cainbridge,1971.
    [21]Young P. Parameter estimation for continuous time models-a survey [J]. Automatica,1981,17 (1):23-39.
    [22]Isermann, R. Process fauls detection based on modelling and estimation methods-a survey [J]. Automatica,1984,20(4):387-404.
    [23]Clark R N. The dedicated observer approach to instrument fault detection [C]. Proceedings of the 15th IEEE--Conference on Decision and Control, Ford Lauderdale, FL,1979,237-241.
    [24]Massoumnia M A. A geometric approach to the synthesis of failure detection filters [J]. IEEE Transactions on Automatic Control,1986,31,839-846.
    [25]Frank P M, Wunnenberg J. Robust fault diagnosis using unknown input observer schemes [M]. In Fault diagnosis in dynamic systems:theory and applications, R. J. Patton, P. M. Frank & R. N. Clark (Eds.),1989, NY:Prentice Hall.
    [26]Gertler J, Singer D. A new structural framework for parity equation-based failure detection and isolation [J]. Automatica,1990,26:381-388.
    [27]Gertler J. Analytical redundancy methods in fault detection and isolation. In Proceedings of IFAC/IAMCS symposium on safe process, Baden-Baden,1991, 91.
    [28]Gertler J, Costin M, Fang X, Kowalczuk Z, Kunwer M, Monajemy R. Model based diagnosis for automotive engines-algorithm development and testing on a production vehicle [J]. IEEE Transactions on Control Systems Technology,1995, 3:61-69.
    [29]周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报,2009,35(6):748-758.
    [30]Neapolitan R E. Learning Bayesian networks [M]. New York:ACM,2007.
    [31]Fukunaga K. Introduction to statistical pattern recognition [M]. Academic Press, 1990.
    [32]Chiang L H, Russell E L, Braatz R D. Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems,2000, 50(2):243-252.
    [33]He X B, Wang W, Yang Y P, Yang Y H. Variable-weighted Fisher discriminant analysis for process fault diagnosis [J]. Journal of Process Control,2009,19(6): 923-931.
    [34]Vapnik V. The nature of statistical learning theory [M]. Berlin:Springer,2000.
    [35]Chiang L H, Kotanchek M E, Kordon A. K. Fault diagnosis based on Fisher discriminant analysis and support vector machines [J]. Computer and chemical engineering,2004,28:1389-1401.
    [36]He Q P, Wang J. Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes [J]. IEEE Transactions on Semiconductor Manufacturing,2007,20(4):345-354.
    [37]Olson C F. parallel algorithms for hierarchical clustering [J]. Parallel Computing, 1995,21(8):1313-1325.
    [38]Sebzalli Y M, Wang X Z. Knowledge discovery from process operational data using PCA and fuzzy clustering [J]. Engineering Applications of Artificial Intelligence,2001,14:607-616.
    [39]Ben-Hur A, Horn D, Siegelmann H T, Vapnik V. Support Vector Clustering [J]. The Journal of Machine Learning Research,2002,2:125-137.
    [40]Montgomery D C. Opportunities and challenges for industrial statisticians [J]. Journal of Applied Statistics,2001,28(3/4):427-439.
    [41]谢磊.间歇过程统计性能监控研究[D].杭州:浙江大学博士论文,2005.
    [42]宋凯.基于PLS的产品质量监控研究与应用[D].杭州:浙江大学博士论文,2005.
    [43]Bissel D. Statistical methods for SPC and TQM [M]. Chapman and Hall, London, UK,1994.
    [44]Box G, Luceno A. Statistical control by monitoring and feedback adjustment [M]. John Wiley &Sons,Inc., New York, USA,1997.
    [45]郭明.基于数据驱动的流程工业性能监控与故障诊断研究[D].杭州:浙江大学博士论文.2004.
    [46]Kramer M A. Nonlinear principal component analysis using autoassociative neural networks [J]. AIChE Journal,1991,37(2):233-243.
    [47]Dong D, McAvoy T J. Nonlinear principal component analysis based on principal curves and neural networks [J]. Computers and Chemical Engineering,1996, 20(1):65-78.
    [48]Baffi G, Martin E B, Morris A J. Nonlinear projection to latent structure revisited: the quadratic PLS algorithm [J]. Computers & Chemical Engineering,1999,23(3): 395-411.
    [49]Zhao S J, Zhang J, Xu Y M, Xiong Z H. Nonlinear projection to latent structures method and its applications [J]. Industrial and Engineering Chemistry Research, 2006,45(11):3843-3852.
    [50]Kampjarvi P, Sourander M, Komulainen T, Vatanski N, Nikus M, Jounela S L. Fault detection and isolation of an on-line analyzer for an ethylene cracking process [J]. Control Engineering Practice,2008,16(1):1-13.
    [51]Chen J, Liu J. Mixture principal component analysis models for process monitoring [J]. Industrial and Engineering Chemistry Research,1999,38(4): 1478-1488.
    [52]Choi S W, Martin E B, Morris A J. Fault detection based on a maximumlikelihood principal component analysis (pca) mixture [J]. Industrial and Engineering Chemistry Research,2005,44(7):2316-2327.
    [53]Scholkopf B, Smola A J, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation,1998,10(5):1299-1319.
    [54]Lee J M, Yoo C K, Choi S W, Vanrolleghem P A, Lee I B. Nonlinear process monitoring using kernel principal component analysis [J]. Chemical Engineering Science,2004,59:223-234.
    [55]Lee J M, Yoo C K, Lee I B. Statistical monitoring of dynamic processes based on dynamic independent component analysis [J]. Chemical Engineering Science, 2004,59(14):2995-3006.
    [56]Zhang Y W. Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM) [J]. Industrial & Engineering Chemistry Research,2008,47(18): 6961-6971.
    [57]Lee D S, Lee M W, Woo S H, Kim Y J, Park J M. Multivariate online monitoring of a full-scale biological anaerobic filter process using kernel-based algorithms [J]. Industrial & Engineering Chemistry Research,2006,45(12):4335-4344.
    [58]Martin E B, Morris A J. Non-parametric confidence bounds for process performance monitoring charts [J]. Journal of Process Control,1996,6:349-358.
    [59]Chen Q, Kruger U, Leung A TY. Regularised kernel density estimation for clustered process data [J]. Control Engineering Practice,2004,12:267-274.
    [60]Thissen U, Swierenga H, De Weijer A P, Wehrens R, Melssen W J, Buydens L M C. Multivariate statistical process control using mixture modeling [J]. Journal of Chemometrics,2005,19(1):23-31.
    [61]Jutten C, Herault J. Blind separation of sources, part 1:An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing,1991,24(1):1-10.
    [62]Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Transactions on Neural Networks,1999,10(3):626-634.
    [63]Hyvarinen A, Oja E. Independent component analysis:algorithms and applications [J]. Neural Network,2000,13:411-430.
    [64]Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection [J]. AIChE Journal,2003,49(4):969-976.
    [65]Lee J M, Yoo C K, Lee 1 B. Statistical process monitoring with independent component analysis [J]. Journal of Process Control,2004,14(5):467-485.
    [66]Albazzaz H, Wang X Z. Statistical process control charts for batch operations based on independent component analysis [J]. Industrial & Engineering Chemistry Research,2004,43 (21):6731-6741.
    [67]Liu X, Xie L, Kruger U, Littler T, Wang S Q. Statistical-based monitoring of multivariate non-Gaussian systems [J]. AIChE Journal,2008,54:2379-2391.
    [68]Wang L, Shi H. Multivariate statistical process monitoring using an improved independent component analysis [J]. Chemical Engineering Research and Design, 2010,88(4):403-414.
    [69]Odiowei P, Cao Y. State-space independent component analysis for nonlinear dynamic process monitoring [J]. Chemometrics and Intelligent Laboratory Systems,2010,103 (1):59-65.
    [70]Ku W, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems,1995,30:179-196.
    [71]Lakshminarayanan S, Shah S L, Nandakumar K. Modeling and control of multivariable processes:Dynamic PLS approach [J]. AIChE Journal.1997,43(9): 2307-2322.
    [72]Tsung F. Statistical monitoring and diagnosis of automatic controlled process using dynamic PCA [J]. International Journal of Production Research,2000,38(3): 625-637.
    [73]Chen J H, Liu K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models [J]. Chemical Engineering Science,2002,57(1):63-75.
    [74]Yao Y, Gao F R. Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA) [J]. Industrial & Engineering Chemistry Research,2007,46(24):8033-8043.
    [75]Simoglu A, Martin E B, Morris, A J. A comparison of canonical variate analysis and partial least squares for the identification of dynamic processes [C]. Proceedings of the American Control Conference, San Diego. California, USA, 1999,832-837.
    [76]Kruger U, Zhou Y, George W I. Improved principal component monitoring of large-scale processes [J]. Journal of Process Control,2004,14(4):879-888.
    [77]Xie L, Kruger U, Lieftucht D, Littler T, Chen Q, Wang S Q. Statistical monitoring of dynamic multivariate processes-part1. modeling autocorrelation and cross-correlation [J]. Industrial & Engineering Chemistry Research,2006,45: 1659-1676.
    [78]Kourti T, MacGregor J F. Multivariate SPC methods for process and product monitoring [J]. Journal of Quality Technology,1996,28,409-428.
    [79]Westerhuis J A, Gurden S P, Smilde A K. Generalized contribution plots in multivariate statistical process monitoring [J]. Chemometrics and Intelligent Laboratory Systems,2000,51:95-114.
    [80]Ge Z Q, Song Z H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors [J]. Industrial and Engineering Chemistry Research,2007,46,2054-2063.
    [81]Gertler J. Fault detection and diagnosis in engineering systems [M]. Marcel Dekker, New York,1998.
    [82]Gertler J, Cao J. Design of optimal structured residuals from partial principal component models for fault diagnosis in linear systems [J]. Journal of Process Control,2005,15(5):585-603.
    [83]Dunia R, Qin S J, Edgar T F, McAvoy T J. Identification of faulty sensors using principal component analysis [J]. AIChE Journal,1998,42(10):2797-2812.
    [84]Yue H H, Qin S J. Reconstruction-based fault identification using a combined index [J]. Industrial & Engineering Chemistry Research,2001,40:4403-4414.
    [85]Alcala C F, Qin S J. Reconstruction-based Contribution for Process Monitoring [J]. Automatica,2009,45:1593-1600.
    [86]Liu J L, Chen D S. Operational performance assessment and fault isolation for multimode processes [J]. Industrial & Engineering Chemistry Research,2010,49, 3700-3714,
    [87]Yelamos I, Escudero G, Graells M, Puigjaner L. Performance assessment of a novel fault diagnosis system based on support vector machines [J]. Computers and Chemical Engineering,2009,33,244-255.
    [88]Duda R O, Hart P E, Stork D G. Pattern classification [M], Second Edition. Wiley, 2001.
    [89]傅京孙主编.程民德,石青山译.模式识别应用[M].北京:北京大学出版社,1990.
    [90]边肇祺,张学工等编著.模式识别(第二版)[M].北京:清华大学出版社,2000.
    [91]Bishop C M. Pattern recognition and machine learning [M]. Springer, New York, 2006.
    [92]Angeli C, Chatzinikolaou A. On-line fault detection techniques for technical system:A survey [J]. International Journal of Computer Science and Applications, 2004,1(1):12-30.
    [93]Supavatanakul P, Lunze J, Puig V, Quevedo J. Diagnosis of timed automata: Theory and application to the DAMADICS actuator benchmark problem [J]. Control Engineering Practice,2006,14(6):609-619.
    [94]Chiang L H, Russell E L, Braatz R D. Fault detection and diagnosis in industrial systems [M]. New York:Springer,2001.
    [95]Jain A K, Murty M N., Flynn P J. Data clustering:A review [J]. ACM Computing Surveys,1999,31(3):264-323.
    [96]Everitt B, Landau S, Leese M. Clustering analysis [M]. Arnold, London,2001.
    [97]Xu R, Wunsch II D. Survey of clustering algorithms [J]. IEEE Transactions on Neural Networks,2005,16(3):645-678.
    [98]Han J, Kamber M.数据挖掘概念与技术第2版[M].范明,孟小峰,译.北京:机械工业出版社,2006.
    [99]Jain A K, Dubes R C. Algorithms for clustering data [M]. NJ:Prentice-Hall, 1988.
    [100]Murtagh F. Multidimensional clustering algorithms [M]. Physica-Verlag, Vienna, 1985.
    [101]Sibson R. SLINK:An optimally efficient algorithm for the single link cluster method [J]. Computer Journal,1973,16:30-34.
    [102]Zhang T, Ramakrishnan R, Livny M. BIRCH:an efficient data clustering method for very large databases [J]. Proceeding of 1996 ACM-SIGMOD Int. Conf. Management of Data, Montreal, Canada,1996.
    [103]Guha S, Rastogi R, Shim K. CURE:An efficient clustering algorithm for large database [C]. Proceedings of the ACM SIGMOD Conference, Seattle, WA, 1998,73-84.
    [104]Hartigan J, Wong M. Algorithm AS136:A k-means clustering algorithm [J]. Applied Statistic,1979,28:100-108.
    [105]Kaufman L, Rousseeuw P. Finding Groups in Data:An introduction to cluster analysis [M]. New York:John Wiley and Sons,1990.
    [106]Ng R, Han J. Efficient and Effective clustering methods for spatial data mining [C]. Proceedings of the 20th Conference on VLDB, Santiago, Chile,1994, 144-155.
    [107]Wang W, Yang J, Muntz R R. STING:a statistic information grid approach to spatial data mining [C]. Proceedings of the 23rd Conference on VLDB, Athens, Greece,1997,186-195.
    [108]Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications [C]. Proceedings of the ACM SIGMOD Conference, Seattle,1998,94-105.
    [109]Sheikholeslami G, Chatterjee S, Zhang A. WaveCluster:A multi-resolution clustering approach for very large spatial databases [J]. Proceedings of the 24th Conference on VLDB, New York,1998,428-439.
    [110]Ester M, Kriegel H P, Sander J, Xu X. A density-based algorithm for discovering cluster in large spatial databases with noise [J]. Proceedings of the 20th ACM SIGMOD, Portland, Oregon,1996,226-231.
    [111]Xu X, Ester M, Kriegel H P, Sander J. A distribution-based clustering algorithm for mining in large spatial databases [J]. Proceedings of the 14th ICDE, Orlando, FL,1998,324-331.
    [112]Hinneburg A, Keim D. An efficient approach to clustering large multimedia databases with noise [C]. Proceedings of the 4th ACM SIGMOD, New York, 1998,58-65.
    [113]Gennar J, Langley P, Fisher D. Models of incremental concept formation [J]. Artificial intelligence,1998,40(1):11-61.
    [114]Clara P, Domenico T. P-AutoClass:scalable parallel clustering for mining large data sets [J]. IEEE Transactions on Knowledge and Data Engineering,2003, 15(3):629-641.
    [115]Kohonen T. Self-organizing map [M]. Springer Series in Information Sciences, 2001,30.
    [116]Cao Y Q, Wu J H. Dynamics of projective adaptive resonance theory model:the foundation of PART algorithm [J]. IEEE Transactions on Neural Network,2004, 15(2):245-260.
    [117]Beaver S, Palazoglu A, Romagnoli J A. Cluster analysis for autocorrelated and cyclic chemical process data [J]. Industrial and Engineering Chemistry Research, 2007,46:3610-3622.
    [118]Teppola P. Multivariate process monitoring of sequential process data-a chemometric approach [D]. Lappeenranta University, Finland,1999.
    [119]Yoo C K, Vanrolleghem P A, Lee I B. Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants [J]. Journal of Biotechnology,2003,105:135-163.
    [120]Krishnapuram R, Keller J. A possibilistic approach to clustering [J]. IEEE Transactions on Fuzzy Systems,1993,1(2):98-110.
    [121]Castillo O, Melin P. A hybrid fuzzy-fractal approach for time series analysis and plant monitoring [J]. International Journal of Intelligent Systems,2002,17, 751-765.
    [122]Ng Y S, Srinivasan R. An adjoined multi-model approach for monitoring batch and transient operations [J]. Computers and Chemical Engineering,2009,33: 887-902.
    [123]Jensen F. An introduction to Bayesian networks [M]. New York:Springer.1996.
    [124]Alpaydin E. Introduction to machine learning [M]. Massachusetts Institute of Technology Press,2010.
    [125]Cherkassky V, Mulier F. Learning from data:concepts, theory, and methods [M]. New York:Wiley,1998.
    [126]Cover T M, Hart P E. Nearest neighbor pattern classification [J]. IEEE Transactions on Information Theory,1967,13:21-27.
    [127]Bishop C M. Neural networks for pattern recognition [M]. Oxford:Oxford University Press.1995.
    [128]Ripley B D. Pattern recognition and neural networks [M]. Cambridge, UK: Cambridge University Press.1996.
    [129]Zadeh L A. Fuzzy sets [J]. Information and control,1965,8:338-353.
    [130]Tax D M J, Duin R P W. Support vector data description [J]. Pattern Recognition Letters,1999,20(11-13):1191-1199.
    [131]Tax D M J, Duin R P W. Support vector data description [J]. Machine Learning, 2004,54:45-66.
    [132]Kressel U. Pairwise classification and support vector machines [M]. Cambridge, Massachusetts:MIT Press,1999.
    [133]Krzanowski W J. Between-groups comparison of principal components [J]. Journal of America Statistical Association,1979,74:703-707.
    [134]Raich A C, Cinar A. Diagnosis of process disturbance by statistical distance and angle measures [J]. Computers & Chemical Engineering,1997,21:661-676.
    [135]Singhai A, Seborg D E. Pattern matching in multivariate time series databases using a window-moving approach [J]. Industrial & Engineering Chemistry Research,2002,41:3822-3838.
    [136]Liu J. Process monitoring using Bayesian classification on PCA subspace [J]. Industrial & Engineering Chemistry Research,2004,43,7815-7825.
    [137]Liu J, Chen D S. Fault detection and identification using modified Bayesian classification on PCA subspace [J]. Industrial & Engineering Chemistry Research,2009,48:3059-3077.
    [138]WIdodo A, Yang B S. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors [J]. Expert Systems with Applications,2007,33:241-250.
    [139]Zhang Y W. Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM) [J]. Industrial & Engineering Chemistry Research,2008, 47(18):6961-6971.
    [140]Mahadevan S, Shah S L. Fault detection and diagnosis in process data using one-class support vector machines [J]. Journal of Process Control,2009,19(10): 1627-1639.
    [141]Choi S W, Park J H, Lee I B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis [J]. Computers and Chemical Engineering,2004,28:1377-1387.
    [142]Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models [J]. AIChE J.2008,54:1811-1829.
    [143]He Q P, Qin S J, Wang J. A new fault diagnosis method using fault directions in Fisher discriminant analysis [J]. AIChE Journal,2005,51:555-571.
    [144]Hwang D H, Han C. Real-time monitoring for a process with multiple operating modes [J]. Control Engineering Practice,1999,7:891-902.
    [145]Lane S, Martin E B, Kooijmans R, Morris A J. Performance monitoring of a multi-product semi-batch process [J]. Journal of Process Control,2001,11: 1-11.
    [146]Zhao S J, Zhang J, Xu Y M. Monitoring of processes with multiple operation modes through multiple principle component analysis models [J]. Industrial and Engineering Chemistry Research,2004,43:7025-7035.
    [147]Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models [J]. AIChE Journal,2008,54:1811-1829.
    [148]Ge Z Q, Song Z H. Multimode process monitoring based on Bayesian method [J]. Journal of Chemometrics,2009,23(12):636-650.
    [149]Gunther J C, Baclaski J, Seborg D E, Conner J S. Pattern matching in batch bioprocesses-Comparisons across multiple products and operating conditions [J]. Computers & Chemical Engineering,2009,33(1):88-96.
    [150]Ganeshanandam S, Krzanowski W J. On selecting variables and assessing their performance in linear discriminant analysis [J]. Australian journal of statistics, 1989,31(3):433-447.
    [151]Dash M, Liu H. Consistency-based search in feature selection [J]. Artificial intelligence,2003,151:155-176.
    [152]Jain A, Zongker D. Feature selection:evaluation, application-and small sample performance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19:153-158.
    [153]Kudo M, Sklansky J. Comparison of algorithms that select features for pattern classifiers [J]. Pattern Recognition,2000,33:25-41.
    [154]Quinlan J R. C4.5:programs for machine learning [M]. San Francisco:Morgan Kaufmann,1993.
    [155]Almuallim H, Dietterich T G. Learning with many irrelevant features [C]. Proceedings of the 9th national conference on artificial intelligence, MIT Press, 1991.547-552.
    [156]Narendra P M, Fukunaga K. A branch and bound algorithm for feature subset selection [J]. IEEE Transactions on Computer,1977,26(9):917-922.
    [157]Cao L J, Chua K S, Chong W K, Lee H P, Gu Q M. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine [J]. Neurocomputing,2003,55:321-336.
    [158]Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science,2000,290(5500):2323-2326.
    [159]He X, Niyogi P. Locality preserving projections [C]. Proceedings of Advances in Neural Information Processing System, Vancouver, Canada,2003,16: 153-160.
    [160]Meyer Y. Wavelets and operators. Advanced mathematics [M]. Cambridge University Press.1992.
    [161]Rao K, Yip P. Discrete cosine transform:algorithms, advantages, applications [M]. Academic Press,1990.
    [162]Rosipal R, Girolami M, Trejo L J, Cichocki A. Kernel PCA for feature extraction and de-noising in nonlinear regression [J].Neural Computing & Applications,2001.10,231-243.
    [163]Luyben W L. Process modeling, simulation and control for chemical engineering [M]. New York:McGraw-Hall,1990.
    [164]Downs J J, Vogel E F. A plant-wide industrial process control problem [J]. Computers and Chemical Engineering,1993,17(3):245-255.
    [165]Dong D, MeAvoy T J. Nonlinear principal component analysis based on principal curves and neural networks [J]. Computers and Chemical Engineering, 1996,20:65-78.
    [166]Choi S W, Lee C K, Lee J M, Park J H, Lee 1 B. Fault detection and identification of nonlinear processes based on kernel PCA [J]. Chemometrics and Intelligent Laboratory Systems,2005,75 (1):55-67.
    [167]Cheng Y Q, Zhuang Y M, Yang J Y. Optimal Fisher discriminant analysis using the rank decomposition [J]. Pattern Recognition,1992,25:101-111.
    [168]Bezdek J C. Pattern recognition with fuzzy objective function algorithms [M]. New York:Plenum Press,1981.
    [169]Raich A, Cinar A. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes [J]. AIChE Journal,1996,42(4):995-1009.
    [170]Ku W, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems,1995,30(1):179-196.
    [171]Russell E L, Chiang L H, Braatz R D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems,2000,51(1):81-93.
    [172]Li J, Cui P. Kernel scatter-difference-based discriminant analysis for nonlinear fault diagnosis [J]. Chemometrics and Intelligent Laboratory Systems,2008, 94(1):80-86.
    [173]Zhao C, Wang F, Zhang Y. Nonlinear process monitoring based on kernel dissimilarity analysis [J]. Control Engineering Practice,2009,17(1):221-230.
    [174]Zhang Y. Enhanced statistical analysis of nonlinear processes using kpca, kica and svm [J]. Chemical Engineering Science,2009,64(5):801-811.
    [175]Zhang Y, Qin S J. Improved nonlinear fault detection technique and statistical analysis [J]. AIChE Journal,2008,54(12):3207-3220.
    [176]Ge Z Q, Yang C J, Song Z H. Improved kernel pca-based monitoring approach for nonlinear processes [J]. Chemical Engineering Science,2009,64(9): 2245-2255.
    [177]Alghazzawi A, Lennox B. Monitoring a complex refining process using multivariate statistics [J]. Control Engineering Practice,2008,16(3):294-307.
    [178]Zhu Z B, Song Z H, Palazoglu A. Transition process modeling and monitoring based on dynamic ensemble clustering and multi-class Support vector data description [J]. Industrial & Engineering Chemistry Research,2011,50: 13969-13983.
    [179]Zhu Z B, Song Z H, Palazoglu A. Process pattern construction and multi-mode monitoring [J]. Journal of Process Control.2012,22:247-262.
    [180]Zhu Z B, Song Z H. A novel fault diagnosis system using pattern classification on kernel FDA subspace [J]. Expert System with Applications,2011,38: 6895-6905.
    [181]Zhu Z B, Ge Z Q, Song Z H, Zhao L. Fault detection and identification:serial form versus simultaneous Form [C]. IFAC 18th World Congress, Milan,2011, 18:2827-2832.
    [182]Zhu Z B, Song Z H. Fault diagnosis based on imbalance modified kernel Fisher discriminant analysis [J]. Chemical Engineering Research and Design,2010,88: 936-951.
    [183]Ge Z Q, Xie L, Kruger U, Lamont L, Song Z H, Wang S Q. Sensor fault identification and isolation for multivariate non-Gaussian processes [J]. Journal of Process Control,2009,19:1707-1715.
    [184]Kano M, Nagao K, Ilasebe H, Hashimoto I, Ohno H, Strauss R, Bakshi B R. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem [J]. Computers & Chemical Engineering,2002,26:161-174.
    [185]Singhal A, Seborg D E. Evaluation of a pattern matching method for the Tennessee Eastman challenge process [J]. Journal of Process Control,2006,16: 601-613.
    [186]Mika S, Ratsch G, Weston J, Scholkopf B, Muller K. Fisher's discriminant analysis with kernels [C]. Proceedings of IEEE Neural Networks for Singal Processing Workshop, Madison, WI,1999,41-48.
    [187]Yang J, Jin Z, Yang J Y, Zhang D, Frangi A F. Essence of kernel Fisher discriminant:KPCA plus LDA [J]. Pattern Recognition,2004,37(10): 2097-2100.
    [188]Cho H W. Identification of contributing variables using kernel based discriminant modeling and reconstruction [J]. Expert Systems with Applications, 2007,33(2):274-285.
    [189]Cho H W. Nonlinear feature extraction and classification of multivariate process data in kernel feature space [J]. Expert Systems with Applications,3007,32(2): 534-542.
    [190]Murphy P M, Aha D W. UCI repository of machine learning databases, University of California at Irvine, Department of Information and Computer Science,1994.
    [191]Fawcett T E, Provost F. Adaptive fraud detection [J]. Data Mining and Knowledge Discovery,1997,3(1):291-316.
    [192]Kubat M, Holte R, Matwin S. Detection of oil-spills in radar images of sea surface [J]. Machine Learning,1998,30:195-215.
    [193]Mladenic D, Grobelnik M. Feature selection for unbalanced class distribution and naive Bayes [C]. Proceeding of 16th International Conference on Machine Learning San Francisco, CA,1999,258-267.
    [194]Dunia R, Qin S J. Subspace approach to multidimensional fault identification and reconstruction [J].AIChE Journal,1998,44:1813-1831.
    [195]Mauryaa M R, Rengaswamyb R, Venkatasubramaniana V. A signed directed graph-based systematic framework for steady-state malfunction diagnosis inside control loops [J]. Chemical Engineering Science,2006,61:1790-1810.
    [196]潘明清,周晓军,吴瑞明,雷良育.基于主元分析的支持向量数据描述机械故障诊断[J].传感技术学报,2006,19(1):128-131.
    [197]张庆,徐光华,王晶,梁霖.基于支持向量域描述的多故障诊断动态模型[J].西安交通大学学报,2007,41(5):594-597.
    [198]Landgrebe T, Paclik P, Tax D M J, Duin R P W. Optimising two-stage recognition systems [J]. Lecture Notes in Computer Science,2005,3541, 206-215.
    [199]张杰,阳宪惠.多变量统计过程控制[M].北京:化学工业出版社,2000.
    [200]Jimenez L O, Landgrebe D A. Supervised classification in high-dimensional space:geometrical, statistical, and asymptotical properties of multivariate data [J]. IEEE Transactions on Systems, Man and Cybernetics,1997,28(1),39-54.
    [201]Wise B M, Gallagher N B. The process chemometrics approach to process monitoring and fault detection [J]. Journal of Process Control,1996,6(6): 329-348.
    [202]Himes D M, Storer R H, Georgakis C. Determination of the number of principal components for disturbance detection and isolation [C]. Proceeding of the American Control Conferences, Baltimore, Maryland,1994,1279-1983.
    [203]Everitt B, Hand D. Finite mixture distributions monographs on applied probability and statistics [M]. London:Chapman & Mall,1981.
    [204]Hand D J. Kernel discriminant analysis [M]. New York:Research Studies,1982.
    [205]Duin R P W, Juszczak P, Paclik P, Pekalska E, de Ridder D, Tax D M J. PRTools4, A matlab toolbox for pattern recognition,Delft University of Technology,2004.
    [206]Johannesmeyer M C, Singhal A, Seborg D E. Pattern matching in historical data [J]. AIChE Journal,2002,48:2022-2038.
    [207]Jackson J E. A user's guide to principal components [M]. Wiley, New York, 1991.
    [208]Dietterich T G. Ensemble methods in machine learning [J]. Lecture Notes in Computer Science,2000,1857:1-15.
    [209]Zhang C X, Zhang J S. A local boosting algorithm for solving classification problems [J]. Computational Statistics and Data Analysis,2008,52:1928-1941.
    [210]Breiman L. Bagging predictors [J]. Machine Learning,1996,24:123-140.
    [211]Chen Q, Wynne R J, Goulding P, Sandoz D. The application of principal component analysis and kernel density estimation to enhance process monitoring [J]. Control Engineering Practice,2000,8(5):531-543.
    [212]Ricker N L. Optimal steady-state operation of the Tennessee Eastman challenge process [J]. Computers and Chemical Engineering,1995,19:949-959.
    [213]Ricker N L. Decentralized control of the Tennessee Eastman challenge process [J]. Journal of Process Control,1996,6:205-221.
    [214]Bhagwat A, Srinivasan R, Krishnaswamy P R. Fault detection during process transitions:A model-based approach [J]. Chemical Engineering Science,2003, 58:309-325.
    [215]Li W, Yue H H, Valle-Cervantes S, Qin S J. Recursive PCA for adaptive process monitoring [J]. Journal of Process Control,2000,10:471-486.
    [216]Wang X, Kruger U, Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes [J]. Control Engineering Practice,2003, 11:613-632.
    [217]Yao Y, Gao F R. Multivariate statistical monitoring of multiphase two-dimensional dynamic batch processes [J]. Journal of Process Control,2009, 19:1716-1724.
    [218]Srinivasan R, Qian M S. Online fault diagnosis and state identification during process transitions using dynamic locus analysis [J]. Chemical Engineering Science,2006,61:6109-6132.
    [219]Nimmo I. Start up plants safely [J]. Control Engineering Practice,1993,89: 66-69.
    [220]Srinivasan R, Wang C, Ho W K, Lim K W. Dynamic principal component analysis based methodology for clustering process states in agile chemical plants [J]. Industrial & Engineering Chemistry Research,2004,43:2123-2139.
    [221]Zhao C H, Wang F L, Lu N Y, Jia M X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes [J]. Journal of Process Control,2007,17:728-741.
    [222]Duchesne C, Kourti T, MacGregor J F. Multivariate SPC for startups and grade transitions [J]. AIChE Journal,2002,48:2890-2901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700